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Abstract

The problem of finding short vectors in Euclidean lattices is a central hard problem in
complexity theory. The case of module lattices (i.e., lattices which are also modules over a
number ring) is of particular interest for cryptography and computational number theory. The
hardness of finding short vectors in the asymptotic regime where the rank (as a module) is fixed
is supporting the security of quantum-resistant cryptographic standards such as ML-DSA and
ML-KEM.

In this article we prove the average-case hardness of this problem for uniformly random
module lattices (with respect to the natural invariant measure on the space of module lattices
of any fixed rank). More specifically, we prove a polynomial-time worst-case to average-case self-
reduction for the approxzimate Shortest Independent Vector Problem (y-SIVP) where the average
case is the (discretized) uniform distribution over module lattices, with a polynomially-bounded
loss in the approximation factor, assuming the Extended Riemann Hypothesis.

This result was previously known only in the rank-1 case (so-called ideal lattices). That proof
critically relied on the fact that the space of ideal lattices is a compact group. In higher rank, the
space is neither compact nor a group. Our main tool to overcome the resulting challenges is the
theory of automorphic forms, which we use to prove a new quantitative rapid equidistribution
result for random walks in the space of module lattices.
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1 Introduction

1.1 Motivation

A lattice is a discrete subgroup in a Euclidean vector space. It is typically described by a basis,
a collection B = (by,...,by,) of linearly independent vectors, and the lattice is the group A =
01Z 4+ - - - 4+ by Z obtained from all linear combinations with integer coefficients. Since it is discrete,
a lattice contains a non-zero vector of smallest possible Euclidean norm, a shortest vector.

The task of finding such a shortest vector (the Shortest Vector Problem, SVP) is a central hard
problem in complexity theory. More generally, one can look for a lattice vector whose norm is within
a small factor v > 1 of the shortest (the approximate Shortest Vector Problem, v-SVP), or for a
collection of n short independent vectors (the approximate Shortest Independent Vector Problem,
~-SIVP). For small enough approximation factors, problems of this type are believed to be hard,
and the best known algorithms have exponential complexity in the dimension of the lattice, in both
the classical and quantum paradigms. In their hardest regimes, they are even known to be NP-hard
[Mic98; HRO7]. However, applications typically fall outside this NP-hard regime, often depend on
the average hardness of the problems, and mobilize lattices with additional algebraic structure, like
module lattices. The main question addressed in this article is:

How hard are lattice problems on average in module lattices?

Average hardness. No NP-hard problem is known to be hard on average (for random instances),
and generating random instances that appear consistently hard is a delicate task. This property
is critical for applications to cryptography: one needs randomly sampled instances of the problem
to be hard with overwhelming probability. Lattice problems are a remarkable family of problems
enjoying some proofs of average-case hardness. This property is typically ensured by proving a
worst-case to average-case reduction: a proof that if random instances of a problem A can be
solved efficiently with good probability, then all instances (even the “worst”) of problem B can be
solved efficiently. Thus, if there exist hard instances of B, then random instances of A are hard. A
self-reduction, when A = B, is particularly interesting, as it implies that random instances of the
problem are, in a precise sense, as hard as they could possibly be. In approximation problems, like
~v-SVP, a reduction might degrade the approximation factor. One strives to keep this loss as small
as possible, to stay in a regime where the problem is hard.

Ajtai [Ajt96] launched the field of lattice-based cryptography by proving a worst-case to average-
case reduction from the approximate shortest vector problem (the worst case, although in a regime
unlikely to be NP-hard) to SIS (the average case, for some carefully designed distribution on the
set of instances). This line of research has since evolved into a front-runner of quantum-resistant
cryptography, now making it into the real world [Nat24b; Nat24a]. SIS, and later LWE [Reg05], have
provided highly fertile ground for cryptography, leading to breakthroughs like fully homomorphic
encryption [Genl0].

Beyond applications to cryptography, understanding worst-case to average-case reductions for
lattice problems helps with the analysis of lattice algorithms. Algorithms such as LLL [LLL82] have
experimentally appeared to perform better than their worst-case analysis suggests, both in terms
of the running time and the output quality. This mystery has found some explanation through the
study of random lattices, see for instance [NS06; KV18]. Indeed, the analysis of algorithms is often
eased by heuristics on their geometry, such as the Gaussian heuristic. Such heuristics are only true
in an average sense, for random lattices. The average case being easier to analyze, a worst-case to
average-case reduction provides a bridge to deduce information about the worst case. This approach



has already been fruitful in the case of ideal lattices [BDP+20; BPW25], a particular case of module
lattices.

Module lattices. Many variants of lattice problems have been studied, and applications to cryp-
tography and computational number theory motivated algebraically structured variants: finding
short vectors in lattices which are ideals or modules over a number ring (they are called module
lattices, of which ideal lattices are a special case). These can be thought of as lattices with “many
symmetries”, offering opportunities for more complex algebraic manipulations, faster arithmetic,
and shorter representation of elements — all great features for the design of cryptosystems.

A module lattice over a number field K is essentially a lattice A C K" such that zA C A for
any integral element x of the field K (this last condition means that A is a module over the ring
of integers Ok C K). This is a simplification of the definition provided in Section 2.3.2. For the
present discussion, we further assume that A has full-rank (it contains a basis of the vector space
K7), and we call r the rank of the lattice. Forgetting about its module structure, the lattice A
has Z-rank r - deg(K), where deg(K) = [K : Q] is the degree of the number field, its dimension
as a Q-vector space. There is thus a spectrum of ways to construct large lattices: one can balance
between choosing a field of large degree deg(K), or choosing a large rank r. In one extreme case,
one can let K = Q so deg(K) = 1, and we obtain generic lattices (with no additional module
structure). At the other end of the spectrum, one can consider a large degree field K and set r = 1,
and obtain “rank one” module lattices A C K, also known as ideal lattices; they are in a sense the
“most structured” case.

The computational study of module lattices started in the context of computational number
theory, as the efficient manipulation of ideals in number fields requires seeing them as lattices
(see [Cohl13] for a variety of examples). The domain accelerated after its introduction to cryptog-
raphy, first with Ring-LWE [Mic02] (proven to be at least as hard as an ideal version of SIVP),
then with Module-LWE [LS15] (proven to be at least as hard as a module version of SIVP). The
digital signature scheme ML-DSA [Nat24b; DKL+18|, and the key-encapsulation mechanism ML-
KEM [Nat24a; BDK+18], both based on module lattices, recently became the first public-key
cryptosystems standardized by the American National Institute of Standards and Technologies
for resistance against quantum adversaries. These cryptosystems are proven secure under the as-
sumption that some module-variants of lattice problems are hard, and it has become critical for
cryptographers to understand this presumed hardness. The modules at play in these schemes have
small rank (at most five). This regime of “small rank” module lattices is precisely the focus of the
present paper.

The invariant probability measure. To study the average hardness of lattice problems, one
first needs to specify a probability measure on the space of instances: what is a random lattice? In
this paper, we work with arguably the most natural choice, a measure on the space of lattices that
is both mathematically canonical, and practically relevant.

Every lattice can be described by a basis, an element of GL,(R). Rescaling has no impact
on the difficulty of finding short vectors, so we only consider lattices of volume 1, with basis in
SL,(R). Now, two bases describe the same lattice if and only if they differ by a change of basis: a
matrix in SL, (Z). Therefore, the space of lattices (of volume 1) can be identified with the quotient
X, = SL,(Z)\ SL,,(R) (see Section 2.3.2 for the case of module lattices). This is a homogeneous
space for the group SL,(R) and it inherits the Haar measure. A fundamental result in reduction
theory is that the space of lattices has finite volume and we can thus normalize the measure to
a probability measure. It is also referred to as the SLy-invariant measure, or simply the invariant



measure, written p in this introduction. Several facts motivate the study of this particular measure.

o This measure was first introduced by Siegel [Sie45] to prove that the expected value of the
number of lattice points inside a ball centered at zero is approximated by the volume of
the ball. An important line of research then continued to study more refined such statistics
[RoghH5], as well as interactions with algorithms (e.g. [Ajt02; NS06]). This distribution is often
the most natural and convenient choice when speaking of “random lattices”.

e The invariance of the measure also allows for the theory of automorphic forms to be used as
a tool. This rich theory unlocks the spectral analysis of the space L?(X,,) of square-integrable
functions f : X,, — C. As Section 4 shows, we take full advantage of this.

o Lattice problems are believed to be hard, so to hope for a worst-case to average-case reduction,
easy instances must be rare: more precisely, the probability to sample a lattice for which
the problem is easy must be negligible. There are easy instances for SVP: for instance, if a
lattice contains one particularly small vector (exponentially smaller than all other independent
vectors), the LLL algorithm [LLL82] will find it in polynomial time. Such “very imbalanced”
lattices should have small measure. Conveniently, this is the case for the invariant measure.
Sections of the space X containing very imbalanced lattices are referred to as cusps, and they
do have very small py-volume, a fact quantified in Section 5 for module lattices. In fact, most
of the p-random lattices, forming the bulk of the space, are rather balanced.

e For a worst-case to average-case reduction, we need the average-case distribution to be ef-
ficiently sampleable. Conveniently, the invariant measure naturally comes up as the limit
distribution of simple random processes. In particular, one can start from an arbitrary lat-
tice (say Lo = Z" € X,), select a “large” prime number p, and sample a uniformly random
sublattice L C Lg of index p. The probability distribution of L is, in a precise sense, close
to the invariant measure [CU04; GMO03] — we call this phenomenon Hecke equidistribution.’
This convenient construction is deceptively simple, as it compares a discrete distribution to a
continuous distribution, and hides some computational difficulties. It is nevertheless a pow-
erful idea at the heart of our results, and at least suggests that sampling from the invariant
measure should be easy.

Finally, let us point out the main downside of the invariant measure: it is continuous. In a
computational context, we do not actually manipulate continuous values. Continuity is extremely
convenient for algorithmic design and analysis, but in the end, all needs to be discretized, and
one must prove that the analysis carries through this discretization. In particular, the average-case
distribution for lattice problems is actually a discretized version of the invariant measure. These
issues are the object of Section 9.

Prior work, and the inspiring case of ideal lattices. As fruitful as the worst-case to average-
case reduction of Ajtai [Ajt96] has been, it has drawbacks. SIS can be posed as a shortest vector
problem, so Ajtai’s reduction can essentially be seen as a self-reduction (not quite, but an SIVP
variant achieves that [Ajt99]) to an average-case distribution that does not resemble the invariant
distribution (the SIS distribution is supported on a “small” subset of carefully designed lattices).
Yet, the reduction does not preserve the dimension of the lattice. This dimension change incurs
a loss in the approximation factor — an obstacle towards approaching an NP-hard threshold. In
our regime, this causes an additional issue: we work in fixed rank, and the analogous reductions

!This is short for the equidistribution of Hecke points, as it is commonly referred to in the literature.



for modules do not preserve the rank [LLS15]. Changing the rank makes for weaker asymptotic
statements — especially since there seems to be a hardness gap between rank 1 and other small
ranks (see [LPS+19] for an analysis on the relative hardness across ranks).

Self-reductions of SVP and variants have successfully been developed for ideal lattices (i.e.,
rank 1). They first arise in the work of Gentry [Genl0] on fully homomorphic encryption. There,
he develops a worst-case to average-case reduction for the closest vector problem (CVP, a problem
closely tied to SVP) in ideal lattices. The distribution he is considering is the uniform distribution
on prime ideals of bounded norm. Translating this result to SIVP through the quantum equivalence
of Regev [Reg05] results in a worst-case to average-case (quantum) reduction for SIVP where the
average-case distribution is uniform on the inverse of prime ideals of bounded norm.

The ideal shortest vector problem was then approached by de Boer, Ducas, Pellet-Mary, and
Wesolowski [BDP+20]. They prove a random self-reduction for the average-case distribution defined
by the invariant measure, assuming the Extended Riemann Hypothesis (ERH). Their reduction is
based on a continuous random walk on the space of ideal lattices, viewed as the so-called Arakelov
class group. The use of this rich structure was a fruitful addition to the literature on lattice-based
cryptography. It was used in the article [FPS+23a] to extend Gentry’s work to the uniform dis-
tribution on prime ideals (instead of their inverse), with applications to the NTRU cryptosystem.
Surprisingly, this work critically relies on the results of [BDP-+20] on the invariant measure to ana-
lyze a different distribution on ideal lattices. The work [BDP+20] provides a rigorous understanding
of random ideal lattices (assuming the Extended Riemann Hypothesis) which has unlocked algo-
rithmic advances. It was used by de Boer [Boe22] to develop the first polynomial time algorithm
to compute power residue symbols, and more recently, it has unlocked the first rigorous subexpo-
nential algorithms for some of the most fundamental problems in algebraic number theory like the
computation of class groups and unit groups [BPW25]. We are hoping that our generalization from
the ideal case to the module case will find such varied applications.

The article [BDP+20] is a direct precursor of our paper, both through its choice of the natural
invariant measure, and through its methods. They transfer computational problems in an ideal
lattice to random sublattices, effectively performing a random walk in the space of ideal lattices.
This space is a compact and abelian topological group, and the study of this random walk boils
down to a study of generalized class groups and Fourier analysis.

Extending this strategy to modules of higher rank presents significant challenges, related to the
fact that the space of module lattices in rank > 1 is no longer compact, nor is it a group. A key
insight is that the Fourier analysis underlying [BDP-+20] is the theory of automorphic forms for
GL(1). The much deeper automorphic machinery for the non-commutative group GL(r), r > 1,
provides a higher rank analog, as already observed in [DK22]. However, exploiting it has proved
considerably more delicate due to the necessity of studying important, yet historically overlooked
aspects with high precision.

A concrete and fundamental issue arising with r > 1 is imbalancedness. On one hand, ideal
lattices cannot have extremely short vectors: their shortest vectors are not much shorter than the
vectors of their shortest bases — we say that these lattices are balanced. On the other hand, mod-
ule lattices of higher rank can be arbitrarily imbalanced. Topologically, this manifests into the fact
that the space of module lattices for rank r > 1 is not compact. This is an entirely new dimen-
sion of the problem, and it leads to serious limitations to a naive generalization of the random walk.

We note that the idea of random walks giving rise to reductions and their study using automor-
phic theory also emerged in another branch of cryptography based on abelian varieties, in particular
elliptic curves. See for instance [JMV09] and [PW24]. In contrast to the above, this setting is dis-
crete by nature, given by graphs of abelian varieties connected through isogenies. For example, in



the case of supersingular elliptic curves, one may study random walks using automorphic forms on
definite quaternion algebras [PW24].

1.2 Results

We obtain in this paper the first random self-reduction of a shortest vector problem for module
lattices beyond ideal lattices, Theorem 1. This also marks the first application of automorphic forms
on GL(n) to the complexity theory of lattice problems.

Let us start by formalizing the main computational problem we consider in this article, y-SIVP.
Recall that the successive minima of a lattice L of dimension n are defined as

Aj(L) = min {)\ € Rso

there exist R-linearly independent vectors (:101)5:1
such that z; € L and ||z;]| < A for all 4 ’

for j € {1,...,n}. Given as input a basis B of an n-dimensional lattice L and an approximation
factor v € R>1, the y-shortest independent vector problem (or -SIVP) is the computational task
of finding R-linearly independent lattice vectors z1,...,z, € L that satisfy ||z;|| < v - A, (L) for
all i € {1,...,n}. The problem remains the same when we look at module lattices: the input is a
module lattice M, and we require the same condition ||z;|| < - A, (M).

Let us now briefly introduce the average-case distribution: the discretized version of the invariant
probability measure p on the space X, (K) of module lattices of rank r over a number field K. It
can be described through a rounding algorithm, which we call Roundr,; and defined in Section 3.
Given an arbitrary lattice L, the output Roundy,¢(L) is a randomly generated rational module
lattice (one which can be represented and manipulated on a computer or, more formally, on a
Turing machine) that is geometrically close to L. We write Roundy,at(ficut) for the distribution
on rational module lattices coming from applying Roundy,; to p-random lattices (with a tail-cut,
removing a negligibly small section of the space, to ensure that the distribution is supported on a
compact set). This defines the average case; see Section 10 for the precise definition.

We insist that Roundy,; replaces any lattice with a “very close” one: the distinction between
tent and Roundyag(feys) is similar to the distinction between the continuous uniform distribution
on [0,1], and its discretization by rounding real numbers in [0,1] to a certain number of bits of
precision.

Theorem 1. Let K be a number field of degree d and discriminant Ag. Fix a rank r € Z~1,
and let n = rd. Assume ERH for the L-function of every Hecke character of K of trivial modulus.
Let € be an oracle for o/ -SIVP which succeeds with probability? p = 2-°) when its input follows
distribution Roundpas(peut). There is a probabilistic polynomial time algorithm for v-SIVP over
any module lattice of rank r over K with v = poly, (|Ax |4, d) -+, making an expected number of’
poly,(log |[Ak|) - p~" queries to 0.

This result relies heavily on a quantitative Hecke equidistribution theorem for specific natural
test functions that is uniform in all parameters. The full statement is given in Theorem 3, and
we believe it is of independent interest. See a special case of this theorem in a simplified version,
Theorem 2, in the next section.

2The oracle is Monte Carlo in the sense that when it does not succeed, it might still return an incorrect response.
The assumption that the error probability satisfies p = 27°(") is not fundamental: the problem can be solved in time

20(") anyway, and we did not attempt to fine-tune our approach for the narrow regime where p is in 27°™ but not
in 2700,
|O(1)

3The notation f = poly,.(g) means that |f| = |g where the implicit constants in O(1) may depend on r (but

on no other parameter).



Indeed, the problem of equidistribution of Hecke points has a rich history: it was already consid-
ered by Linnik and Skubenko [L.S64] and became particularly influential at the turn of the century
through its generalizations (see e.g. Sarnak’s ICM address [Sar91]). Solutions of greater and greater
generality were proven using a wealth of methods, from representation theoretic in [COUO1] to
ergodic theoretic, based on measure rigidity in [EO06] (see the cited papers for more references).

Most of the literature has focused on proving statements as general as possible, with explicit
and sharp rates of equidistribution for general test functions. However, we return to the classical
interpretation in terms of lattices and ask the following natural question. Let L be any given lattice
and consider a smoothened J-distribution centered at L (i.e. take a bump function as test function).
How does the equidistribution rate of Hecke operators applied to this distribution depend on L
and, in particular, on the rank and balancedness of L? Adapting the work of Clozel-Ullmo [CU04],
introducing geometry of numbers and carefully making constants explicit, we give an answer to this
question. We expect further interesting refinements to be possible.

We rely on another result that we believe to be of independent interest: we prove that random
module lattices are somewhat balanced with overwhelming probability; it is the content of our
Theorem 4. This is related to recent work of Gargava, Serban, Viazovska and Viglino [GSV+25b;
GSV+25a] but our methods are different. Precisely, relying on computations by Thunder [Thu98]
and generalizing work of Shapira and Weiss [SW14], we bound the proportion of semistable lattices
in the sense of Grayson—Stuhler [Gra&4].

1.3 Technical overview

In this section, we give an overview of our worst-case to average-case reduction for v-SIVP.

Randomizing lattices. For the moment, let us forget about modules, and consider generic
lattices. The starting point of our strategy is rather simple: we leverage the fact that given a lattice
Loy and a large prime p, a uniformly random sublattice L C Lo of index p is equidistributed in
the space of lattices, with respect to the measure p. Before properly quantifying this property
and translating them to module lattices, let us sketch how it can be used to build worst-case to
average-case reductions.

Suppose we have an algorithm for v-SIVP that works well on average: given a p-random lattice
L, the algorithm finds linearly independent vectors (z;);~; such that |z;|| < v - A,(L) with good
probability. Now, we are given a lattice Lg, a worst-case instance. A straightforward idea would be
to pick a large enough prime p and a sublattice L C Lg of index p, and use our algorithm on L.
As L is equidistributed, we expect the algorithm to find linearly independent vectors (z;)~; such
that ||z;|| < - An(L) with good probability. Since L C Ly, these vectors are also in Ly. However,
proposing (x;)7_; as a solution of SIVP for Ly, the lengths must be compared to A, (Lo) instead of
An(L).

In general, we only have A\, (L) < pA,(Lo) (an inequality reached with Lo = Z" D Z" ! @ pZ =
L), which suggests that (z;)7_; only solves py-SIVP, a considerable loss in the quality of the
solution. However, the extreme case A,(L) =~ pA,(Lg) is actually rare, and in a precise sense,
for random sublattices L, one expects A\n(L) ~ p'/"A\,(Lg). Indeed, as L is equidistributed, the
Gaussian heuristic applies, thus we expect A, (L) to be of the order of det(L)Y/™ = p'/™ det(Ly)"/" =
O(p*/"\,(Lg)). This “balancedness of random lattices” is studied in more detail in Section 5, where
we prove Theorem 4.

The problem of imbalancedness. In conclusion, this simple strategy appears to provide a
worst-case to average-case reduction for SIVP, with a loss of p/™ in the approximation factor.



Now, what does p sufficiently large mean? On one hand, we want it to be small, to stay in a regime
where SIVP is as hard as possible: the smaller the better, but let us aim for an approximation factor
that is polynomial in the dimension n (a regime in which all known algorithms have exponential
complexity). In other words, we require that p'/® = n°M ie. p = n®™. On the other hand,
we require p to be large enough for the random sublattice L to be equidistributed. This is where
difficulties arise, as this constraint actually depends on the initial lattice L.

For instance, consider the lattice L, = €Z @ Z" ', where ¢ € Rq is very small. It contains
the small vector z. = (g,0,...,0). For any index-p sublattice L C L., we have pz. € L, so
A(L) < |lpze|| = pe. If L were equidistributed, we would expect A\1(L) to be of the order of
det(L)Y/™, yet A\ (L) < pe and det(L)'/™ = (pe)'/™. Therefore, for index-p sublattices of L. to be
equidistributed, we need p to be at least as large as 71,

These lattices L., with vanishingly small €, are émbalanced, they contain unusually short vectors.
We can think of these imbalanced lattices as living in a remote corner of the space of lattices, so far
away that to reach the rest, we need to take a gigantic step of index p > e~1. For such initial lattices
Lo = L., the simple reduction sketched above cannot work, as the loss p'/™ in the approximation
factor could be arbitrarily large.

A trichotomy. This notion of balancedness is key, and to quantify it properly, let us return to
our actual objects of interest: module lattices. For the rest of the article, we fix a number field K
of degree d, we fix a rank » = O(1), and we will consider module lattices of rank r over K. Such
a module lattice M is still a lattice in the usual sense, of dimension dr, and we can speak of its
successive minima A;(M ). Its module structure gives rise to a convenient variant of this notion, the
K-successive minima A (M) defined as

)\JK(M) = min{/\ € Ro

there exist K-linearly independent vectors (acz)f:1
such that z; € M and ||z;|| < A for all ¢ ’

for j € {1,...,r}. Each \;(M) is approximately as large as Aﬁ/d] (M) (see Lemma 2.13). Now, we
say that a module lattice M is a-balanced if )\Jlg_l/)\jK <aforall je{l,...,r—1}.

As discussed above, the straightforward reduction consisting in taking random sublattices fails
for very imbalanced lattices like L.. The notion of a-balancedness measures this precisely, and
allows us to divide our reduction into three regimes, illustrated in Figure 1.

e The bulk. “Most” lattices are fairly balanced: they form what we call the bulk of the space.
Informally, we say that M belongs to the bulk if it is a-balanced with a = d°). We prove
that for such M, the simple strategy sketched above (reducing SIVP to random sublattices)
can be made to work. In Section 1.3.1, we give more details on this regime and an overview
of the proof of equidistribution. The full proof is the object of Section 4 and Section 5.

e The cusp. As illustrated with L., the simple strategy fails for imbalanced lattices. When
the imbalancedness is extreme enough, it can be detected and exploited by polynomial time
algorithms like LLL. This region of the space is referred to as the cusp, and roughly consists
of lattices which are not a-balanced for some threshold a = 20(4) . This region has very small
p-measure, and can be thought of as very “thin” and “elongated”, with lattices like L. going
“to infinity” as e — 0 (see Figure 1). In Section 1.3.2, we give an overview of the strategy to
reduce SIVP from the cusp to the balanced case. The full proof is the object of Section 6.



Bulk Cusp c

Figure 1: Schematic illustration of a single connected component of the space of module lattices.

o The flare. Between the bulk (where randomization works well) and the cusp (where algo-
rithms like LLL come in handy) remains a region of moderately-balanced lattices: the flare*.
It consists of lattices that are 2@ _balanced, but not d°M-balanced. From such a lattice, we
prove that we can reduce SIVP to another lattice which is in the bulk. We give an overview
of this step in Section 1.3.3. The full proof is the object of Section 7.

1.3.1 The bulk

In this section, we explain our technique in the regime where lattices are balanced: we start from a
lattice Ly in the bulk. As already explained, we reduce SIVP in Ly to SIVP in a random sublattice
L C Ly — but we are now in the context of module lattices. We work in the space X, of rank-r
module lattices (over K). It is defined analogously to the space SL, (Z)\ SL,,(R) of generic lattices,
but the module structure introduces technicalities, the details of which are deferred to Section 2.3.2.

Instead of a prime number p, and a sublattice L C Lg of index p (i.e., Lo/L = Z/pZ), we
consider a prime ideal p (in the ring of integers O of K) and consider sub-module lattices L C L
of index N(p) with Lo/L = Ok /p as Ox-modules (we might say that L has “index p” in Lyg).

Random processes and Hecke operators. This process of taking random sublattices can be
thought of as a random walk in the space X,.. It can be formalized as an operator on probability dis-
tributions of X,., or, more conveniently, on the Hilbert space L?(X,) (of square-integrable functions
X, — C for the measure p1). Given a prime ideal p in Ok, the Hecke operator T}, : L*(X,) — L*(X,)
is defined for each f € L?(X,) and each L € X, as

1
T,f(L) = Dy S F,
L/]\AZW%C(QLK/{J

where Dy = 1+ N(p)+...+ N(p)"~! is the number of terms in the sum. This operator is averaging
over all “index p” sublattices. Its probabilistic interpretation is as follows. Suppose that f € L?(X,)
is a probability density function. Then, T, f is the probability density function for the experiment
which consists in sampling a lattice L with density f, then selecting a uniformly random sublattice
of L of index p. Assuming that the measure p is a probability measure implies that the constant
function 1 is its probability density function. Note that 7,1 = 1.

4This notion is not canonical. It comes from the gradual widening in Figure 1.



The idea that, for p large enough, sublattices of index p are equidistributed can be formalized
as follows. For an initial probability distribution f € L?(X,), the L!'-distance (which is the notion
of statistical distance we use in this paper) || T, f — 1||1 converges to 0 as N (p) grows. To apply this,
we must now ask for an explicit rate of convergence, which will depend on f.

Note that, starting from a lattice Lo, it is tempting to consider the Dirac distribution dr,
centered at Lo, and to study the distribution 7,4z, of uniformly random sublattices of Lq. However,
these are discrete distributions in a continuous space: no matter how large p is, the distribution
Ty0r, remains discrete and ||T,0r, — 1||1 = 1. Instead, we “smoothen” the distribution dr,, and
consider a continuous distribution ¢r,, that is highly concentrated around Lg. One can think of
it as the uniform distribution in a small ball around Lg: it samples random lattices which are,
geometrically, very close to Ly. The precise definition of ¢, is the object of Section 4.1.

Equidistribution via the theory of automorphic forms. The question becomes: given a
lattice Lo and a probability density function ¢, concentrated around Lg as above, how fast does
Tyor, tend to 1 in L'-norm as N(p) grows? In other words, how large does N(p) need to be for
the distance ||Ty¢r, — 1|1 to be negligibly small?

To answer this, we follow the ideas of Clozel-Ullmo in their work on Hecke equidistribu-
tion [CUO4]. They apply the principle behind the Weyl criterion, which suggests spectrally de-
composing ¢, and analyzing the action of 7, on the spectral components, given in terms of
automorphic forms or automorphic representations. For GL(r), doing this relies on deep theorems
by Langlands and Moeglin—Waldspurger, who made the decomposition explicit enough for compu-
tations. We review this theory in Section 2.7.

The main input is the spectral gap for 7,, an important object of study in number theory
(see the Ramanujan Conjecture [BB13]), consisting in strong bounds for its eigenvalues. However,
generalizing Clozel-Ullmo [CU04] to number fields requires some care due to the fact that L?(X,)
contains a large subspace behaving like L?(X7), where T}, acts by unitary characters. Its eigenvalues
thus have absolute value 1 there.

To make this formal, we introduce a “splitting” of GL(r) into SL(r) and GL(1) using the
determinant function (see Section 2.6). It corresponds to a decomposition

LQ(XT’) = L?let(Xr) D L?iet(Xr)J_'

On L2 (X,)*, the operator T, » has small eigenvalues, whilst the space L3, (X,) captures the spectral
theory of GL(1). We also use this splitting through corresponding “distance functions” that allow
us to define @, first, take a basis z € GL,(KRg) for L and construct the normalized bump function
f» that is the characteristic function of a ball in the SL(r)-direction and a Gaussian in the GL(1)-
direction, both centered at elements corresponding to z. Then we average f, over all bases of Ly to
obtain ¢, (this is sometimes called an automorphic kernel). See Section 4.1 for more details.

Schematically, we now do the following. We choose a special basis of automorphic forms (w) for
the space L3, (X,)" and (x) for the space L3, (X,). In particular, there is the constant function
1 = xo. These spaces have discrete, as well as continuous spectrum, and we informally write the
decomposition of ¢, as

YLy =/<90LO,X>X+/ (pLy, @) @.
X w
Crucially, the operator T}, acts on @ and x by scalars. It is normalized so that 7,1 = 1. By

representation theoretic methods, one may compute that 7}, acts on w with eigenvalue bounded in
absolute value by rN (p)_3/ 8 fact which relies on bounds towards the Ramanujan conjecture.



However, on y it acts by x(p), a number of absolute value one. Fortunately, we have a phe-
nomenon generalizing the orthogonality of characters: a sum of the shape >, x(p) exhibits cancel-
lation for all x # xo. A strong quantitative version of this fact was proved and used in [BDP+20]
to treat the case of ideal lattices (the GL(1) case) under the Extended Riemann Hypothesis. We
therefore study an average of Hecke operators

1
Tp=-— > Ty,
7] peP

where P consists of all primes of norm at most B for some B > 1. At the level of the algorithm,
this means we randomize the prime p.

The spectral gap and the results of [BDP-+20], together with Parseval’s identity, show a bound
of the rough shape (see below for a more precise statement)

/ <<10L0a X) TPX + / <<10Loaw> T’PWH
X7X0 w

<rd*?B738||pr, — 1| < rd*2B7%/3 |lop, || -

| Topr, — 1] = \

This generalizes the work of Clozel-Ullmo to number fields.

However, we turn to the question of how this rate of equidistribution depends on Lg: we must
bound ||¢r, ||, which is one of our new contributions. We reduce this to a counting problem that has
been encountered in other contexts of analytic number theory. When K = Q, taking a basis matrix
z € SLy(R) to represent Ly, it asks for a bound on the number of v € SL,,(Z) such that vz lies in a
ball of small radius around z in the symmetric space SL,(R)/SO(n). While a generalization of the
classical circle problem asks for bounds uniform in the radius, in this case we require uniformity in
the center of the ball. Indeed, if z goes deeper into the cusp, defining a very imbalanced lattice Ly,
then this number of v grows.

We solve this problem over any number field in Section 4.2.2, producing bounds in terms of
the K-successive minima of the lattice Lg. Considering lattices defined by diagonal matrices and
unipotent 7y, our bounds seem to be essentially sharp.

Piecing everything together, we obtain the quantitative equidistribution theorem, Theorem 3,
with very explicit dependence on all parameters. We give a simplified variant here to point out the
quantities that show up.

Theorem 2 (Hecke equidistribution theorem: special case). For ¢ prime, let K be the (-th cyclo-
tomic field, and let d = € —1 be its degree. Let X, (K) be the space of rank r module lattices over K
equipped with the invariant probability measure p. Let ¢, be the bump function on X, (K) centered
around a lattice Loy defined in Section 4.1, and let 1 denote the constant 1 function on X,(K). If p
is a prime ideal of norm p, define T, as the Hecke operator averaging over submodules with quotient
space given by O [p. For a large parameter B >> dlogd, let
1
Tp = ] > T,
peP

where P is the set of primes of norm at most B. Finally, assume ERH for the L-function of every
Hecke character of K of trivial modulus. Then, for any e > 0, if L is a-balanced, we have

HTPQPLO B 1” -0 (d3/2+sB—1/2+5 + (Td)O(TZd)aO(r3d)B—3/8+s)

where the implied constants depend only on .

10



Note that the Q-dimension of a module lattice L over a degree d field K is given by n = dr.
For the quantity ||Tper, — 1| to be negligible, e.g. smaller than 27", we must have that

B> Inax((rd)Cﬂd, aCTSd) (1)

for some large enough constant C' > 0. With such B, the process of choosing a random sublattice
L C Ly produces a p-random lattice L (up to a negligible error).

Following the steps and observations described above, we can now solve SIVP for Lg by solving
it in L: we find linearly independent vectors (x;)_; in L such that ||z;|| < yA,(L), and since L is
p-random, we have with overwhelming probability that A, (L) is roughly bounded by det(L)le =
O(B'/"\,(Lg)) (Theorem 4). This results in a loss of BY/™ in the approximation factor. Minimizing
B above, this remains polynomial in n if o < n@1/7) This means that the randomization works
well when Lg is a-balanced for® a = poly,.(d). This region of the space with polynomially-bounded
« constitutes the bulk as defined above.

As this randomization requires Lg to be balanced, we next show how to reduce SIVP in imbal-
anced lattices to the balanced case.

1.3.2 The cusp

Very imbalanced lattices are generally speaking easier instances of short vector problems due to
the existence of the LLL algorithm, as previously noted. However, applying such an algorithm in
our situation still requires some careful lattice “surgery”, cutting and glueing together instances
following a divide and conquer strategy. We obtain in Theorem 5 a reduction from SIVP in any
module lattice of rank r to SIVP in at most r module lattices, still of rank r, but now with the
guarantee that they are somewhat balanced (they are in the flare).

Finding dense sublattices. The idea is the following. Consider a lattice L that is not «-
balanced, for some « (large enough, and part of our task here is determining what large enough
means). There is an index k such that /\£(+1(L) > MK (L). This translates to a gap of the form
Nj+d(L) > a)j(L) between the standard successive minima. One can compute an LLL-reduced
basis (b;); of L, with the guarantee that

bl < 204072 (L),

for all i. If a > 2(r=1/2 e obtain that ||b;|| < Ajya(L) for all i < j. This means that the first j
vectors founds by LLL are all in the subspace generated by the first j +d — 1 smallest vectors of the
lattice. This is not sufficient yet, but under a slightly stronger bound for «, and looking at module
sublattices, we realize that LLL reveals K-independent vectors (b})%_ such that [|b]|| < Af, | (L). In
particular, these vectors span the same K-subspace V as the k first K-minima. We can therefore
deduce a basis of L' = L N V: a sublattice of L' whose K-minima are exactly M<(L),..., A5(L).
The detailed proof is the object of Lemma 6.2. Finding short vectors in L’ immediately reveals
short vectors in L. Furthermore, while L' might still not be a-balanced, it has at least one fewer
gaps than L (the one separating AKX (L) from )\kKH(L)). A recursive application of this strategy
ultimately leads to a lattice with no gaps left: an a-balanced lattice.

®Note that the dependence in the rank is exponential, hinting at difficulties for the regime asymptotic in 7.
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Lattice surgery. Note that \(L') = Ai(L), so a solution for SVP can easily be transferred.
But for SIVP, we need to find n = rd independent vectors of L, that is more than exist in L'. A
solution of SIVP in L’ does not give a complete solution for L: we also need to solve SIVP in a
“complementary lattice”: the orthogonal projection 7(L) of L along V' = spany (L’). The successive
minima of w(L) are very close to )\fﬂ(L), ..., AK(L); the small discrepancy causes a small loss in
the approximation factor. This is proved in Lemma 6.3.

In summary, LLL can detect large gaps between AKX (L) and /\,IfH(L), and can effectively split
the lattice L “around that gap”, resulting in two lattices L’ (or rank k) and L” (of rank r — k) such
that the minima of L’ are A{* (L), ..., A\f (L), and the minima of L” are almost Af ;(L), ..., \E(L).
To solve SIVP in L, it is sufficient to solve SIVP in L’ and L”. Applying this recursively results
in a collection of lattices L1,..., L whose successive minima have no remaining large gap, and
whose ranks sum to r (Lemma 6.5). This reduction of the dimension sounds good in practice, but
to ultimately achieve a worst-case to average-case reduction, we wish to preserve the dimension.
Therefore, in a final step, we show how each L; can be embedded in a module lattice of rank r in
a way that preserves its balancedness (Lemma 6.6).

1.3.3 The flare

If o is larger than some polynomial in d but not exponentially large, we must proceed differently.
The idea is still to take sublattices with the goal of reducing the size of o, which measures “gaps”
in between the successive minima. The principle is as follows.

Take a unimodular lattice L of rank 2 over Q with shortest vector v of very small size A\;. There
exists a reduced basis (v, w) of L with w a vector of much larger size A2 =< 1/\;. Choosing a sublattice
of index p amounts to multiplying either v or w by p and taking some linear combinations to form
a new basis. Put another way, one chooses a subspace of dimension one inside the 2-dimensional
Z/pZ-vector space L/pL.

There are p + 1 possibilities to do so, yet only one that contains the projection of v: indeed, v
is a primitive vector and spans a unique one-dimensional subspace in L/pL. Thus, with very high
probability, i.e. p/(p + 1), the sublattice does not contain v, but it contains pv — the basis of the
new sublattice is of the form (pv,w+ kv) for some 0 < k < p— 1. If pA; < A2, then p\; must be the
shortest length in the sublattice, and Ao remains a good approximation for the second successive
minimum. The gap between A; and Ay can thus be reduced by 1/p.

To generalize this idea to higher rank n, we must use different types of Hecke operators. This
corresponds to taking sublattices with different, fixed structures of the quotient space: consider
those sublattices corresponding to subspaces of L/pL of dimension k for some 1 < k <n —1. Now,
let 1 <i < mn—1and assume we have a large i-th gap A\;11/A; and p < A\j1+1/\;. Then we can prove
that, with high probability, sublattices L' C L such that L/L' = (Z/pZ)* have i-th gap reduced by
1/p, i.e., equal to A\j+1/pA;, and all other gaps remain approximately the same (see Section 7.1).

With this technique, we could close “exponentially large” gaps, but it requires knowing at which
index the gaps are, and how large they are. Gaps in the flare are moderately large, so they cannot be
detected in the same way as gaps in the cusp (Section 1.3.2). We therefore “guess” the dyadic sizes
and apply the process. There are O(nlogn) dyadic intervals for each gap, but there are r-many
gaps. The number of possible guesses is thus exponential in the rank — this is fine in our fixed-rank
regime, but is another big obstacle to treating generic lattices. Once the correct guess has been
found, SIVP is reduced from the flare to the bulk (see Section 7).
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2 Preliminaries

2.1 Notation

For every abelian group A, let Ar denote A ® R. For a representation V of a group G, let V¢
denote the space of fixed points {v € V' | gv = v for all g € G}.

For two complex-valued functions f and g, we occasionally write f(x) < g(z) to mean f = O(g).
We write f = O,(g) of the implicit constants depend on a parameter r. We write f = poly(g) to
signify |f| = [g|°" and f = poly,(g) to signify |f| = |g|°"(). For n € Z¢ we denote [n] =
{1,...,n}. The expression logz denotes the natural logarithm of = and log, x denotes the base 2
logarithm. For a finite set X, we denote by | X]| its cardinality.

2.2 Number fields

Let K be a number field of degree d with signature (r1,72) (i.e., there are r; real embeddings
K — R, and 2ry complex embeddings K — C). Let Ok be its ring of integers with discriminant
Ak and denote by Cl(K) the ideal class group. Let hx be the class number, Rx the regulator, and
wp the number of roots of unity in K. Let r, = r1 + 72 — 1 be the rank of the group of units OIX{.

We fix a set of 1o complex embeddings {01, ... 0y, } such that the union of {0;,7;} exhausts all
complex embeddings. We have that Kr = R™ x C" and there is a natural embedding K — Ky,
with the real components given by the r; real embeddings x — p(x) and the complex components
given by the r9 embeddings = +— o(z) fixed above. We call this map the Minkowski embedding.

There is a unique positive involution a — a* on Kg given by complex conjugation in each factor
under the isomorphism with R™ x C"2. The canonical metric on R™ x C"2 is given by

(900 =Y 2oyp + Y 2Re(xo¥s) = try, m(z - y).
p o

At the non-archimedean places, given by prime ideals p € O, we have the completions K, of
K and O, of Ok. Let O = Hp O, denote the profinite completion of O and Ag = Kgr X H;; K,
the ring of adeles of K. We refer to [Neu99] for more details on these constructions.
2.3 Lattices
2.3.1 Euclidean Kr-modules

A Euclidean Kgr-module of rank r is a pair (V,(:,-)) where V is a free Kg-module of rank r
and (-,-): V®r V — R is a positive definite inner product on the real vector space V such that

(azx,y) = (x,a’y) for all z,y € V and a € K.
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Example 2.1. The module Vy = K equipped with the standard inner product

r

(T, )0 = > tric m(@iyy) =D (@i, yi)o

i=1 i=1

is a Euclidean Kg-module of rank r. More generally, for g € GL,(KR), the Kg-module V = Ky
equipped with (x,y) = (gz,gy)o is a Euclidean Kg-module of rank r, and g: V" — Vj is an
isomorphism.

Any abstract Euclidean Kg-module is isomorphic to the more concrete Vy. To see this, first
let (ey), be the primitive idempotents of the R-algebra Ky indexed by the infinite places v of K,
meaning that e, Kp = R if v is a real place and e, Kr = C if v is a complex place. Note that e} = e,
for all v.

Now let V' be a Euclidean Kr-module of rank r. Then the e, act as self-adjoint idempotents
on V, i.e. they induce an orthogonal decomposition

V=0PeV

that commutes with the action of K.
Let v be a real place of K. Then e,V is a real Euclidean space of dimension r, and therefore
there exists an isomorphism g,: e,V — K] = R" to the standard Euclidean space of dimension r.
Let v be a complex place of K, fix an isomorphism K, = C, and let W be the C-vector space e,V
of dimension r. For z,y € W, define

H(xvy) = <$,y> - Z<Z.Z',y> € (C7

so that (z,y) = Re H(z,y). Then the identity (ax,y) = (x,ay) for x,y € W and a € C implies
that H is a positive definite Hermitian form on W. Therefore, there exists an isomorphism g, : W —
C" to the standard Hermitian space of dimension r. In particular, we have

<.%', y> = Re H(gvxy gvy)

for all z,y € e, V.
Putting all places together, there exists an isomorphism g: V — Vj of Euclidean Kg-modules.

2.3.2 Module lattices

A module lattice of rank r is a pair (M, (-,-)) where M is a projective Ox-module of rank r
and (Mg, (-,-)) is a Euclidean Kg-module. We will often omit (-,-) from the notation.

Example 2.2. Let My C Vy be an Og-sub-module such that My-R = Vj, i.e. that is also a lattice
in V. Then (Mo, (-, )o) is a module lattice. We refer to those as embedded module lattices.

Let M be an arbitrary module lattice. By the previous section, there exists an isomorphism g: Mg —
Vo of Euclidean Kr-modules. Since M is projective, the restriction of g to M is injective. In other
words, (M, (-,-)) is isomorphic to an embedded module lattice.

Let A € Ryg. A similitude f: My — My of factor A is an isomorphism of Ox-modules that
multiplies the inner product by A. An isomorphism of module lattices is a similitude of factor 1, i.e.
an isomorphism of Ox-modules that preserves the inner product.

Let X, (K), also denoted X, when K is clear from the context, be the space of similarity classes
of modules lattices of rank r. We recall that any such module lattice is isomorphic as an Ox-module
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to (’)TK_l @ a for an ideal a in some fixed set of representatives of the ideal class group of K. Using
the Minkowski embedding Ok — Kp, this implies that we have an isomorphism

X (K)= || GL:(Ok,a)\GL.(Kg)/(Ur(Kg) - R>0), (2)
aeCI(K)

where U, (Kgr) = {g € GL,.(Kgr) | g(¢")* = id}, the group R~ is embedded via A\ — (1 ® \)id €
GL,(KR), and GL, (O, a) = Aut(O% ! @ a). We write

Xro = GLr(Ok, 0)\ GL,(Kr) /(U (Kg) - R>0) 3)

and we often use the notation I'y = GL,(Og, a), when 7 and K are understood from context. Note
that we also have a map X,(K) — X,,(Q) where n = rd, obtained by forgetting the structure
of Ox-module.

Choosing a representative a € ClI(K) and a matrix z € GL,(Kg) we uniquely determine a class
of module lattices, which we call L. 4. By abuse of notation, we let L., denote the representative
in this class given by

L.o=(0x'®a) 2 C KE,

viewing O C Kr through the Minkowski embedding.

The Haar measure on GL, (Kg) induces a measure p on X, (K), whose total volume is finite. We
normalize p to be a probability measure and we often refer to it as the uniform measure. The mea-
sure p gives a meaning to random module lattices, distributed according to p, or with distribution
given by a density function f € L'(X,) with respect to . For computations, however, we often work
with a more explicit normalization of u, namely pRriem, descending from GL,(Kr)/(U,(Kgr) - Rso)
and defined in Section 2.6.

In order to use representation theoretic arguments, it will often be easier to use the adélic
version of the space of lattices. We can rewrite our union of double quotients as a single adélic
double quotient as follows:

X,(K) = GL,(K)\ GL,(Ax)/(GL,(Ox) - U, (Kz) - Rso).

Let X, = X, (K) = GL,(K)\ GL,(Ag)/Rso. We can therefore write
LX(X,) = L2(XT)GLT(6K).UT(KR)

where GL,(Af) acts on L?(X,.) by g- f(z) = f(xg).

2.3.3 Representation and sizes of elements, ideals and modules

Assumptions. In this paper, we assume that K = Qz]|/f(x) is represented by a polynomial
f € Z|z] satisfying log max | f;| < poly(log |Ak|). Additionally, we assume that we have a Z-basis of
Ok, written (f1,...,34). Without loss of generality (by applying LLL and Lemma 2.12), we may
assume that it satisfies max; ||3;|| < 2% - |Ag|Y/4.

Representations. We represent an element o € K by its coordinates (ay,...,aq) € Q% with
respect to the Z-basis (31, ..., Bq). This means that o = Y%, a;6;. A (fractional) ideal a of O can
be represented by a generating matrix By = (v, . . ., aq) € K9, for which we have that a is generated
by these a; as a Z-module. Each of these generators «; is then represented by (agi), ey ag)) e Q?
and hence B, can be written as a matrix in Q%?. In this paper, we choose to have a unique
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representation for an ideal by always demanding that B, (as a matrix in Q?*?) is in Hermite
normal form. That is, we write the generating matrix of a as % - (m - Byg), where m € Z~ and
m - By € Z%% is in Hermite normal form.

A rank r module lattice M is represented by its pseudo-basis (see, for example, [Coh99]), which
consists of a matrix A € K™ (with columns A; € K") and a sequence of r ideals I := (ay,...,a,).
Again, each of the A;; € K can be represented by a sequence in Q?, and each of the ideals of I can
be represented by its generating matrix. The module lattice is then defined by the rule

r
M:{ZAi'OéiEKT’OZiECIi}.

=1

Sizes of elements, ideals and modules. For n € Z, we define size(n) = 1+ [logy(|n|)] (where
the extra 1 is for encoding the sign). For ¢ = § € Q with a,b € Z coprime, we set size(q) =
size(a) +size(b). For a € K represented by (ay, .. .,a4) € Q% we put size(a) = 3", size(a;). For an
ideal a of K, we define size(a) := size(mBg)+size(m), where the generating matrix equals L - (mB,)
and (mB,) € Z%9 is in Hermite normal form.

For a rank r module lattice M with pseudo basis (A,I) with A € K"*" and I = (ay,...,qa,) we

put

r

size(M) := Z size(A;;) + Zsize(ai).

ij=1 i=1

Rules for sizes. For the Z-basis (51, ..., 84) of Ok, we surely have, by Cauchy-Schwarz, ||5;5;| <

1/2 . .
(So 1o (B)IPlo (BN < 3, lo(B) o (B)] < 181181l < 22* - |Ak|*/4 per assumption. Addition-
ally, we can deduce that, writing B = (0(f;))s,; as a basis in the Minkowski space KHCéXd, and using
Lemma A.1 and the fact that A\ (Ox) = V/4d,

IB7Y < VAT I8l < Vd- 2% - |Ak].

Hence, | B~ (i B;)|| < |B~M||18i- B < Vd-29 420 | Ag|'+2/4. So, the co-ordinates of the product
:8; in terms of the basis (31, ..., 34) are bounded by v/d - 9B +2d || A p|1+2/d,

Lemma 2.3 (Rules on sizes of elements). For fractional O ideals a,a; of K, we have size(a) <
d?size(N(a)) < d*log N(a) and size(TTF_; a;) < d?> S°F_, size(a;).

Proof. See Section A.5 in the Appendix. O

Sizes and Module-HNF In this paper, we will make use of a Hermite-normal form algorithm
that works over module-lattices, and thus applies basis operations that are compatible with the
module structure [Coh99, Section 1.4]. Computing this Hermite-normal form of a given pseudo-basis
of a module lattice can be done within polynomial time of the input size [BF12]. This Hermite-
normal form can be made unique (i.e., not depending on the specific pseudo-basis given) with no
significant overhead [Coh99, Theorem 1.4.11].
Due to the polynomial time algorithm of [BF'12] it must surely be true that the output (H, (h;)ie[)

of the module Hermite Normal Form algorithm must have size polynomially bounded in the size of
the input module lattice (B, (a;)ic[y), i-e.,

size(H, (bi)ic[r)) < poly(size(B, a;)icr))-
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2.3.4 Sublattices

We record the following standard definition and refer to [FPS22, App. B.2] for a proof of the
equivalences.

Definition 2.4. Let M be a Og-module. A sub-module N C M is said to be primitive if it satisfies
any of the following equivalent conditions:

e The module N is maximal for the inclusion relation in the set of submodules of M of rank
at most rank(N).

o There is a module N’ with M = N + N’ and rank(M) = rank(N) + rank(N’).
o There is a module N’ with M = N & N'.

e We have N = M Nspang (V).

Algorithm 1 Computing a random sub-module M’ of M such that M/M' ~ Ok /p

Require:
o A pseudos (B,I) of a rank r module lattice M, with B = (by,...,b,) € K"*" and
I=(ag,...,a.).

e A prime ideal p of Ok,

Ensure: A pseudo-basis (B’,T') of a module M’ that satisfies M/M' ~ Ok /p.

1: Draw a random integer u from {1,...,>°7 7 1¢'}, with ¢ = N(p) and pick the smallest j > 1
such that Z@ 0 q’ > u.

2: Put I' = (ay,a2,...,paj,...,a,). Le., multiply the j-th ideal in I by p to obtain I'.

3: Put, for all i < j, b, = b; + 7;b; where 7; is uniformly drawn from a set of representatives of
a;/pa;, and put b} = b; for i > j. Assemble b/ into a matrix B’. Equivalently, we put B’ =BT
where T'= I+ 3, vieji where e;; is the matrix with a one on place ji and zeroes elsewhere.

4: return (B',T).

Algorithm for taking a random index N(p) sub-module lattice

Lemma 2.5. Algorithm 1 is correct, outputs a uniformly random sub-module M' C M satisfying
M/M' ~ Ok /p and runs in time polynomial in the input size.

Proof. (Correctness) We have that M’ C M since any element of M’ can be written as (with «; € a;
for i # j and a; € pa; C a;)

r

r j—1
> a;b; = Zal i+b) = Y. aibi+ (1+> )b € M,
i=1

i=1,i#£] i=1

since ; € a; for all ¢ < j. Additionally, a set of representatives of M /M’ can be given by {v;b;} C
M'" with ~; from a set of representatives of a;/pa;. Hence M /M’ ~ a;/pa; ~ O /p.

(Uniformly random sub-module) The number of submodules M’ C M satisfying M /M’ ~ Ok /p
corresponds with the number of hyper planes in M /pM, which equals (by the ¢-binomial theorem)

(’{)q = Zr_l ¢*. One can readily verify that the number of M’ that Algorithm 1 outputs is indeed

>iso 14, and that the way that they are all picked with equal probability.
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(Polynomial time) Each of the operations can be reasonably seen to be able to be computed
in time polynomial in the input size. We spend some extra words on line 3, where a random
representative of a;/pa; needs to be chosen. This can be done by computing the Hermite normal
form of both a; and pa; (after scaling up), take random elements in the finite quotient group (of
these two lattices) of order N(p) = ¢ (seen as a subgroup of Z¢ with d = [K : Q]) and lift the
elements to a;. O]

2.3.5 Successive minima

It is useful for us to work with two different notions of successive minima, corresponding to linear
independence with respect to Q and, respectively, K.

Definition 2.6. For a Ox-module lattice M of rank r we put
Aj(M) = min{\ € Rq | dimgspang(Bx N M) > j},

for j =1,...,rd, where B) is the ball of radius A with respect to the norm on M. In other words,
Aj(M) is the minimal A such that there exist j vectors in M of length at most A that are Q-linearly
independent.

Definition 2.7. For a Og-module lattice M of rank r we put
)\JK(M) = min{\ € Ry | dimg spang (Bx N M) > j},

for j = 1,...,7, where B, is the ball of radius A with respect to the norm on M. We often call
these quantities K-minima.

Definition 2.8. A Ox-module lattice M with K-minima A, ..., AK is a-balanced if \E | /JAF < o
forall 1 <i<r.

When comparing the two types of successive minima, we also require the sup-norm successive
minima of the underlying ring of integers.

Definition 2.9. Consider O as a Z-lattice through the Minkowski embedding. Define
A% (Ok) = min{\ € Ry | dimg spang(B3° N Ok) = j},

for j =1,...,r, where B® is the ball of radius A with respect to the sup-norm on Kg.

The reason for using the sup-norm is the following bound.
Lemma 2.10. Let L be a module lattice, x € L and a € Kg. Then

laz]] < llaflec - [l

Proof. Embed L in Ky. Then the action of a € Kg is component-wise. O

The successive minima of the ring of integers Ok can be estimated.
Definition 2.11. Let I'x = supy Ag(L)/A1(L), where L ranges over all ideal lattices in K.
Lemma 2.12 ([BPW25, Lemma 2.13]). For any Ox-module lattice L of rank 1, we have:

(i) M\a(Ok)/Vd < Tic < AF(Ok) < |Agc|V1.
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(ii) If K is a cyclotomic field, then I'x = 1.
(iii) Ng(L) < Vd-Tg - det(L)/4.

(iv) M(L) > \[ i - det(L)V/2.

The relation between the two types of successive minima is given in the following result.

Lemma 2.13. For any 1 < j < rd, we have
Ay (L) < M(L) < T 4 (L).

Proof. Fix (k,i). Let A = Ajp—1)4i(L) and S the set of vectors in L of length at most A\. By
definition dimg spang(S) > d(k — 1) +i. But then dimg span g (S) > W > k — 1 and there-
fore dim spang (S) > k, so that AX(L) < \: this proves the first inequality.

Let (u;)¥_; be K-linearly independent vectors in L of length at most AX(L). For each i, let
(vij)?zl be Q-linearly independent vectors in Ogu; of length at most

Aa(Okui) < TrA(Oku;) < TR (L).

The family (v;;);; contains dk many Q-linearly independent vectors of length at most T'x A (L),
hence Ag—1)1i(L) < Aar(L) < TrAp(L). O

The n-th successive minima of a-balanced lattices can be bounded by a power of a multiplied
by the root determinant of that lattice.

Lemma 2.14. Let M be an a-balanced Ox-module lattice of rank r. Then
Ard(M) < Tge - Vrd-a" - det(M)l/(Td)_

Proof. We use Minkowski’s second theorem [Cas97, Chap. VIII, Thm. 5] and Lemma 2.13, we write
Aj = Aj(M) and n = rd, to obtain

det (M) N NG
An 2T+

n oy 1/n rd \K 1/(rd)
J [4/d]
L )\n) > 1\Jem/(4n) (H FK)\K)

J 7j=1 T

ro(AK)d 1/(rd) 1 r oK Lr
> \/erm/(4n) J =/er/(4n) <
(j:l F?{O‘?)d 'k j=1 >‘7K

Rewriting and using that 4/(emr) < 1 yields the result. O
We will also use the following simple bound on the balancedness of submodules.

Lemma 2.15. Let M be an a-balanced rank r module lattice and let M’ C M be an index q
sub-module lattice. Then M’ is « - q-balanced.
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A (M)
TN (M)
some i € {1,...,r — 1}. Write j for the smallest ¢ satisfying this imbalancedness property.

Write vy, ...,v; € M’ for the vectors in M" attaining NS, /\JK(M/) and v1,...,0;,Vjt1
for the vectors in M attaining M<(M), . .. ,)\JK( ) /\g+1< ).

By definition there exists a k € {1,...,j + 1} so that vy ¢ v1Ok + ... + v;Ok (which is
the module lattice generated by v],..., j) We claim that a - v, + M’ for a € {O ..,q} are all
different cosets in M. Indeed, if two cosets were the same, we would have that a - vy € M’ for some
a€{0,...,q}, and hence

Proof. Suppose, to derive a contradiction, that M’ is not « - g-balanced, i.e. > « - q for

AEL(M) < la-ol| < g+ AR (M) < q- N (M).

But then

A _ 0 M (M) a0
K = K = K (M = )
A (M) A (M) A (M)
which leads to a contradiction.

Hence, indeed, a - v, + M’ for a € {0,...,q} are all different cosets in M, and count to ¢ + 1.
But [M/M’| = ¢, which in turn is a contradiction. Hence, M’ must be « - g-balanced. O

2.4 Probability
2.4.1 Probability distributions

Definition 2.16. For an n-dimensional Euclidean vector space V and x € V, we write p,(x) :=
exp(—||x||?/o?) for the Gaussian function.

Lemma 2.17 (Gaussian weight lemma). Let A be an n-dimensional full-rank lattice in an n-

log(2n(14+1/¢))

dimensional Euclidean vector space, let ¢ € span(A) and o > ‘An(A) for some e > 0.

Then we have "

S po(t+¢)=p,(Atc)e 1-e1+e iy

LeA

Proof. This is a combination of the bound on the smoothing parameter [MR07, Lemma 3.3] and

the proof of [MRO7, Lemma 4.4]. O
Definition 2.18 (Gaussian distribution). Let V' be a Euclidean vector space. For ¢ € Rsg, we
denote Gy, (x) == o™ - e~lel?/o? = G=n . po(x) for the Gaussian distribution over V', where
n = dim(V') and where || - || is the length notion over V.

Definition 2.19 (Discrete Gaussian distribution). Let A C V' be a full-rank lattice in a Euclidean
vector space. For o € R+, we define the discrete Gaussian over A with center ¢ € V' by the rule

 Gyell4c)  psl+c)
Oroc(l) = GoAt o) peAt o) for £ € A,

where Gy o (A+c) := > pcp Gv,o(£+c). In the case that ¢ = 0, the center c is omitted in the notation.

Lemma 2.20. Let A CV be a full-rank lattice in a Euclidean vector space. For o > @‘/\N(A)
and k > 1/(27), we have

P [llv*CH>\/ﬁma]<4(mﬁ) e

v<—QA
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Proof. We have

_ po((Atc)\Vn- k- o-By) nPo(A+c)
%g\m[\\v—c\!>\/ﬁ%'0]— oo (A1 0) <20 )

1+1/3
<2- 1 + 1;3 O™ < AC™ < A(KV 271'6)”677”{;2”,

where the first inequality follows from [MR07, Lemma 2.10] and the second inequality follows from
Lemma 2.17 (with ¢ = 1/3). Here C' = ry/2me - e=™. This yields the claim. O

2.4.2 Statistical distance and the data processing inequality

Definition 2.21 (Statistical distance). Let (€2, S) be a measurable space with probability measures
P, Q. The statistical distance between P and @ is defined by the rule

SD(P,Q) = )S{lg;\P(X) —Q(X)|.

In the present work we only consider discrete or continuous domains €2. For a discrete space €2, we
have

SD(PQ) = 5 Y |P(x) ~ Q)| = 5P~ @l

z€Q
For a continuous space §2 with probability densities P, Q, we have
1

o) =5 [

1
|P(z) = Q)] = P~ Q1.
Often, in this work, due to the equivalence of these notions (up to a constant %) we will describe
closeness of probability distributions in terms of the distance notion || - ||1, instead of SD(-, ).

The data processing inequality captures the idea that an algorithm (by just processing a single
query) cannot increase the statistical distance between two probability distributions. A proof can
be found in, for example, [CT06, §2.8].

Proposition 2.22 (Data processing inequality). Let (Q2,S) be a measurable space with probability
measures P, Q. Let f be a (potentially probabilistic) function on Q. Then

IF(P) = F( @)l < 1P = QlJ-

Statistical distance is well compatible with conditional events. If two distributions are close, the
conditional counterparts are also close, where the statistical distance is multiplied by the probability
of the conditioned event happening.

Lemma 2.23. Let (£2,S) be a measurable space with probability measures P,Q. Let U € S be an
event with non-zero weight for both P and Q. Then

SD(P|U7Q‘U) <2 P(U)_l SD(PaQ)7

where Ply,Q|u denotes P respectively Q conditioned on the event U.
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Proof. We have, by the law of conditional probability, writing p = P(U) and ¢ = Q(U),

SD(Ply,Qlu) = sup

)

‘P(XHU) QX NU)
P

XeS q
1
— ~ sup P(XﬂU)—p-Q(XﬂU)‘
D xes q
1
< —swp (IPEND) = QXD+ 1= 2@ D)
P xes q
1 qg—p _ 2
< —sup |[P(XNU)-QXNU)|+ —=<--5D(P,Q).
P Xes p T p

2.5 Computational problems

We consider the following three types of “shortest vector problems” in lattices.

Problem 2.24 (Shortest Vector Problem (SVP,)). Given as input a basis B of a lattice L and
a v € R>q, the y-shortest vector problem is the computational task of finding a non-zero lattice
vector x € L that satisfies ||z| <y - Ai(L).

Problem 2.25 (Shortest Independent Vector Problem (SIVP,)). Given as input a basis B of
an n-dimensional lattice L and a v € R>q, the ~y-shortest independent vector problem is the
computational task of finding R-linearly independent lattice vectors x1,...,x, € L that satisfy
llzi|| < v-An(L) forallie{l,...,n}.

The parameter « in the definitions above is called approzimation factor and is generally written
as a function in the dimension n of the lattice. No known polynomial time algorithm can solve these
problems for v = poly(n). However, they are easy for v = 20" by [LLL82, Proposition 1.12], the
LLL algorithm finds a basis (z;) of L such that ||z;| < 2(*=1/2)\;(L) for any i.

2.6 Riemannian geometry, the determinant map, volumes

The space of lattices X, (K) comes equipped with an invariant probability measure. For computing
with this measure, it is useful to work with an explicit realization coming from a Riemannian
metric. The latter generalizes the canonical metric for Minkowski space and allows us to compute
the volumes of different spaces that show up while proving the Hecke equidistribution theorem.
We also consider in this section a way of “splitting” GL(r) into SL(r) and GL(1), as announced in
Section 1.3.1.

2.6.1 Riemannian structure

We introduce a Riemannian metric on GL,(Kg) and its quotients. For this, we equip the Lie
algebra M, (KR) of GL,(Kg) with the positive definite inner product

(z,y) = trg, /r tr("z*y).

This gives GL,(KR) the structure of a Riemannian manifold with a metric that is left-invariant by
arbitrary elements and right-invariant by U, (Kg)-R<¢. In particular, it defines a volume form pgiem
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on GL,(KR) that is a Haar measure and we note that GL,(KRr) is unimodular. This also induces
a Riemannian metric and measure on the quotient

Y, = GL.(Kg)/ U, (Kg) - Rso. (4)

The measure pRjem further descends to X, = I'4\Y, and X, (K). The probability measure p on
X, (K) is then equal to piRiem (X (K)) ! ftRiem. Throughout this section and much of Section 4, we
endow all spaces with the corresponding Riemannian measures and this defines all norms and inner
products where the dependence on the space is given as a subscript. Unless specified otherwise, this
is the measure implicit in the notation L?(X,) and the other L?-spaces.
The map
Ky /Uy (Kg) — R

given by g = (guv), — log|det(g)| = (log|det gy|)» is an isometry of Riemannian manifolds, where
for x = (z;); € R™""2 we define

HxH2 Zx +2 Z w
i=r1+1

Let H C R™*"2 be orthogonal to (1,...,1), so that the logarithmic embedding of units lies in H.
Let mg: R™T72 — H denote the orthogonal projection onto H. We obtain an isometry Y; — H
given by g — mp(log|det g).

2.6.2 The determinant map

Let A: Y, — Y} be the map induced by the determinant GL,(Kg) — Kg. For an ideal a C Ok,
this restricts to a map
Aai Xr,a — Xl,a'

Pulling back functions, we obtain an injective map
Ar: L*(X10) = L*(Xr0)
defined by (A% f)(x) = f(Aqx). We denote the image of the pull-back by
Liet(Xra) = Af(L*(X14)) € L*(Xr0),
and, putting all connected components together,

Lip(Xr) = @ Lic(Xra) = A%(L%(X1)) C L2(X,).
aeCl(K)

Lemma 2.26. For non-negative measurable functions f:Y, — R>o, we have the integration for-

mula
1
Joy 700 27 [ (g 0000} 5 ?

and an analogous formula for X,.. Integration on the fibers of A is done with respect to the
restriction of the Riemannian metric.
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Proof. At the level of the Lie algebra, notice that the complement of the kernel of the derivative
D of A consists of the scalar matrices. Locally, at one place v, the vector X = diag(1,...,1) has
length /7 in the Riemannian metric. Since det(exp(AX)) = exp(r)), we see that DA(X) = r - 1,
where 1 is the unit vector in the Lie algebra of R* or C*. These computations now show that the
Jacobian of A is /r"". Put another way, A is a Riemannian submersion when the metric on Y is
scaled by # The statement now follows from the coarea formula (see [Nicll, Thm. 2.1]) applied

to A. O

It is convenient to have an explicit form of the fibers of A. Let g € GL,(Kg) and § = A(g). We
have
ATH(8) = (SLo(Kz) - Ruo/(9SU, (Kr)g ") - R0) g (6)

and the analogous formula
A71(6) = (Pa\Ta - SLy (Kg) - Roo/ (98U, (Kr)g ™) - Ro) 9.

We shall often encounter the volume of these fibers in computations.

a

Lemma 2.27. The volume priem (251 (9)) is equal to piriom (A5 (1)) and is therefore independent

of 0.

Proof. Define I'} = SL, (O, a) and notice that a fundamental domain for the left action of I'} on
SL,(KR) serves as a fundamental domain for the left action of I'y on I'y - SL, (KR), as well. Using
that pRiem is bi-invariant several times, we have that

MRiem(Agl((s)) = HURiem (Fa\ra SLT(KR)/(Q SUT(KR)gil))

,uRiem(Fcli\ SLT(KR)) -1
= = URjem (A7 (1
for all 6. O

Using the integration formula above, we now construct the orthogonal projection onto L2, (X).
For this, define A/: L?(X,.q) — L?(X1,4) by
NDO = [, fa)de
z€AL (9)

Next, define the operator
Tdot = HRiem (A (1) TTAAG: LP(Xra) = L (Xpa), (7)

a
and let mger be the direct sum of the operators 7., over the class group.
Lemma 2.28. The operator i, is the orthogonal projection onto Liet(Xm).

Proof. Let f € L*(X,.4) and g € L?(X} 4). Using the integration formula (5), we have

o= [ M@ w= [ ( Loni f(:v)d:v> 9(8) do
- ( [ . f(fv)g(Aa(ﬂf))dw> s
0€X1,a zeAL " (9)

~ Jrexa </936Aa_1(6) f(x)(AE'?g)(x)dx> ds

% [ @ = A
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Moreover, we compute that

M@ = [ Mig@de= [ g(Ae)) do
zeAL(5) zeAT(5)

= [ 90)dr = (85 (5))9(8) = pniem(B5 (1)) (6).
z€Aq(9)
In other words, we have shown that

ALAY = pRiem (A7 (1)) -id.

a

We finally deduce the formula

125 F1%, = Hriem (A (V) =" |11, (8)

for any function f € L?(X1), by piecing together the computations above.
We have 74, (L*(X,q)) C L3.(Xrq) and, by the properties above, 74, is self-adjoint and
restricts to the identity on L3 (X;.q). O

2.6.3 Distance functions and volumes

Although the Riemannian structure provides a notion of distance, we require two finer ways of
measuring it.

Definition 2.29. For z € R"""2 let ||z||g = ||7g(z)]], and for g € GL,(Kg) define

7(9) = || log|det g%

For K=R or C, let || - ||op denote the operator norm with respect to the Euclidean norm on K.
For g = (gv)y € GL,(Kr) =[], GL,(K,), define

—1
p(g) = max log max ( ”gvHopl : g, H;)p1> ‘
: |det go|™  |det gyt

The functions defined above satisfy the following properties. For all g,h € GL,.(Kgr) we have
the inequality p(gh) < p(g) + p(h). Moreover, for all g € GL,(KRr), u € U,(Kg) and a € Kg we
have

p(g) = p(gu) = p(ug) = p(ag) = p(g")
and if a € Ry then
7(9) = 7(gu) = 7(ug) = 7(ag) = 7(g ).

In particular, p and 7 both descend to Y,. One should think of p and 7 as being a “distance to
identity” on the SL(r) part, respectively on the GL(1) part. We also define balls for the former as

B(t) = {g € SL:(Kr) | p(g) < t}. 9)

We now compute the volumes of certain spaces, including the balls defined above and the full
space X,. For this, we use two estimates from [MP21].

Lemma 2.30. We have d
log MRiem(SUr(KR)) > _172 log .
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Proof. We apply [MP21, Proposition 11] to lower bound the volume of the local parts, after which
we sum over complex and real places. We use the notation a for r in [MP21, Proposition 11], and
r for d in [MP21, Proposition 11].

For the real case holds that a = r/2 if r is even, and (r — 1)/2 otherwise. Using the bound
j! < 47, and using the fact that my < r, we have

— log piRiem (SU( Z log(myg!) Z my, log(r) < log(r)r? /4.

Indeed, in the case that r is odd, my = 2k — 1, yielding >-¢_; mi = a® < r2/4. In the case that
r is even, my = 2k — 1 except for m, = a — 1, for which we can then deduce that Y 5_; my =

(a—1)2+(a_1):a(a_1)zw ST‘2/4.
For the complex case, we have a = r — 1 and my, = k, yielding

—log ptriem (SU ( Z log(my!) < Y my log(r) < log(r)a(a +1)/2 < log(r)r?/2

Hence, summing over all places, — log pRiem (SU-(KR)) < dlog(r)r? /4, which finishes the proof.
]

Lemma 2.31. Let K be either C or R. Then, fort <1, we have

t
ens sinh(a; — a;)™ s
r—1

where Af = {(a1,...,a,—1) ER |t >a1 > ...> a1 > ay == —> [ a; > —t}.

(r—1)(r[K:R]+2)
2

t 1<i<y<r

Proof. We follow the same steps as in the proof of [MP21, Proposition 14|, where we use the
assumption ¢ < 1 instead. We write g = [K : R] € {1, 2} for conciseness.

We apply [MP21, Lemma 13] with & = r — 1 to find intervals [, 5;] (for ¢ € {1,...,7r —1})
satisfying the properties (1) - (6) of [MP21, Lemma 13]. For a certain reordering o € S,_1, we put
Q=1 [tozg(Z tB4(iy]- By properties (1) and (2) of [MP21, Lemma 13] we can deduce that

I ::/ H sinh(a; — a;)da; > / H sinh(a; — a;)?da;.
(a:)i€A]

f1<i<j<r (@:)i€Q 1<jcj<r

) _ 1—exp(—2%)

.. . 1— )
5 is increasing, and we have lmep(=2) 5 4 /2 for

The function z +— sinh(x) exp(—z 3

r < 1/2. Hence, for x > 1,

1 — exp(—5z) t

5 -exp(x) > w2 exp(z),

1 — exp(—2x)

sinh(z) = 5

-exp(z) >

since 5% < 1/2. This yields

1

v

t )r(r—l)g/2 /
— exp(a; — aj)?da;
(47”2 e, Ll ’

)i€Q 1<i<j<r

t )r(r—l)g/2/
I exp g — Q; dai.
( r2 (ai)iGQ Z J

1<j
————
B

AV4
W
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In the proof of [MP21, Proposition 14], we see that f = 2Z§;f(r — 1)a;. By properties (3) and
(6) of [MP21, Lemma 13] we deduce that a; > t/4 for at least |r/5] intervals [ta;,tf5;] (meaning,
a; > 1/4 for these intervals), and that all intervals have width at least ¢/(4r2). Hence,

t r(r—1)g/2
I> () / exp(2g Y (r —1i)a;)da;
4r? (a:)i€Q 2

1<j

¢ NT-De/2 g -l /sl
>(52) (Gm) ewes

i=1
(r=1)(rg+2)
2

¢ \r(r=1)g/2 PN gr2t g\ et
() ) = ()
which is what we wanted to proof. O
Lemma 2.32. Lett <1, and r > 2. We have
1og firiem (B(t)) > — log(4r? /t) - dr?.

Proof. Noting that pgiem(B(t)) = [1, I® where I¥) = I as in Lemma 2.31 with K = K, (which
is R or C), we compute (using >, [K, : K| =dand ., 1 <d),

l0g figiem (B(t)) > —log(4r?/t) - (r — 1) - (d + rd/2)

Z .
> —log(4r?/t) - d - (r — 1)(r +2)/2 > —log(4r?/t) - dr?.

Proposition 2.33. We have

ro+1 r2_1

pRiom(Xr) = Vdr 7 277 pigiem(SU, (K&)' hic Ric| Ak | 2 11 ¢x ().
j=2

Proof. Let a C Ok be an ideal. By the computations and integration formula in Section 2.6.2, we

have
MRiem(Xr,a) = / dr = 7”7%/ / do
2€X,q 8€X1 4 JzeAT(5)

[ e (85(9))d0
0€X1,a
= T_% MRiem(Azl(l))d(s
0€X1,a
HRiem (SLT(OK7 Cl)\ SLr (KR)/R>O)

= 7‘_% Riem X ,
tmsem(X1.0) o (SU, (K))
By Prasad’s formula, we have (see [MP21, Proposition 18], which is also valid in the non-compact
case):

r2-1
2

HRiem (SLT(OKaa)\SLT(KR)/R>O) = T%|AK| f[ CK(])
j=2

Finally, we have
,U/Riem(Xl,u) = \/&27 72 RK.
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Lemma 2.34. The residue (i (1) of (x at 1 satisfies

log |A -1 1
G < (GESE) T <l

Proof. The first inequality is [Lou00, Equation (2)]. The second one follows from applying the
1
inequality %ﬂx' < 1, which holds for all z, to z = |Ax|2@1. 0

Lemma 2.35. We have
log(hx Rr) <log|Ak|+ O(1)

Proof. Apply Lemma 2.34 and the analytic class number formula. O

Remark 2.36. In the original statement of Louboutin [Lou00, Equation (2)], one can see that, next

d—1
o /|Ak], the dominant factor is (egﬁﬁf |) which might be much smaller than \/|Ax]. Hence,

the bound above, though simple, is not tight and might be improved to get a better approximation
factor in the main result of this paper.

The results above finally imply a key inequality.

Lemma 2.37. We have
dr?
log piRiem (Xr) < —10gr + log |Ax|+ O(loglog |Ak| + dr? ).

2.7 Automorphic theory

The purpose of this section is to explain the spectral decomposition of L?(X,) and analyze the
action of Hecke operators on the different components. Our main references here are [CU04, Sec.
3.2, Sec. 4.1] and [GH24, Sec. 10].

2.7.1 The spectral decomposition

We recall first that standard parabolic subgroups P C GL, are in correspondence with partitions
>.;mi = r. Given such a partition, called p = (r;) for short, the Levi subgroup M, of the cor-
responding parabolic P, is isomorphic to []; GL,, (the group P, is the group of blockwise upper
triangular matrices with blocks of sizes given by the partition). We attach to M, a certain space
of characters, denoted by a}kw@, which we can interpret as a tuple of complex numbers or param-
eters. We denote the subspace of purely imaginary parameters by %(“7\4@)- If, for each i, we have
an irreducible automorphic representation m; appearing in the discrete spectrum of L2(X”), and
A € S(ajy, ), then we can construct the induced representation I(Q; m;, A), as in [GH24, Sec. 10.1].

A celebrated theorem of Moeglin and Waldspurger describes the discrete spectrum in terms
of Speh representations. To introduce the latter, let N € Z>o and let s be a divisor of N. There
is a unique standard Levi M C GLy isomorphic to H GL Given a cuspidal automorphic
representation o of GLg, we can define the Speh representatlon Speh(o, N/s) for M (see [GH24,
Sec. 10.7]) that occurs in the discrete spectrum of L?(Xy).

The spectral theorem of Langlands now states that L?(X,) is a sub-module of

%) EB@/ (® Speh(oi, 7i/si), A)dA, (10)

0 Z Ti=T SZ|T‘ g;
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where o; ranges over cuspidal automorphic representations of GLg, (K), and [ @ denotes a direct
integral decomposition. We can identify the components that make up L?let (X)) by noting that

L*(X1) =P C-x,

where y runs over all (unitary) Hecke characters of K, and that L?(X;) is isomorphic to L3, (X,) by
the map A*. It is known that Speh(x,r), for a Hecke character Y, is the one-dimensional represen-
tation of GL,(Ak) given by x o det. Thus, L3 (X,) is the contribution of the terms corresponding
to the trivial partition 7 = r and s = 1 in (10).

2.7.2 Hecke operators

In terms of lattices, the Hecke operator T}, corresponds to uniform averaging over submodules
N C M such that at M/N = Ok /p at every module lattice M. More precisely, for a function

f € L*(X,), we define

1

L= o Y (N,
P NcMm
M/NEOK/p
where, if ¢ = N(p), the number of terms in the average is Dy =14+ ¢+ ...+ ¢ 1.
Interpreting X, adelically, the operator 7T}, acts only at the place p. More precisely, let m, € O,

be a uniformizer at p, and write

M 0 - 0
0 1

GL(Op) | . o GL(0p) = | | GL.(Op)g (11)
. : geER

for some finite set Ry (of size Dy). For a function f € L?(X,) and # € GL,(Ak) we have

Tyf(z) = ;p S flagh) = ;p S gl f

gERy gERy

This is well-defined because the action (from the right) of GL,(Oy) is trivial on X, by definition.

Note that T,1 = 1, where 1 is the constant 1 function on X,. We remark also that, by defini-
tion, a Hecke operator also acts on the irreducible representations occurring in L?(X,). On such
representations, it acts by a scalar, the Hecke eigenvalue. In particular, it is an endomorphism of
L(ziet (XT)

Let 7 be an irreducible automorphic representation of GL,(Af). The representations relevant
in our case are unramified at all primes p, meaning that, they contain nonzero vectors fixed by
GL,(Oy). Clearly, all automorphic representations appearing in the decomposition of L*(X,) C
L?(X,) are unramified. In this case, for every p we can attach to 7 (in fact, to the component Tp
at p) its Satake parameters aq,...,a, € C. These describe the action of the Hecke operators at p.
For instance (see [GH24, (7.2)]), the eigenvalue of T}, on 7 is
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In our application, we are satisfied with bounding the eigenvalue of T}, by

k=1

using the formula for D,.
For example, the Satake parameters of the trivial representation of GL, (k) are

¢ 2,2 g,

and this corresponds to the fact that T}, acts by the scalar 1 on constant functions. However, T}, acts
on most unramified automorphic representations with smaller eigenvalues and this is the source of
equidistribution.

2.7.3 Eigenvalue bounds

We now analyze the action of Hecke operators using the explicit spectral decomposition. This is
formally contained in the work of Clozel and Ullmo [CUO04], who treated the case K = Q. We follow
their method and adjust it to cover the general number field case.

Proposition 2.38. The operator norm of Ty, defined with respect to the L?-norm on X, endowed
with URiem, acting on the orthogonal complement of Lget(Xr) C L*(X,) is bounded by rq3/8.

Proof. First, it is important to understand the Satake parameters of unramified cuspidal represen-
tations 7 of GL v, since these are the building blocks of the spectral decomposition. The Generalized
Ramanujan Conjecture (GRC) states that, if a1, ..., ay are the Satake parameters of 7 at p, then
|aij] = 1 for all ¢. This conjecture seems far out of reach (see [BB13] for a survey), but there are
useful bounds towards it.

Let O > 0 be the exponent in the best known bound towards GRC, that is,

;] < ¢

for all i. We have (see [BB11]) 6, = 0, 0y < 7/64, 035 < 5/14, 6, < 9/22, and more generally
On < 1/2 for all N.

We can now compute eigenvalues of Hecke operators on the representations occurring in the
spectral decomposition (10), as in [CUO4, Sec. 4.1]. Let p be a prime of K and let ¢ = N(p). A
representation Speh(o,m) is unramified at p if an only if the cuspidal representation o is. In this
case, its Satake parameters at p are

aiquH_j, 1=1,...,8 j=1,...,m,
where aq,...,as are the Satake parameters of o at p.

If I(®;m;, A) contains nonzero GL,(Op)-invariant vectors, then all m; are unramified at p and

the Satake parameters of the irreducible sub-quotients of I(®;m;, A) unramified at p are the

a; 1Gi

where the «;, are the Satake parameters of the m; and [(;| = 1 (because A € J(aps) is imag-
inary). Therefore, the eigenvalue of T, acting on the GL,(Oy)-fixed points of the representa-
tion I(®; Speh(o;,7r;/s;), A) is bounded in absolute value by
Ti/si S5 e
337 3 syt

i =1 k=1
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We bound this crudely by
max(0s,+r;/2s;—1/2)
rq i .
We now estimate the exponent in various cases. First, note the exceptional case when ¢ = 1,
r1 = 7, and s; = 1, which occurs when considering representations in Lﬁet(Xr). In that case our

bound is simply r, which does not give any saving. Excluding this case, we can have for some i that
e s; =1 and r; < r: the exponent 0; +r;/2 —r/2 is at most —1/2;

e s; = 2 (so that r > r; > 2): the exponent 03 + r;/4 —r/2 < 7/64 — r/4 is bounded by
—25/64 < —3/8;

o s; > 3 (so that r > r; > 3): using the general bound 6s;, < 1/2, the exponent is at most
S+r/6—r/2<1/2-1r/3<—1/2.

This finishes the proof. Note that the first of these cases shows that, even assuming GRC, the best

exponent we could hope for in general is —1/2. O

In the following, we consider averages of Hecke operators. If P is a finite subset of the prime

ideals of K, we write
1
Tp = Pl S T, (12)
peP

For B > 0, we can define P(B) as the set of prime ideals with norm at most B. The Extended

Riemann Hypothesis implies that
B

2log B
for B > max((12log|Af| + 8d + 28)*,3 - 10'!), where we recall that d is the degree of K and Ag

is its discriminant. This was shown in Lemma A.3 of [BDP+20]. We also have the trivial upper
bound |P(B)| < dB that follows from unique factorization.

Corollary 2.39. Let B > max((12log|Ag|+8d+28)*,3-10'). The operator norm of Tp(p) acting
on the orthogonal complement of L3 (X,) C L*(X,) is bounded by 20 - rd - B=3/81og(B).

[P(B)| =

Proof. This follows from the standard technique of splitting the average into dyadic intervals. With
a = —3/8, we write

logy(B)—1
> Npr< > > Nm™
N(p)<B k=1 2k<N(p)<2k+?

The inner sum is at most d2¥+12* by the trivial upper bound on P(B). Removing constant factors,
the outer sum now becomes a geometric series, namely

log,(B)—1
Z 2k(1+a) g 1OBl+a,
k=1

where 10 is large enough considering the size of a.
Plugging in the lower bound for P(B), the previous lemma implies the upper bound

log(B
20rd - % - B = 20rd - B*log(B)

on the operator norm of Tp(p,. O

5We take —3/8 here only to make expressions in the rest of the paper cleaner. Any non-trivial bound gives the
same qualitative result in this paper.
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3 Rounding module lattices

3.1 Introduction

In the worst-case to average-case reduction of the present paper, the average-case stems from a Haar-
uniform distribution over the space of module lattices (see Section 2.3.2). Due to the continuity
of this latter space, such a uniform distribution cannot be adequately represented by a computer;
indeed, computers (or, more formally, Turing machines) can only process module lattices that are
represented by rational numbers (bounded in size). We tackle this issue by using a probabilistic
algorithm that, for an input module lattice M, outputs a random sample from a specific distribution
D(M) := Roundfgif( ) over rational module lattices. This algorithm (Algorithm 2) can be seen as
a probabilistic way of rounding the input module lattice M to a geometrically close rational module
lattice. The average-case distribution considered in this paper can be described by Roundfe (M),
where M is sampled Haar-uniform over the space of module lattices.

This rounding algorithm is a generalization of [BDP+20, Algorithm 1] to module lattices. It
also closely resembles [FPS22, Algorithm 3.1], with the difference that our version of the rounding
algorithm forces the output module to be full-rank and is proven to be Holder continuous; properties
indispensable for the purposes of the current paper.

This specific distribution Roundfsif( ) over rational module lattices has special properties in
order to indeed resolve the issues coming from the continuity of the module-lattice space. Specifically
the distribution Round! ! satisfies

(i) Discreteness, efficiency and rationality: For each M, we have that RoundY®f (M) is a random

module lattice supported on discrete set S of rational module lattices, each of which can be
represented by a tuple of rational entries. Additionally, for any module lattice M, almost all
of the weight of Round (M) is on a finite set S’ C S. Moreover, the algorithm computing
a sample from RoundP®f (M) is efficient.

(ii) Independence of module representation: The distribution Round} (M) does not depend on
the choice of pseudo-basis of the module M. This makes Round!  a map from X, (K) to the

distribution space L1(S) over the set S of rational modules.

(iii) Preservation of geometry: With high probability, a rational module lattice sample R <«
Roundfgif( ) has almost the same geometry as M, meaning that solving respectively SVP,
SIVP, etc., on R allows for solving SVP, SIVP, etc., on M (and vice versa).

(iv) Continuity: If M and M’ are almost isomorphic, their associated distributions Round} ¢ (A1)

and Round?®f (M) are close in total variation distance.

The discreteness, efficiency and rationality makes that any module lattice M can be efficiently

“represented” by a computer via the distribution Roundff(A1), even if M itself cannot be. The

independence of module representation makes that Roundggif(—) a map truly on modules (and
not a pseudo-basis representation thereof). The geometry preservation makes this distribution rep-
resentation useful for the particular context of this paper: SVP-like problems are not (too much)

distorted by the distribution representation. Lastly, continuity of RoundFe allows quantifying the

effects of discretization of the input of Round!f®, which will be treated in detail in Section 9.

An intuitive way of thinking about a sample of Round} (M) (which is the output distribution
of Algorithm 2) is by seeing it as a randomized rounding of the module M to a close, rational
module M’. This probabilistic rounding is then done in such a way that the continuity in the module
lattice space is transferred to a continuous change of the probability weights on the rational output

modules.
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The pseudo-algorithm computing the “perfect” rounding distribution RoundPe (M) (Algo-
rithm 2) involves real arithmetic and continuous distributions, and can therefore not be computed

by a Turing machine. Instead, we resort to a discrete variant of Round! (M), an actual algo-

rithm called Roundp,,; (M), which approximates Round! (M) within arbitrarily small statistical

distance. The precise description of this discretization can be found in the proof of Lemma 3.3.
The precise main result of this section is the following proposition, in which the properties
(i)-(iv) precisely match those just explained.

Proposition 3.1. There exists an algorithm Roundy ., with balancedness parameter o € Ry and
error parameter €y € (0,1/2) that takes a-balanced rank r module lattices (Bas, I = (a;);cfy)) over
K as input, whose output distribution satisfies, for any M,

||IRoundyqt (M) — RoundEjEf(M )| < o,

for a certain perfect distribution Roundfe™® (M), and where Roundyy, and Roundt®t satisfy the
following properties.

(i) The output (Hg, (hi)icy)) of Roundpat(M) is a rational module lattice that is bounded in
size by poly(size(Bys,I),1og(1/eg)). Moreover, the algorithm runs in time poly(size(Bys),
max; size(a;), log(1/eo)).

(it) If (Bar,I) and (B, 1) represent the same module, we have that
RoundF®f(By/, I) = Round! s (B, T'),
meaning that their output distributions are identical.

(iii) For any N < Roundpa.(M) there exists a full-rank matriz Y € Kg*" so that M =Y - N,
which satisfies cd(Y) := Y| - [|[Y 7| £ 1+ 5= < 2 and hence preserves SVP-like problems.
For example, solving v-SVP (resp. SIVP) in N allows for solving 2y-SVP (resp. SIVP) in
M, with probability at least 1 — 584.

(iv) We have, for any module lattices M, M' we have

IRoundf (M) — Roundf s (M) < 920 {flog(12r/e0)y/d(M, M),

where d(M, M') := ming(||¢ — I||2, |¢~L — I||2) if there exists a module isomorphism ¢ : M —
M’ between M and M’ and d(M,M') = oo otherwise.

Proof. Ttem (i) is proven in Lemma 3.3, item (ii) in Lemma 3.4, item (iii) in Lemma 3.2 and
Lemma 3.6 using (1+ g-)(1+ 4) < (1+ 5-) (see also the proof of Lemma 8.3), and item (iv) in
Lemma 3.7. Ul

3.2 The rounding algorithm and its properties

The rounding algorithm of this section is described in Algorithm 2. We now prove the properties
listed in the introduction.

The following lemma on the matrix 2-norm and the determinant of the basis By will turn out
useful.
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Algorithm 2 Rounding a module lattice to a near rational module lattice

Require:
o A balancedness parameter o € R>1,
o A pseudo-basis (B, (a;);c[)) of an a-balanced rank r module lattice M with a; C Of.

e An error parameter gy € (0,1/2).

Ensure: A pseudo-basis (Hg, (hi)ic[;)) of a module lattice R of rank r where Hpg has coefficients
in K and bh; C O for all i € [r].

1: Put ¢ =3-2"-a" 1. Tk -n-det(M)/" and T = 8n* - /log(12r/20) - 5.

2: for i =1 tor do

3:  Pick ¢ € {x € Kg | ||zo|| =T for all o} uniformly. Sample a center

4 Putc=(0,...,0,¢0,...,0) € K.

5. Sample v; <= G from the discrete Gaussian (see Definition 2.19) over M with center c.
Repeat until v; is Kr-linearly independent of (v, ...,v;—1).

6: end for

7. Define the free r-module N = @;_; Ok - v;; construct its basis By by stacking v; as columns.
8: return the Hermite normal form (Hg, (h:)ic[,})) of the module R generated by the pseudo-basis

(Br := By'Bu, (ai)iefr)-

Lemma 3.2. We have, except with probability (60)”4,

1 . 11
)T, BRI < (1+

Byl <1+ — —
[Ball < (1+ ¢ 7

and 1
[det(BYHV" < (14 )T

Proof. For conciseness, we write p = log(2r/ep). We start with computing the matrix 2-norm of
the matrices By and BJ_VI. By the very definition of By, we can write By = T - J — E, where
J is diagonal with on the diagonal entries elements of {x € Kg | |z,| = 1 for all 0} and where
T € Rso. Hence ||Byll2 = ||T - J|| + ||[E|l = T + ||E|. By the fact that N is constructed by
stacking Gaussian samples (see lines 5 and 7), a single component e;; of E € K" must satisfy
eij € {v € Kg | |z,] < n?-p-cforall 0} except with probability (by putting x = n%?u),
4(n3/2p\/2me)"e~ ™" by Lemma 2.20

Hence all of these components satisfy this property except for probability 4n2~(n3/ 2 ,u\/%)"e
(4Y/mp2/m . p3/2)3/Oe - e < (24keT)T < (e = emHn < (g0)™ with k = n¥/2u > 1.3
(since i = \/log(12r/z0) > /log(24) ~ 1.78 as ¢ € (0,1/2)). The inequality 24rxe ™" < ¢~ for
k > 1.3 follows from graphical inspection.

For the remainder of this proof (where we account for the failure probability (c0)"") we assume
that indeed, for all (e;j);j, (€ij) € {z € Kr | |15| <n?: p-< for all o}.

Hence, writing § = n3 - - /T < 1/(8n) < 1/2, we obtain

IBylla < T+ 1Ell2 < T+ BN Bllos < T +n’ - p-¢ = T(1+0)
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Now for BJ_Vl, we use that 771 - J"!By = I — T~'E. Hence

TIBM = 1TB - J|| = (I — T 'E) 7| = T'EY| <14+ ——0u 2"
IBy I =1TBy - JI| = |I( )7 =1 Y < +1—n3.u.</T

J=0

d
< — <
_1+1_5_1+26

Therefore, |By'|| < % - (1+29).
The last computation is on the determinant of Bﬁl. We have, by the fact that det(J) =1,

det(By) = det(T-J — E) = T"det(I — T 'J'E),
for which we have the bound

|det(I - T 'J'E) —1| < 2n||T 1T 1E| = < 2n6

2n| E]
T
for |[T71J7E| = £||E|| < 1/n (see [IR08], together with (z + 1)" — 1 < 2nz for nz < 1). This
inequality £ ||E|| < 1/n is clearly satisfied since we assumed that all components of E satisfy (e;;)s;,

(eij) € {x € Kr | |zs| <n? p-< for all o}.
Hence,
|det(ByY)| =T " det(I — T 'J'E)| <T7"(1 - 2ns)"".

Since 6 = n3us/T = 1/(8n), we can easily deduce the claims, since 2nd < 1/4. O

Lemma 3.3. The pseudo-algorithm described in Algorithm 2, of which we will call the output
distribution RoundEZ{f(M ) on input M, is correct. Furthermore, there exists an algorithm, called
Roundy,t, that, given gy € (0,1/2), and given any rational input (B, 1), approzimates the output
distribution Roundy ™ of Algorithm 2 (with the same input) within statistical distance eo within bit
complezity

poly(size(B ), max size(a;), log(1/ep)).

Moreover, any output module R with pseudo-basis (HR, (h;)ic|y) of this latter algorithm (Roundpat)
satisfies size( Hpg), max; size(h;) < poly(size(Bus, (ai)ic[r), log(1/€0))-

Proof. Correctness. To prove correctness, we need to show that the output R is a rank r module
lattice with coefficients in K. The output R is a rank r module lattice by definition (as it has a
pseudo-basis (Bg, (a;))). This is forced by the repeated sampling until linearly independence in line
5. Note that the choice of ¢ in combination with Lemma 2.14 and the a-balancedness of M implies

¢>3-2" /- Au(M). (13)

For the coefficients, we observe instead the matrix B]_%1 = B]TjBN € OF". Since v; € M, we
can write v; = By - w; where w; € a; x -+ x a, € OF. Hence putting W = (w1, ..., w,) (where
the w; are columns), we have By = By, and thus B:!l = BX/}BN = W. Hence, by the formula

1

for the inverse via the adjugate, we see that B = Wadj(W) which must have coefficients
R

in WOTKXT. Hence, Br and thus Hg can be represented by rational numbers (in the field K,
R
and hence, by picking any basis of K, by rational numbers in Q). By scaling, one can demand the
ideals to be integral, see also the text on Module-HNF in Section 2.3.3.
Approximation of Algorithm 2 with small statistical distance. Next, we prove that

the output distribution of Algorithm 2, RoundEZ{f, can be approximated by an efficient algorithm
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Roundy,,; using bit-operations and within statistical distance gg. There are two lines in Algorithm 2
that cannot be computed with bit-operations due to their real or infinite nature: Line 3 and line
5. The former, because a computer cannot sample from a uniform ball, and the latter because a
computer cannot process arbitrarily large elements of the lattice M.

We resolve the first issue by discretizing the set C = {z € Kg | ||z,|| = T for all o}, into the
finite set C, in such a way that C = C + F with F' some fundamental domain satisfying || f| < 3;;, =
for all f € F (with r = rank(M) and d = deg(K)). Le., every element ¢ € C can uniquely be
written as ¢ = ¢+ f with ¢ € C and f € F; with vol(F) = Vo‘lc(| )
sampling z € K per embedding separately.

Hence, the statistical distance of the two methods of sampling v; <— Gasc ¢, with ¢ = (0,...,0,¢,0,...,0),
—_— Y=
) i—1 r—i
where ¢ < C or ¢ «+ C can then be computed by (where the statistical distance, or, equivalently,

the norm || - ||1, is over m € M)

1 1
ch_
vol(C) /aech’“ 70 4

fZgM,g,c =
eeC 1
1 n| f
= VOI(C) /fEFéEZC HgM,g,c - gM,g,c+f”1df < / \/7 <e /

where the last inequality follows from the result [PS21, Lemma 2.3] by Pellet-Mary and Stehlé. The
premise of this result, 1, /o(M) < ¢/2, follows from [MR07, Lemma 3.3], as 1, /o(M) < w‘
An (M) < 2rd\,(M) < ¢/2 (see Equation (13), and where we use that /log(6x)/m < 2z for all
x> 0).

We resolve the second issue by using an algorithm computing an approximation of the discrete
Gaussian as in [FPS+23a, Lemma A.7] (see also [GPV08, Theorem 4.1]) with error eq/(12r). This
means that, instead of sampling v; <— Gar ¢ in line 5, we sample v; < G M,s,c for which

One can efficiently sample in C by

1
vol (C feF

ZgM§c+f gM(Cdf

||§M,<,c — Gl <eo/(12r),

for which it additionally holds that ||v; — ¢|| < ¢\/log(12r/2¢) + 4n.

At the end each loop occurrence, at line 5, a v; is sampled that is a discrete Gaussian conditioned
on being independent to the earlier samples (v1,...,v;—1). By Lemma A.3, the success probability
of a single try of v; must be bounded from below by 1/3 (by the fact that ¢ > 3 - v/n -\, (M),
see Equation (13)). Hence, by Lemma 2.23, the statistical distance between the two conditioned
samples (meaning, repetition until success), must be upper bounded by

2. (1/3>_1 : HG\MS,C - gM,c,c”l < 60/(27’).

For fixed input M, write Round (M) for the output distribution of Algorithm 2 over rank r

modules represented by (Hg, (bi)ic|r))). And, for the same fixed input, write Roundy.¢(M) for the
same output distribution of Algorithm 2 except that ¢ is sampled according to a discrete circle and
v; G M,c is sampled from an approximate discrete Gaussian. Then we have, by the fact that the
loop in line 2 consists of r repetitions,

|[Round? (M) — Roundyqq (M)|| < 7 - (e0/(2r) 4+ €0/(2r)) = €0
Hence, indeed, the output distribution Roundfe™* (M) of Algorithm 2 can be approximated within

statistical distance €. The bound on the run time is shown at the very end of this proof.
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Bound on size of Hr and §;. Due to the polynomial time algorithm for the Module-HNF by
Biasse and Fieker [BF12], it is sufficient to find a polynomial size bound on Bp in order to bound
the sizes of Hr and b;, since

size(HR, (hi)icr)) < poly(Br, (ai)ie)r)-

We bound the size of B € WO?T C K" (with W = B!, see the beginning of this proof)
by proving an upper bound on the length of the vectors it consists of, as well as an upper bound
on the (norm of the) denominators of its coefficients.

We have, by a similar computation as in Lemma 3.2 (with § = n® - ¢ \/u/T < 1/(8n), writing
w = +/log(12r/ep) ), using that the approximate discrete Gaussian samples indeed always satisfy
ei; < n?-\/log(12r/eg) - ¢ = n?us, (contrarily to the perfect discrete Gaussian samples, for which
this happens with high probability)

_ _ 1
IBell = By Bull < BBl < (1 +20) Byl

Additionally, again, by similar determinant computations as in Lemma 3.2,

| det(W)| = | det(By,/By)| = |det(M) ™| - | det(By)| < det(M)~" - T(1 + 2né)
<2-det(M)™1-T.

Since W € ORX", we have det(W) € Z and hence we see that |det(W)| = |N(detg, (W))| <
2det(M)~1-T.

Hence, the size of By is bounded by poly(size(Byy),log(T)) = poly(size(Bas),log(1/ep)), which
proves the claim.

Run-time. We finish the proof that the approximated algorithm is efficient. For lines 1-6,
the efficiency follows from the efficiency of sampling the discrete circle and the efficiency of the
approximate discrete Gaussian algorithm as in [FPS+23b, Lemma A.7]. The fact that the sample
from the discrete Gaussian is required to be conditioned on being linearly independent of earlier
samples, does not give a significant overhead, by Lemma A.3. We can conclude that these lines run
in time poly(size(Bar), max; size(a;), log(1/p)).

An additional note on computing this (approximate) discrete Gaussian, is that before sampling
v G M,c, the basis of M is first LLL-reduced (for this purpose only), in order to have smaller basis
elements. This LLL reduction does not need to be module-compatible, and an efficient algorithm
to find such an LLL reduced basis for approximate bases is described in [BP89; BK96]. This allows
for computing a Z-basis (my, ..., my,) of the lattice M satisfying ||m;|| < 2"\;(M) for all i € [n]
[BK96, Corollary 4.1].

Line 7 is just stacking columns and causes no real overhead. The last line, line 8, involves
the computation of a Hermite normal form, which can be computed in polynomial time [BF12].
Hence the overall bit-wise approximation algorithm (of Algorithm 2) runs within polynomial time
in size(Byy), size(a;). O

Lemma 3.4 (The output distribution RoundF®! of Algorithm 2 does not depend on the pseudo-ba-
sis representation of M). Let a € R>y and let Round! < (B, (ai)iepy]) be the output distribution
of Algorithm 2 on input (Bar, (a;)icf)). Let (Bar, (ai)icpr)) and (B, (a})icpr) be two pseudo-basis
representations of an a-balanced module lattice M. Then

Roundpgi' (B, (0)sefr)) = Roundpgy (B, (a))iepr)

()
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Proof. Since the sample of v; < Gpr ¢ in line 5 is independent on the choice of pseudo-basis of
M, the distribution of the free module N in line 7 is also independent on this pseudo-basis choice.
Therefore, the module-lattice R is independent of this pseudo-basis choice (but its representation
(Br := By'By, (ai)ier) generally not). As the output is the Hermite normal form basis of R
(which is unique for each module lattice), the output is indeed independent of the pseudo-basis
choice of the module M. O

Lemma 3.5 (Round! ! preserves short-vector problems). Let R be a module lattice produced as
the output of Algorithm 2 with input M. Then, given a vector v € R satisfying ||v|| < v A1(R)
(respectively ||v|| <+ det(R)Y@)), the vector m = Byv € M satisfies

ml| < 2v\1 (M) (respectively |m| < 2+ det(M)Y/ (@),
7 o

4

with probability at least 1 — (g9)™ .

Proof. By Lemma 3.2, we have |[Byl[l2 < (1 + &)T, [By'llz < (1 + )4 and |det(By")|V/" <
(1+ $)T~1, with probability at least 1 — (e0)™".

Since By is a module isomorphism from R to M (and thus B]}l from M to R), we obtain that
for any v € R\{0} attaining A\;(R), we have Byv € M\{0} and hence

MOD < Byl < T+ L/sm)lol =T (14 o) M(R),

and similarly, for m € M\{0} attaining A\; (M),

M(R) < [Bytm] < B m] < 7+ (1+ 5= ) - M),
n
After these computations, we turn back to the original task at hand: showing that a short
vector in R gives means of computing a short vector of M. Suppose v satisfies |[v]| < yA\1(R), i.e.,
v = Bprw with w € a; X ... X a,. Let now m = Byv = BNBf\,lBMw = Bpyw € M. Then by the
computations on the norms on the matrix, we obtain
1 1

1 1
lmll = Bxoll <TA+ o)lloll < v- T+ o) - A(R) < v (T4 )1+

8n 8n Ja(M).

For the determinant variant, the same type of sequence of inequalities occurs:

1 1
=|B <T(A+ — <~-T(1l+—)- 1/n
Imll = Bxvll < T+ o)l < v-T(1 + o) - det(R)

< . J— —) . .
<7 (1+8n)(1+4) det(M)

Here we use that det(R) = det(By'Bas) = |det(By) Y| det(Bas)| < T71(1 + 1) det(M). Now we
use that (1+1/(8n))(1+1/(4n)) < (1+1/(8n))(1+1/4) < 2 to obtain the final claim. O

Lemma 3.6 (Roundy,; preserves short-vector problems). Let R be the module lattice represented
by the output of the approximation Roundy, of Algorithm 2 with input M. Then, if v € R satisfying
|v]| < A1 (R) respectively |Jv]| <~ det(R)/() allows for finding m € M satisfying

lm|| < 2yA1 (M) respectively ||m| < 2+ det (M) @)

with probability 1.
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Proof. This follows from the proof of Lemma 3.5 and the fact that (as can be seen in Lemma 3.3) the
tails of the discrete Gaussians are cut in Roundy ,;, which takes away the probability that arbitrarily
large samples from these Gaussians can cause the short-vector problems not to be preserved. [

Lemma 3.7 (Round}! is 1/2-Hélder continuous). Let o € Rs1, g9 € (0,1/2) and let M, M’ be
a-balanced module lattices of rank r. Denote D(M) for the output distribution of Algorithm 2 on
input (Bar, (0:)iepr), a pseudo-basis of M.

Then we have

ID(M) = D(M")||x < 920 - flog(12r /20)\/d(M, M),

where d(M, M') := min(||¢ — I||2, ||¢~! — I||2) if there exists a module isomorphism ¢ : M — M’
between M and M' and d(M,M'") = oo otherwise.

Proof. Assume that M’ = ¢M, where ¢ € Kp*" serves as a module isomorphism (and is thus invert-
ible); otherwise the lemma is trivially true. We may without loss of generality assume that det(¢) =
1 (and hence det(M’) = det(M)), by replacing M’ by det(¢)~ VDM’ and ¢ by ¢ - det(p~1/ D),
This holds because Algorithm 2 is scaling-independent, i.e., it does not matter whether M or ¢M
is the input for g € R+g.

We use that d(M, M') = min(||¢ — I||2,[|¢~' — I||2) (where M’ is scaled so that det(M) =
det(M")). Then, for the same c, the samples (v;);c|y] from Gprc . (for Algorithm 2 on input M)
and (¢v;)ief from Ggpr e (for Algorithm 2 on input M’ = ¢M) lead to the same output module.
Indeed, a pseudo-basis of the output module R in the first case can be described by (Bgr :=
BB, (ai)ie[r) With By is constructed by stacking v;; whereas in the second case it can be
described by ((¢Bx)~!(¢Bu), (ai)ig[r]), which is equal to the pseudo-basis in the first case since
(¢Bn) ' (¢Bum) = By'Bus.

Hence, by the data processing inequality, the total variation distance in the output distribution
of Algorithm 2 on input M and M’ can be bounded above by the total variation distance between
Gy, and <Z>_1G¢M,§,c, which are both distributions over M (where we mean with ¢_1G¢M,<,c the
distribution obtained by multiplying the output of Gy . by o).

By rewriting, one obtains that ¢*1G¢M7<7C is equal to the distribution Gy 4-1¢ 41, Where ol
serves as a sort of variance matrix. The probability of sampling v from G/ 4-1¢ 4-1. is proportional
to exp(—||¢/s - (v — ¢~ 1c)||?). We use a result from Stehlé and Pellet-Mary [PS21, Lemma 2.4],
where we instantiate S; = ¢,Sy = ¢~!¢,c; = c and ¢y = ¢~ 'c in [PS21, Lemma 2.4]; we use here

that, by the definition of ¢ we have 7 /5(M) < 4/ @)\n(M) < ¢ (see [MRO7, Lemma 3.3]) and
similarly for M’ (see also [PS21, Equation (2.1)]). This yields the following bound:

Gt tc e — Garell < 4V (V87181 = Ll + /85 1 — e) (14)
<avin (Vo =11+ /Is~@e = o)l (15)

< 4vny/llé = I[(1+4/nT/s) (16)

Note, though, that in line 5, instead the samples are conditional on being linearly independent
of the former samples. By Lemma A.3, the success probability of sampling such v; being linearly
independent to the former samples is at least 1/3. Hence, by Lemma 2.23 the statistical distance
between the conditioned Gaussian samples must be upper bounded by

2-(1/3) 7 1Garg16910 = Gurgell < 24v/myf ¢ = I(I(1 +/nT/s). (17)
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Hence, for » < rd = n of such samples, the total variation distance can be bounded by, using
that nT/s = 8n® - p (with p = \/log(12r /o)) and 24y/n(1 + /8n% - ) < 1603 - /i for n > 1, we
obtain a total variation distance of

ID(M) = D(M")|ly = |[D(M) = D(6M)|ly < 92n°/iiy/ll6 — I]].

By analogously comparing the Gaussians over M’ and ¢~!M’ = M, one arrives at the exact same
bound, except that ||¢ — I|| is replaced by ||¢~! — I|. Hence, replacing u = /log(12r/g¢) the claim
of the lemma follows. 0

4 Self-reducibility in the bulk: analytic tools

The goal of this section is to prove an explicit, quantitative Hecke equidistribution theorem for test
functions concentrated at arbitrary lattices. It is one of the main drivers of our reduction, but the
result is of independent interest.

First, take a module lattice L, 4 for z € GL,(KR) and a in the class group, as in Section 2.3.2.
We define a probability measure on X, 4, extended trivially to X, that is concentrated around L. 4.
It is given by an “initial distribution” function .

Applying Hecke operators T;, to ¢, corresponds to randomizing L., or a geometrically close
lattice by taking certain sublattices with index N(p). As p grows large, the measures we obtain
spread out to the whole of X,. and start to converge to the uniform probability measure p. In other
words, the sublattices of L, 4 of large index equidistribute.

For our purposes, it is essential to understand the rate of convergence to the uniform measure.
We do so by applying the bounds on Hecke eigenvalues given in Section 2.7, importing the quanti-
tative equidistribution results of [BDP+20], and bounding the L?-norm of the initial distribution
concentrated around L. ,. The latter depends heavily on the balancedness of the lattice (recall
Definition 2.8).

Theorem 3. Assume ERH for the L-function of every Hecke character of K of trivial modulus.
Let @, be the function defined in Definition 4.3, with defining parameters o < 1/v/d andt = 1. Let
B, k be positive parameters such that k > o~ 1\/r, /47 and B > log|Ak| + d, with large enough
implied constant. Recall that P(B) is the set of prime ideals of K with norm up to B. Assume that
the associated lattice L 4 is a-balanced. Then

2
L < max(r,(logry)3,1/0)™ - (C? + 6—2(n/\/3)2)

HTP(B)‘Pz — pRiem (Xr) 71 1x,
+ (rd)? - B=%/*1og(B)? - C2,

where

C =0 <log(B) log[B? - ]A\;% (4 + QWH/\/E)d]>

and

3d d
Cy < exp <T6 log o 4 r?log |A | + ilogd—k O(r?dlogr + loglog |AK])> .

Remark 4.1. For our purposes, Theorem 3 is strong enough when the starting lattice is a-balanced
with o at most polynomial in d (see Section 10 for details). In fact, as explained in Section 1.3, we
should not expect it to apply to very imbalanced lattices.
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4.1 Initial distribution

Define the natural projection
Ta: Yy = Xpa. (18)

The initial distribution will be the push-forward under 7, of a distribution on Y,., which we define
from its density with respect to priem. The latter is informally constructed by splitting GL, into SL,
and GL; and taking characteristic functions or bump functions on neighborhoods of the identity
on each part. For this, we recall the functions p and 7 from Section 2.6.3, measuring distance on
the SL, and GLi-parts, respectively.

Let t > 0 and o > 0. We define f € L*(Y;) by

~ s

(@) =1 4(p(z)) exp(~—57(2)), (19)

and let Iy = [y fdpiRiem- Notice that the first factor is the characteristic function of the ball B(t),
as defined in 2.6.3. Moreover, f has rapid decay, which implies that all integral manipulations
appearing below are valid and there are no convergence issues.

Lemma 4.2. We have that

— r . _ :U'Riern(B(t)) o \"Tu
If - /Yr fd,Uleem = /LRiem(SUr(KR)) (—) . (20)

Proof. Let
S: K — Ky Uy (Kg)

be a section of the determinant GL,(Kgr) — Kg that takes values in Ky U,(Kg). This latter
condition is useful for employing the invariance properties of p. Using the integration formula (5),
we compute that

/ f(l') d:uRiem(x)
Y

= /.oy, Lo (@) exp(~57(e)) do

=rz /6€Y1 (/xeAl(é) Lo, (p(w))exp(—(jQT(m))d:U) do.

Plugging in definitions and using the isometry between Y; and H given in section 2.6.1, the expres-
sion above equals

—ry

v
r2 / (/ l[o,t](ﬂ(fﬁ))d$> exp(—— || log|d|[|3;) do
sevy \Jzea—1(6) 7

7 /M e (B()S(8)/ SU, (Kz)) exp(— 25 | og]]|[?) do
_ru/ URiem (B (1))
dEY] ,URiem(S(a) SUT(KR)S(é)_l)
—ru/ PRiem (B(1))
zeH MRiem(SUr(KR))

The claim follows from a standard formula for the integral of a Gaussian. O

s
exp(— 5l log|é]]1%) do

T
exp(— 2 o)
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For z € Y;.,, notice that [y f(z"'x) = I; by invariance of the measure. Thus, writing

fl) = 7 (=), (21)
we have that f, - yRrjem defines a probability measure on Y;., concentrated around the point z.

Definition 4.3. Let the initial distribution around a point z € X, 4 be ¢, = (mq)«f,. Explicitly,

pw) = Y fyw), (22)

vEGL, (O ,a)

and we note the dependence on a and on the two parameters, o and ¢, which we leave out of notation
for simplicity. It extends trivially to X, by setting its value to be 0 on all other components.

Lemma 4.4. The measure ¢, - URiem S @ probability measure on X,.

Proof. Indeed, we can compute that
/ @Z(w) d,uRiem = / (Pz(w) dMRiem = / fZ(w) d,uRiem =1
XT XT‘,ﬂ YT‘

using the formal integration rule
[ S somdo= [ fa)de.
X o7 X

The latter is often called the unfolding method and is valid in all cases we consider. O

4.1.1 Determinant projection of the initial distribution

We now compute the projection of ¢, onto the space Lﬁet(Xr,a) by applying the results in Section
2.6. For this, let ¢, 1 = piriem (A7 (1)) "t ALp., so that, by (7),

TidetPz = Ai@z,l- (23)
Lemma 4.5. For the initial distribution defined in (22), we have
_ T
Agp(6) =Y o exp(— 5l 1og|d] +logle] — log|det(2)|[1%)- (24)
£e0y
The measure AL, - URiem S a probability measure on X 4.

Proof. Recall the description (6) of A71(d) and that
A7) = T \T,ATL(S).

a
For each £ € OF, choose an element v(£) € 'y such that det(y(§)) = £. Using this, we parametrize
Lol (0) = U (A (9).
(€0

The unfolding method with respect to the measure piRrjem now implies that

N = [ o= [ L)

TaA ' (6)

:r_%ulfl Z /Aa1(§) f(z7 1y (&)x) da.

te0k
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The same computation as for Iy and the fact that

MRiem(Z’Y(é)B(t)) = :U’Riem(B(t))

now imply that

JRN L iien Bl oxp(— T logls] + loglel — logldet(=)]I3)
A1) R)) a

,uRiem(SUr (K

Plugging in our formula for Iy, we obtain the formula in the claim. The fact that Aje, - uRiem
defines a probability measure can be checked by standard properties of the Gaussian function. [

4.2 Bound on the norm of the initial distribution

It is essential in our method to have uniform bounds on the norm |¢,|. We obtain them by first
reducing to a problem of counting matrices in I'; with certain size constraints that depend on z. We
then use techniques based on counting lattice points in balls, where the dependence on the lattice
manifests through the appearance of successive minima.

4.2.1 Reduction to a counting problem

We first use generic notation in this section and we specialize later. Let Y be a space equipped
with a measure v. Let I' be a discrete group acting on Y properly discontinuously. This induces an
action of I' on the space of functions on Y, defined by

(V) =f(v'y)

for f: Y >R,yeY and yeTl.

Let 7: Y — T'\Y be the canonical projection. For a function f on Y we let 7, f be the push-
forward function on I'\Y', i.e. . f(z) = X cr-1(2) f(y) for z € T'\Y. Assume here that f is mea-
surable and has rapid decay so that all the sums and integrals we consider converge.

Lemma 4.6. We have ||7.f|? = Z%F(f,’y_lf}y
Proof. We compute that

o = [ rs@ae = [ (3 s ) dv(a)

yen~1(x)

=f, X I ¥ i@

yer—!(z) y'er—t(z)

= [ X 1w X e

yeT— 1 (z) ~yel
—/ ) S Fowdvy) = S )y
yel’ vyel
Il

Suppose we have a function 7: I' = R>( (measure of size) such that the sets Bf(t) = {y € T"|
7(v) < tand (f,y 1 f)y # 0} are finite. Define C¢(t) = |Bf(t)|. In addition, assume that we have
a bound of the form

[y Pyl S F(r(v)

for some smooth function F': R>y — Rx>o.
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Corollary 4.7. In the notation above, we have
I fI* < (F - Cp)(o0) +/O Cr(t)(=F'(t)) dt. (25)

Proof. Since C(t) is clearly monotone, we may use the Riemann-Stieltjes integral to state the

inequality
DDV 1% E N S CIC! /F )dC (1)

vyel YEBy (T)
T(M<T

for any T" > 0. Integration by parts gives
T T
/ F(t)dCy(t) = F(T+)CH(T+) — F(0-)C4(0—) / Cr(O)F (1) dt
0 0

Finally, assuming the quantities below converge, letting T' — oo, we obtain the claim. O

We now specialize the discussion to Y = Y, with the measure v = pRjem, the function f = f,,
the discrete subgroup I' = GL,(Og, a), and 7 as in Definition 2.29. We first compute the function
F' that gives a bound on the inner products.

Lemma 4.8. We have that (f.,v 1f.)y < F(7(7)), where

. 2 i Tu
F(r) = “Rlem(X/ZE{:j(l?(g)Ur(KR)) (U\/ji ) exp (—27;27). (26)
Proof. We begin with writing explicitly
(for ' fody
= 2 [ oy, T DI 90) i)

B Iljg/xey Loy (p(z""2)1pg(p(="" 7)) exp (_;(T(z_lm) + T(z_lva))>

Let zg = mylog|det z| and yg = log|det~y| € H. We now estimate the intersection of the balls
2B(t) and v~ 12 B(t) trivially to obtain, using the same techniques as when calculating I ¢ and Alp.,
that

[Riem (Xr) - (fZ77_1fz>Y
<@ / Lol >>eXp( T (e ta) 4 700 )

/ / (zflaﬁ)) exp (—T;(T(le') + T(zl’yar))> dx dd
IQr 2 Joevy Jeen- Ot o
1 MRiem(B(t)) < ™ 2 2 )
= — exp| ——=(||h — 2 + ||k + -z do
¥ o st ey 2 (=0 = 2l Wece s =)
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Focusing in on the integral, we have

T
S exp (= 500 2l I+ o 2l 5
he g

H
™
= [ e (=T z + P+ Sl ) s
heH g
= T _T 2
—exp (~ 7)) [ exp (= Sc2IniP)) ds

() )

We finish by plugging in our formula (20) for I. O

To apply our formalism above and obtain a bound for ||¢.||, we are thus left with estimat-
ing Cf, (7). For this, observe that if (f.,,71f.)y # 0, then there exists a point x € Y, such
that p(z~1'z) < t and p(z~'yz) < t. By the properties of p, we deduce that

p(z7 y2) = p(z" ez ™2) < 2t (27)

We use this in the next section to count the elements v that contribute to the L?-norm.

4.2.2 The counting problem

Counting elements of I'y lying in By, (7) can be reduced to counting lattice points in balls. The
following lemma is well-known, and we cite a version that features explicit constants.

Lemma 4.9. If L is a lattice of rank n and R € Rsq, we have

velL||v| <R <2n71n 2l L)
{ve L] v <R} < ir[l(xi(L)jL)

Proof. This is Theorem 1.5 in [Hen02]. O

Lemma 4.10. Let L = L, 4 and let 7 > 0. Then

r2d—r g 1 )‘i((L)
Cp. (1) <2 HH 2exp(r\ﬁ+2t))\A(L) +1].
k=1i=1 i

Proof. Recall that for all v € T = GL,(Ok, a),

7(y) = || log|det v|||F; = || log|det ~[||,

and Cf(1) = |Bf(7)|, where

Bi(r)={y el |r(y) <7and (f,y ' f)y # 0}

Let v € Bf(7). Then the non-vanishing of the inner product condition implies that p(z71yz) <
2t, as in (27). Writing z = (24)v,7 = (W) by viewing GL,(Kg) as [[, GL,(K,), we have that
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=~ 2llop = maix, |25 Yz lop since for w € K we have [w]* = 55, [K, : R] [uw,|*. We obtain,

_ — i
157172 lop = max 25 00 o = mH\ ety
et yp|r
< exp (% log max | det %]) max W’
et yp|

exp (1 1og | det [l ) exp(p(+))

< exp (i () + p(’v)) <exp(;VT +21),

using that the L*-norm is at most the L?-norm in finite dimensional spaces. In other words, the
operator norm of 7 acting on L is at most exp(%ﬁ + 2t).

Now let vy, ...,v, € L be K-independent with |lvg|| < A5 (L). Each v € T is uniquely determined
by the images of the vj. In addition, for every v € B¢(7), we have

lyorll < exp(FvT + 20X (L)

By Lemma 4.9 the number of vectors in L satisfying this bound is at most

gri- 1H<2exp {(thnf‘( >+1>.

Using this bound for every k leads to the claim. O

Corollary 4.11. Under the same hypothesis, assuming that t > i and that L is a-balanced (recall
Definition 2.8), we have

r2d
Cr.(1) < (8ar/6> exp(rdy/T + 2ridt).

Proof. Rewrite the bound of the lemma as

Cy (1) < orid—r H H H <Qexp +2t))\§(L)(L)+1>.

k=1k'=1i=1 Ad(k’—l)-i-i

Applying Lemma 2.13, we get

Cy.(r) < 274~ TH H H <2exp (V7 +2t) X (1) +1>

\E
k=1k'=1i=1 Ap (L)
, d

r2d 1 dr(r+1)/2 = 1 Aé((L)
< 2" %4exp(Ly/T +2t)) H 4exp(;\ﬁ+2t))\K 7
P e w (L)

< grd exp(rdy/T + 2r?dt) H H k=)

k=1k'=1
< grd exp(rdy/T + 2r2dt)ad7"(r2_1)/6,
which implies the claim. O
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4.2.3 The norm bound
Before proving our bound for [|¢.||, we state a technical lemma that aids computation.

Lemma 4.12. Let a,b > 0. Then
o0 2 9
/ exp(—az + by/x)dr < = (2 exp(20°/a) + 1) :
0 a

Proof. Let x > (2b/a)?. Then —ax + by/z < —%z, so

/ exp(—az + by/z)dx < / exp(—gm)daz _2 exp(—2b%/a) < g
(2b/a)? (2b/a)? 2 a a
On the other hand we have
(2b/a)? (2b/a)? 2b/a
/ exp(—az + by/z)dx < / exp(by/z)dz = 2/ yexp(by)dy
0 0 0
2b/a
< (abfa) [ exp(by)dy = (4/a) exp(26*/a).

O]

We now sum up all the previous sections, recalling our construction for convenience, and con-
clude with one of the main estimates in our argument. Namely, we define the function ¢, (see
Definition 4.3) starting with data consisting of a matrix z € Y;., a class group representative a, the
parameter ¢, which controls how much ¢, localizes in the SL(r)-part, and the parameter o, which
controls how much it localizes in the GL(1)-part. The first two data also define a lattice L = L, ,.
We have the following bound on the L?-norm of the starting distribution, defined in terms of URiem -

Proposition 4.13. Suppose L, 4 is a-balanced, and let 1 <t < O(1) and o = O(1/+/d). We have

3d d
log |loz||x, < % log a + r?log |Ak| + 5 logd + O(r*dlogr + loglog | Ak |).
Proof. We first prove the more precise bound
em (X7 )? 2 r2d (207d)?
2 < ,u‘Rlem( T <) 8 2t r/6 4 21 .
bl < B \2 (8e¥a") exp () +
For this, recall from (26) that we have (f,,v~!f.)y < F(7), where
iem Xr 2 iem T K "
i) = Pl e SU K8) (V) ()
KRiem (B(t)) V2

22"
For applying the formal bound (25), we first note that, by Corollary 4.11, the function C't(7) grows
like exp(y/7), whilst F'(7) decays like exp(—7). This implies that F(7)Cf(7) vanishes as 7 goes
to infinity. The same observation shows that F'(7)Cy(7) exhibits rapid decay and is integrable.
Therefore, we obtain that

a2 < /0 (7Y (= F' (7)) dr

Ignoring the T-independent factors in the formula for F’(7), we have
00 2g oo
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Lemma 4.12 with a = 575 and b = rd now gives

2

00 4 20rd)?
/ exp(—%T—i—rdﬁ) dr < 7 <2exp(< ord) ) + 1) .
0 20 s ™

To finally arrive at the claimed bound, note simply that the factor % in the previous display and

the 57 from differentiating F' cancel to give a factor of 2.

By the assumption on o we have

2
4exp((207:d) ) 12 = 20(%d)

Introducing the volume computations of Section 2.6.3 to the bound we proved above, we obtain

3

r rd
21log ||¢z]| < 21og tRiem (Xr) — 10g tRiem (B(t)) + ?u log d + o log o + O(?“Qd)

d 2
< % logr + r*log|Ak| 4+ O(loglog |Af|) + zdrz log r

3d
+ %u logd + % log a + O(r2d) by Lemmas 2.32 and 2.37
9 d r3d 9
=rlog|Ak| + B logd + s loga + O(r“dlogr + loglog |Ak])

as claimed, by simplifying the expression using that r, < d. O

4.3 Quantitative equidistribution

Recall that we are interested in showing that the measures on X, obtained by applying Hecke
operators T}, and averages thereof to the initial probability distribution given by ¢. - fiRiem, converge
to the uniform measure u. To understand the rate of convergence, we need an upper bound on

HTP(B) (¢ — MRiem(Xr)_lle)

)

Xr

where B > 0 is some parameter to be chosen later. Here we are using the L?-norm with respect to
HURiem-

For this, we decompose the function into its projection onto Lget and its orthogonal complement.
Recall that T}, preserves such decompositions and notice also that the constant function is equal to
its projection onto L3.,. We therefore focus first on bounding

HT’P(B)(ﬂ'det(Pz - MRiem(Xr)il : 1XT) x.

We now import the results of [BDP+20], which essentially treat Hecke operators on the space
L3..(X,). For that, we denote by Tp1 the Hecke operator on L?(X7), which is adelically given by

Tplf(x) = f($7ﬂ;1)7

where 7, is a uniformizer at p. This corresponds to the definition of a Hecke operator in [BDP+20,
Sec. 3], upon identifying X; with the additive Arakelov class group Pic(}(.

Next, we recall that L?(X;) = [], L?(X1,4) and that X; = X; 1 for all representatives a of the
class group. The definition of Hecke operators (see (11)) directly implies that

T, Ay = AT, (28)
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To be precise, we view L?(Xy q) embedded in L?(Xy), for N = 1,7, by extending functions by the
constant zero function on all other components. Note also that T, sends L*(Xnq) to L2(Xyp.q) in
this interpretation.

Next, we recall that mqetp, = A, 1 (see (23)) and 1x, = A¥lx,. Recall from the computation
(24) that

<90z,1, 1X1>X1 = MRiem(Agl(l))_l'
From Section (2.6.3), we gather that

Ty

,URiem(XT) =7r 2. MRiem(Agl(l)) : ,URiem(Xl)-

The formula for how norms behave under AY, given in Section 2.6.2, and the Hecke operator
compatibility relation 28 now imply that

HTP(Wdet(Pz - ,URjem(XT>7l . 1Xr) X

,uRiem(Xl)il]-Xl)

X1

_ Tﬁ% : #Riem( ( ))HRlem Xl HTl
,Uleem(X)

= ||73 (P = prmiem (X1) 1,

]Xl (29)
where we write

r T
= 2 o " exp(— ]| log|d| + log|¢| — log|det(2)[]7)-
£y

The function p, is defined on X 4 and extended, as usual, to all of X by zero.

We now observe that p, is the same test function as 0" p, |7 in Section 3.5 of [BDP+20], up to
the shift 6 — ¢ - det(z). Since the right regular representation is unitary, leaves constant functions
invariant, and commutes with Hecke operators, we may ignore this shift.

For the next result, we introduce the natural notation

Tpp) Z T, .
‘73( | vies
Proposition 4.14. Assume ERH for the L-function of every Hecke character of K of trivial
modulus. For positive parameters B, k,o such that ko > /1, /4w, we have

Ti — urme (X)) 11 2 1 3 1/0) . (2 —2(ko)?
p(B)(Pr) = Hriem(X1) ™ 1xy || < max(ry(logry)®, 1/a)™ - (" +e )

where

c=0 log(B)log[B? - |Ak| - (4 + 2mk/V/d)"]
— L |

Proof. This is Theorem 3.16 of [BDP+20] with N =1 and a few mild, additional constraints. For
convenience, we note here that in loc. cit., n is our d, [ is our r,, s is our o, r is our k. Observe
also the typo in (6) of loc. cit., where n should be replaced by I.

We use (9) of loc. cit. together with the bounds in the beginning of the proof of Corollary 3.4 in
Appendix B of loc. cit. to obtain the bound r,(log7,)? for n;(A%), the smoothing number in the
notation of that paper. We finish by applying the bound Bf;;iia < e72(r9)? from just before Lemma
2.10 in loc. cit., which is valid under our assumption. O
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We continue with the orthogonal complement of L(Qiet (X;). On this space, we use the spectral
gap afforded by Corollary 2.39. Putting everything together we prove Theorem 3.

Proof of Theorem 3. As indicated at the beginning of this section, we prove this bound by decom-
posing the expression in the norm into its projection to Lﬁet and its orthogonal complement. For
the Lﬁet—part, we recall (29) and the previous result, Proposition 4.14.

. For this

Let us temporarily denote ¢ = ¢, — Taer0-. We are left with bounding HT7J,V( B)ngL
we apply the spectral gap as in Corollary 2.39 to get

2

2
< (7"d)2 . B~3/4 log(B)2 . ‘ goj‘

HTP(B)SOZL

We then trivially bound ‘cpZL by |l¢:|| and apply Proposition 4.13, the conditions of which are
satisfied. ]

5 Balancedness of random module lattices

In this section, we prove that p-random module lattices are balanced (in a weak sense) with high
probability: the main result is Theorem 4. We will use the Grayson—Stuhler theory of stability
of lattices, from which we recall some definitions (cf. [Gra84; Bos20]). The role of this notion is
that it is relatively easy to compute the probability of a random lattice being unstable, and that
stable lattices are balanced. We compute this probability using work of Thunder [Thu98|, with
inspiration from an article of Shapira and Weiss [SW14], whose result we generalize and sharpen.
Note that in recent work [GSV+25b; GSV+25a], Gargava, Serban, Viazovska and Viglino prove
strong bounds on the shortest vectors of random module lattices; our bounds are weaker but more
widely applicable.

Definition 5.1. Let L be a module lattice. The slope of L is

log det(L
Slope(L) = ra,nk(_é))

Let ¢ > 1. A sub-module lattice L’ C L (of arbitrary rank) is t-destabilising if

log(t)

slope(L’) < slope(L) — rank (L)’

i.e. if 1 1
(t- det(L")) =@ < det(L) =T,

A lattice is semistable if it does not contain any t-destabilising sub-module lattices for any t > 1,
i.e. if

slope(L’) > slope(L)
for every sub-module lattice L' C L.

Remark 5.2. The notion of stability we use is with respect to the class of module lattices over
a fixed field K. Throughout this section, keeping this remark in mind, we abbreviate the term
sub-module lattice to simply sublattice.

Remark 5.3. Note that if there exists a t-destabilising sublattice L’ in L, then there also exists a
primitive one of the same rank as L', namely L” = W NL D L' where W = K - L.
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Theorem 4. In the set of (K,r) such that
e >4, or
o 7>3and |Ag| > 57.5%, or
o |Ag| > 8457,

a p-random module lattice L is semistable with probability at least 1 — 2~ Q(nlogr)

Now assume r < 3, and let § = \AK|%. Ifr =2, let

logd 2
t = max (1.01”6 8 ,1) ;
2 o2

ifr=3, let

d

m3elog d 3
t= 1.01—————, 1] ;
max < s ;

Then a p-random module lattice L has no t-destabilising sublattice with probability at least 1—2~@),
In all cases, a p-random module lattice L satisfies

A(L) > Q(|Ak|722) - det(L)w and Ap(L) < O(n|Af|22) - det(L)n

with probability at least 1 — 2~ Xnlogr)

Remark 5.4.

1. It would be interesting to know whether there exists families of number fields in which the
proportion of semistable lattices of rank 2 (or 3) is not 1 — 2-Ud)  Such a family should have
bounded root discriminant, and, as is visible from our proof, this proportion is directly related
to the size of the residue of the Dedekind zeta function of these fields.

2. Our methods meets its limits when the rank r is small and the fields have small root dis-
criminant. Interestingly, the methods of [GSV+25b; GSV+25a] also have limitations in small
rank and for families of fields that admits elements of small height. It would be interesting to
investigate relations between these limitations.

We break up the proof into several intermediate results. We will use computations by Thun-
der [Thu98] and we first explain how to relate his adélic computations to our case of interest. For
the reader’s convenience, we provide the correspondence between notations: Thunder’s K, is our
Ak, his n is our r, his d is our k, he writes [K : Q] for our d = deg(K), and his x; is our 1jg 4.
Recall from Section 2.3.2 that to each A € GL,(Ag) we can attach a module lattice embedded
in K, which we will write L4. Let £ > 1 be an integer. Thunder defines a function

fr,k: GLT(AK) — R>o.

Translated in module lattice language, f, ,(A) is the determinant of the sub-module-lattice L' C L4
generated by the first £ columns of the basis of L4 determined by A.

Define G, = {A € GL,(Ak) : [, | det(Ay)|» = 1} (corresponding to lattices of determinant 1)
and

th = {(13 g) :Ae Gy, De Gy, Be Mk,r—k(AK)} :
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Then the quotient GL, (K )/ GL,(K) N G, is in bijection with the set Gr, ,(K) of k-dimensional
subspaces of K" via v — (K" x {0}"=%). Thunder defines

R = [ Ton(fe(A)an(A)

Lemma 5.5. Lett € R>y and k € Z>1. The measure of the set of module lattices that admit a
t-destabilising sublattice of rank k is at most c(r, k)t ".

Proof. We have

w({L € X,(K) : L admits a t-destabilising sublattice of rank k})

IA
g

( Z lwnr, s t-destabilising in L 4 (A>) d,U(A)
r/ GLr(K) \ e, 4 (K)

I
Q\

> 1[0,1}<fr,k<m>>) du(A)

r/ GLr (K (WEGLT(K)/GLT(K)mGM

= 0,1] (frix(A))du(A) by [Wei82, Lemma 2.4.2]

/—\

c(r, k)t_ by [Thu98, Lemma 5],
proving the claim. O

For every dimension n, let V,, be the volume of the FEuclidean n-ball of radius 1, i.e. V,, =

ik For every integer m > 1, let (j;(m) denote the leading coefficient of (i (s) at s = m, i.e.

F( +1
Cic(m) = (x(m) for m > 2 and (5% (1) = % by the analytic class number formula (recall
Section 2.2 for notation) and define
ru—i—l QM2 Vr1 V e
R(m) = that R .
(m) K( )|AK‘m/2 » SO tha ( ) hy Ry

Lemma 5.6. For every 0 < k < r we have

1 L. RO)

N L RO RG)

Proof. First note that for r > 1,

1 R(r)  r"«22VVyhi Ry
r R(1) Cr(M|Ak[Pwr

which is indeed the value of ¢(r,1) by [Thu98, Lemma 7]. In addition, the RHS of the claimed
equality clearly satisfies Thunder’s recurrence relation [Thu98, Theorem 3|, so the equality holds
for every r and k. O

Lemma 5.7. For every m > 1 we have
m
[ ¢x(h) < 23)7
j=2
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Proof. Since there are at most d prime ideals in O over a rational prime, we have (x () < ¢(5)¢ for
all j > 1. It is thus sufficient to prove the inequality for ¢. In addition, since the product increases
with m, it is enough to prove the inequality for m large enough. We have

((j)§1+2_]+/ t9dt <1+43-279.
2

Therefore, for all m > mg, we have

> log((j) <3 > 277 <627,

Jj=mo Jj=mo
and thus
m mo—1
H ) < H C(j) - exp(6-270).
For mg = 11, this gives the claimed 1nequahty. O

Lemma 5.8. For any function f: [1,+00) = R, write Sp,(f) = 2272, f(j) form > 1 and S, (f) =
Sr(f) = Sk(f) = Sr—ik(f) forr>2 and 1 <k <r.

1. For f(xz) = (5 +1)log(5 + 1), we have

Sri(f) = 5k(r —k)log(5 +1) — jk(r — k) — §log(§ +1) + § log(5) —

oolut

2. For f(z) =log(% + 1), we have S, ;(f) < (r+2)log2 — & — 2log(3).
3. For f(z) = ﬁ, we have Sk(f) + Sp—i(f) < 4log(] + 1)

4. For f(x) =logI'(§ + 1), we have

Sri(f) > Lk(r —k)log(5 +1) — 2k(r — k) — r1%2 — 2T log(r 4 4) + 1.89.

5. For f(x) = (x4 1)log(x + 1), we have
Sri(f) > k(r —k)log(r+1) — %k(r —k)— glog(r +1)+ glog2 — %.

6. For f(z) = log(z + 1), we have S, ;(f) < (r+1)log2+ 3log2 — L.
7. For f(x) = %—1—1’ we have Si(f) + Sr—k(f) < 2log(5 +1).

8. For f(z) =logI'(z + 1), we have

Srk(f) > k(r —k)log(r +1) — 3k(r — k) — rlog2 — 1 log(r + 2) — 0.626.

Proof. We will repeatedly use Euler-Maclaurin summation in the following form [Coh07, Corol-
lary 9.2.3 and Proposition 9.2.5]: if f is C* and both f(®) and f* do not change sign on [1,400),

then
() + f(m) |f"(m) = f"(D)]

5 + R where |R| < 5

Su(f) = [ Hla)do+
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1. We have

Sm(f)

= (% +1)*(og(% +1) —5) — F(log(3) — ) + (% + 1) log(%§ +1) + 3 log(3)) +
= 1(m+2)*(log(% +1) — §) — 7(log(3) — 3) + 1 ((m +2)log("§ + 1) + 310g(%)) +R
where
|R| < i(log(% +1)— log(%))
We bound
(r+2)%log(5 + 1) — (k+2)%log(% +1) — (r — k +2)? log("5% + 1)
> (r+2)%log(5+1) — (k+2)*log(5 +1) — (r — k+2)*log(5 + 1)
= 2(k(r—Fk)—2)log(5 +1)
and
(r+2)log(5 +1) — (k+2)log(5 + 1) — (r — k +2) log(*5% + 1)
> (r+2)log(s+1)—(k log(5 +1) — (r — k+2)log(5 + 1)
= —2log(5 +1)
to obtain
Ser(f) = g(k(r —k) —2)log(5 +1) — 1 (k(r — k) — 2) — glog(5 +1)
+3(log(3) — 5) — §log(3) —'%(log(z 1) —log(3))
= %k(r—k) log(g—i—l)—%k(r—k) log( +1)+18—310g(%)— g.
2. We have

Sm(f) = (m+2)(log(%+1)—1) — 3(log(%) —1)+1 5 log(§ +1) + 1 log(%) +R

where
R < 155 — 72) < 35
We bound
(r+2)log(5+1)— (k+2)log(5 + 1) — (r — k+2)log(5% + 1)

< (r+2)log(5+1) —2(5 +2)log(; +1)

< (r+2)log(%)

< (r+2)log2
and

$log(5 +1) — Slog(5 +1) — $log(5E + 1) < 0.

We get

Sri(f) < (r+2)log2+2+ 3(log(%) —-1)— %log(%) + 1 =(r+2)log2— Q — flog(%).
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3. We have

and therefore

Sk(f) + Sr—k(f) < 2log(5 +1) + 2log("5% + 1) < 4log(§ + 1).

4. We use the following bound [A1z97, Theorem 8]: for all y > 0 we have
(y— 3 log(y) —y + 20 <logI(y) < (y — 1) log(y) —y + 2220 + L.

Summing the various contributions, we get

Sr,k(f)

> 1k(r—k)log(5 +1) — 1k(r — k) — Blog(5 + 1) + L log(3) — 2 — (r +2)l82
+3i + Slog(3) — 5k(r — k) — 3log(§ + 1)

> 1k(r—k)log(5+1)— 2k(r — k) — rlogz — 3T log(r + 4) + 1.89.

5. We have

Sm(f) =L(m+1)*(log(m +1) — 1) —2(log2 — 1) + 3(m + 1) log(m + 1) + log2 + R

where
|R| < & (log(m + 1) — log 2).
We bound
(r+1)2log(r + 1) — (k +1)%log(k + 1) — (r — k + 1)*log(r — k + 1)
> (r+1)2log(r+1) — (k+1)*log(r + 1) — (r — k + 1)%*log(r + 1)
= (2k(r—k)—1)log(r+1)
and
(r+1)log(r+1)—(k+1)log(k+1)— (r—k+1)log(r —k+1)
> (r+1)log(r+1)—(k+1)log(r+1)—(r—k+1)log(r+1)
= —log(r+1)
to obtain
Ser(f) > (k(r—k)—3)log(r+1) — 1(2k(r —k) — 1) + 2(log2 — 3) — 3 log(r + 1)

—log2 — % (log(r + 1) — log 2)
= k(r—k)log(r+1)— ik(r — k) — 2log(r +1) + 3log2 — 2
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6. We have
Sm(f) = (m+1)(log(m +1) — 1) —2(log2 — 1) + L log(m + 1) + £ log2 + R

where
B < G - w51 < 5
We bound
(r+1)log(r+1)—(k+1)log(k+1)— (r—k+1)log(r —k+1)

< (r+1)log(r+1)—2(5+1)log(5 +1)

< (r+1)log(353)

< (r+1)log2
and

log(r+1) —log(k+1) —log(r —k+1) <0.

We get

Sre(f) < (r+1)log2+3log2—1+ % = (r+1)log2+ 2log2 — .

7. We have

m
- < — =1 1),
S, (f)_/0 T 1 og(m + 1)
and therefore
Sk(f) + Sr—i(f) <log(k+1) +log(r — k+ 1) < 2log(5 + 1).

8. Summing the various contributions, we get

Snk(f)

> k(r—k)log(r+1) — 3k(r — k) — 2log(r +1) + 2log2 — 2 — (r + 1) log 2
—3log2+ £ —k(r — k) — ¢ log(5 + 1)
> k(r—k)log(r +1) — 3k(r — k) — rlog 2 — L log(r + 2) — 0.626.

O

Proposition 5.9. Lett € R>1 and k € Z>1. The measure P, of the set of module lattices that
admit a t-destabilising sublattice of rank k satisfies

(1) (() H;;gcmn“’“ CO)TT= 1Vj>“
k

VN I HT %

.<<T>W) [0 0P 2 0P T sz>” o
k ITj1 Vo, ITj=} Vo

x . 282\ MR
< i (os o2t ()
‘AK‘ r+

28.2 \ k(r—k)\ "2
(o (B2

26

Pr,k,t

IN




Proof. From Lemma 5.6, write

ru+1 1 k(r_k)
G (1) [r w2 (2m)"? o
K( ) L ( 1) ZG11G22

c(r, k) =
(r,k) . Al
where N ‘ N ‘
7 _ T2 Ck (J) Hg;z Ck(J)
[Tj=2 Cx () ’
¢ - W= TG+ DIGATG +1)
=1 (3 +1)
and N
Gy — =1 FG+DILZITG+1)

=l +1)
By Lemma 5.7 we have Z < (2.3)%¢ = (2.3)2"1(2.3)42. By Lemma 5.8, we have
Gy < exp(—3k(r — k) log(5 + 1) + 3k(r — k) + rk’%? + 55 log(r +4) — 1.89)

and
G < exp(—k(r — k) log(r + 1) + 3k(r — k) + rlog2 + L log(r + 2) + 0.626).

Using the trivial bound (,Z) < 2" and putting the terms together gives the result. ]

We now quantify the fact that semistable lattices are balanced. This bound is implicitly present
in the proof of [Gra84, Theorem 5.1].

Lemma 5.10. Let L be a module lattice of rank r and let t > 1.

1. If L does not admit a t-destabilising sublattice of rank 1, then

A (L) >t~ a|Ag| 2a det(L)x.
2. If L does not admit a t-destabilising sublattice of rank n — 1, then

An(L) < ntd|Ag|2a det(L)w.

If L is semistable then A\ (L) > \AK\_ﬁ det(L)% and A, (L) < n\AK|ﬁ det(L)%.
Proof.

1. We prove the contrapositive. Suppose that the bound is not satisfied, and let x € L be such

that ) ) )

|z|| < t7d|Ak| 2d det(L)7.
Then the rank 1 sublattice L' = Oz satisfies
1

det(Ogz) = ||z|||Ax|Y? < t7 det(L)7,

so that L' is t-destabilising.
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2. Assume L does not admit a t-destabilising sublattice of rank n — 1, then LY does not admit
a t-destabilising sublattice of rank 1. By the first part of the lemma, we have

AL(LY) >t~ |Ag| 22 det(L) 7.
Finally, Banaszczyk’s theorem [Ban93, Theorem (2.1)] gives
An(L) < ntd|Ag|2a det(L).
If L is semistable, then both inequalities hold for every ¢ > 1, yielding the result by letting ¢ — 1. [

Piecing together the results above, we prove the main result of this section.

Proof of Theorem /. We will use the notation of Proposition 5.9.
First suppose that r > 225 and take ¢t = 1. Applying Lemma 2.34, we can bound

(k1) 1
Kk(rfk) S k(r—k)—1 S L
|Ag| 2 |Ag|™ 2
We also bound
o282\ Mt
0.8-(r+4)2-23?-<r+2) 2
s 7282\ F
< 0.8-(7”—1—4)2-23?-( +2) since r + 2 > 28.2
r
5. 123.28.2\5%
< Orz2) - (———
- (r2) ( T+ 2 )
5 225.6\ 3
< O .
- (r2) (r+2)
_ 2fﬂ(rlogr)

)

and similarly

28.2 \ k(r—F)
53.(r+2)2.47“-(r+1)
28.2 \r—1
< 53.(r+2)2.4ﬁ(r+1)
4-28.2\7
3 .
< o) ( r+1 )
— 2—Q(r10gr)’
Q(drlogr)

so that in those cases we indeed have P, < 27 .
Now for 4 < r < 224, we apply the Odlyzko—Serre bound [Poi77]:

|Ag| > (A" B?r2)1eM) a5 d — oo,

where A = 4mexp(l + ), B = 4mwexp(y) and v is Euler’s constant. For each such r, each 0 <

k < r and t = 1, we evaluate the explicit formula for the first bound in Proposition 5.9, insert-
k(r—k)—1

ing AT 2 in the r; term and B~*"=%)*1 in the 7y term, and we check that both expressions

are strictly less than 1. This proves that for each such r and k, we have P, 1 = G
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Now assume r = 2. The bound from Proposition 5.9 is

1 (1
Py oL GlD)

1t < 7" (2m) 22
2 |Aglz

Using Lemma 2.34 we bound

elog\AK]>d_1| K’_§<<e d log(5>d1.

Gelar < (G5

We obtain

log 6\~
P < (L+o()F5%) 00,
2

For the stated choice of ¢, this is 274, When § > 845, we have t = 1.
Finally, assume r = 3. The bound from Proposition 5.9 is

U Ge(n) (#*\™ (7\"™
P, <. T ) s
BRE=37 Ak \ 3 18

Using Lemma 2.34 again we bound

e d log6>d_1

GeIaul ™ < (575

‘We obtain

m3elogd -t _3
Py <|(1+ 0(1))? 5 SO(t?).
For the stated choice of ¢, this is 274 When 6 > 57.5, we have ¢t = 1.
We obtain the llast statement by applying Lemma 5.10 and noting that the values of ¢ for r = 2
and r = 3 satisfy ta = O(1). O

6 Cutting cusps: reduction to the flare

The goal of this section is to prove Theorem 5 below, which reduces worst-case SIVP instances to
SIVP in lattices which are (mildly) balanced.

Theorem 5 (Reduction to the flare). Let L be an O -module lattice of rank r, and v > 1. There
is a polynomial time reduction from ~y-(1+¢&)"~*-SIVP in L to y-SIVP in at most r module lattices

3
Lq,...,Ls, where each L; is of rank r and F%Zi(’"d_l)—balanced, and € < W.

We proceed in two steps. In Section 6.1, we prove that if the given lattice L is very imbalanced
(it is in the cusp), then a polynomial time lattice-basis reduction like LLL can detect gaps between
the successive minima, and exploit them to split L into lattices of smaller dimension with smaller
gaps. In order to preserve the dimension, we then show in Section 6.2 that SIVP in these lattices of
smaller dimension reduces to SIVP in lattices of the original dimension, but now with balancedness
guarantees: they are now in the flare.
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6.1 Splitting imbalanced lattices into smaller dimensions

To reduce to (mildly) balanced lattices, we start by showing in Lemma 6.1 that large gaps between
successive minima can be detected in polynomial time. Once we know where such a gap is, we show
in Lemma 6.2 how to find generators of the “denser” sublattice (reaching all first minima up to the
gap). Then, in Lemma 6.3, we show how SIVP in the original lattice reduces to SIVP in this denser
sublattice, and in a lattice of complementary dimension. Essentially, this splits the original lattice
around the gap, resulting in two lattices of smaller dimension and with one fewer (large) gap.

Finally, Lemma 6.5 applies this splitting recursively, resulting in a collection of lattices of smaller
dimension with no remaining (large) gap.

Lemma 6.1. There is a polynomial time algorithm such that the following holds. Let L be an
Ox-module lattice of rank r, with successive K-minima /\{<, e ,)\ff. Given a > 0 and a basis of
L, the algorithm either asserts that )\fil/AiK < ol 2791 for all i, or returns an index k such that
N/ AR > e

Proof. Let (u;)7%; be a family of linearly independent vectors in L with |lus]| = A\; = \;(L). One
can compute in polynomial time an LLL-reduced basis (b;); of L. By [LLL82, Proposition 1.12] for
any 7 we have

Ibs]| < 20=D/2x;.

The algorithm searches for an index j such that [|bjgl|/[|b;]] > T x20?D/2 and if it exists,

returns k = [j/d]. If there is no such j, the algorithm asserts that )\fil/)\f{ < al'g27%1 for all i.
We prove correctness in two parts:

e Assume a valid j is found. We have

A1 > Ajrd 1bj+all ca
A T Ty = 20020 ge|by| —

as expected.
e Assume there exists an index k such that )\kKH/)\kK > 200d=1)/2 Tet j be the largest index
reaching \; = A (in particular, [j/d] = k). Applying Lemma 2.13, we obtain

HijrdH /\j+d )‘ﬁ(ﬂ > 8
Hbj|| = 2(rd71)/2)\j = 2(rd—1)/2)\kK :

The contraposition, with 3 = al'g2("4~1/2 states that if the algorithm finds no valid index
4, then A /XK < al' 2701 for all i.

This proves that the algorithm has the claimed property. ]

Lemma 6.2. There is a polynomial time algorithm such that the following holds. Let L be an Ok -
module lattice of rank r, with successive K-minima )\{(, ... ,)\7{(. Given a basis of L and an index k
such that )‘£{+1/>‘§ > T20d=1/2 the algorithm returns a basis of the unique primitive sub-module
L' C L of rank k with XlX(L') = XK for all i < k.

Proof. One can compute in polynomial time an LLL-reduced basis (b;); of L. Let j be the smallest
index such that spang (b1,...,b;) has K-rank k (in particular, j < (kK —1)d+1). For any i < j, we
have

||sz < 2(Td_1)/2>\i < 2(Td—1)/2>\j < FKQ(rd—l)/2)\f§/d] < FK2(rd—1)/2)\kK < )\i{-}—l'
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Let V = spang (z € L | ||z|| < AL,,). The vectors (b1, ..., b;) are all in V. Therefore, spang (b1, . . ., b;)
is a K-subspace of V' of K-rank k. By definition of )\ff_ﬂ, the space V has K-rank at most k, and we
deduce that (b1, ...,b;) generates V. From this generating set of V' and the provided basis of L, we
can deduce a basis of the sub-module L' = LNV in polynomial time, which proves the lemma. [J

Lemma 6.3. Suppose L is an O -module lattice of rank r, with successive K -minima M, ... \E.

Let k be an index such that 8 = /\kH/)\kK > D 20d=1/2 Thep, given k, there is a polynomial time

reduction from v - (1 4 €)-SIVP in L to v-SIVP in two module lattices of rank k and r — k, with
d

_ dl'g
€= "93 < SGarn/z-

Proof. From Lemma 6.2, one can compute in polynomial time a basis of the unique sub-module
L' C L of rank k with MX(L') = \K for all i < k.

Let (u;)7%, be a family of linearly independent vectors in L with [lu;]| = A;. Let us start with
finding a good basis of L’. Applying the 7-SIVP oracle to L' we can find w; € L' such that
|lwill < y¥Aka(L’). By Lemma 2.13, we have

Med(L') STRAS(L) <TpAE < (Dre /BN < (Tie/B)Ava

We deduce ||w;|| < v(Tx/B)Arq- In particular, ||w;|| < yArq-

Let us now complete (w;)¥d; to a good basis of L. Let V = spany (L) and W = spany(L'),
and consider the orthogonal projection 7 : V — W=, Then, L, = n(L) is a module lattice of rank
r — k. We have ||m(u;)|| < [Jus|| = Ai. Applying the «-SIVP oracle to L, we can find z; € L such
that 0 < [[7(2)|| < YA—r)a(Lx) < yArg- We can assume each z; to be reduced with respect to the
basis (w;); of W, so z; = m(z;) + >, piw; with |u;| < 1/2. Recall that [|w;|| < v(Tx/B)Ara, SO

zill < [lm(20)ll + Z il llwill < AAra + (d/2)7(Tkc /B)Ara

’y(l—l—dgﬂ))\

Therefore, (w1, ..., Wkd, 21, - -, Z(r—k)a) is a solution of v - (1 + ¢)-SIVP for L. O

Lemma 6.4. Suppose L is an (’)K module lattice of rank r. There is a polynomial time algorithm
which either asserts that L is T'3- 93 (rd=1)_ balanced, or reduces v-(1+¢)-SIVP in L to v-SIVP m two
module lattices L1 and Lo with rankK(Ll) +rankg (Lg) = r and rankg (L;) < r, with € < W

Proof. This is a combination of Lemma 6.1 (detecting gaps) and Lemma 6.3 (exploiting gaps). [

Lemma 6.5 (Reduction to balanced lattices of smaller dimension). Let L be an Ok -module lattice
of rank r, and v > 1. There is a polynomial time reduction from ~v-(1+¢)"~1-SIVP in L to -SIVP
in at most r module lattices L1, ..., Ls, with

* e< W;
o Yt rankg (L) =,
e each L; is F%ﬂ%(rankK(Li)d_l)—balanced.

Proof. This follows from a recursive apphcatlon of Lemma 6.4, and the fact that a rank-1 lattice is
necessarily I'g-balanced (hence I‘%(22( . balanced). The recursion has depth at most r — 1 since
the quantity >!_; rank (L;) = r is constant and ¢ can only increase. O
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6.2 Back to the original dimension

The previous section shows how to reduce SIVP in an imbalanced lattice into SIVP instances
in balanced lattices, but these lattices have smaller dimension. We would like the computational
reduction to preserve the dimension. Reducing the dimension sounds good in practice, but a priori,
there could exist 7 such that the average case in dimension r — 1 is harder than the average case
in dimension 7. To resolve this concern, in this section, we prove that SIVP is lattices of smaller
dimension reduces to SIVP in lattices of the original dimension r.

Lemma 6.6 (Increasing the dimension). Suppose L is an a-balanced O -module lattice of rank
k < r. There is a polynomial time reduction from v-SIVP in L to v-SIVP in a max(a, VEk, \/ZZTK)-
balanced O -module lattice of rank r.

Proof. Let O = O;(_k be the orthogonal Og-lattice of rank r—k. Let x > 0 and M = L& zO. Let us
prove that with x = det(L)lei, we have that M is max(a, vV'kd, I'i)-balanced, and Aq(M) < Apg(L).
We have

AK(L) = \(L) < VEddet(L)ra = Vkd - x,

and )

o = det(L)™ < (ﬁd ML)) T e Mea(L) < TAE(L).
i=1

Since A1 (zOk) = xVd, we deduce that \<(L)/VEk < M (20k) < Vd-TAE(L). Since M is an
orthogonal sum of L and copies of 2Ok, we deduce that M is max(c, VEk,Vd-T K )-balanced. From
x < Apa(L), we deduce that A\.q(M) < Apg(L). Therefore, a solution of v-SIVP for M, projected
orthogonally down to L, is a solution of v-SIVP for L. O

We now have all the ingredients to prove the main result of this section.

Proof of Theorem 5. This is the composition of Lemma 6.5 and Lemma 6.6, and the fact that

max (F%Qg(rankK(Li)d‘l), Jrank (L), Vd - rK> < T2.23(rd-),

7 Reduction from the flare to the bulk

We will use Section 4 and Section 5 to show that we have an algorithm, based on Hecke equidis-
tribution, that can handle a-balanced module lattices L with log o < logd. Section 6 shows that
we can reduce to module lattices that are a-balanced with a < I'% - 294, There remains a gap
between these two regimes. Thus, we are left with further reducing from lattices not too high in the
cusp, with a exponential in d, to those in the bulk, where « is only polynomial in d. We informally
call this “intermediate” part of the space of module lattices the flare, see Figure 1.

The strategy is the following. Take an a-balanced lattice L with a at most 2¢, for simplicity.
Thus, the range where the gaps A5 (L)/AX (L) could lie is [1,2%). We split this range into dyadic
intervals, of which there are only d many, and guess in which of these the first gap A (L)/A(L)
lies. Assuming the correct guess, we apply a Hecke operator, that is, we randomly consider a certain
type of sublattice of index p, where p lies in the respective dyadic interval. With high probability,
because p < M (L)/MS(L), taking such a sublattice only increases the length of the shortest vector
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and the result has a first gap A (L)/A(L) of size < 1. Morally, the other successive minima, are
not impacted, but in practice we prove that they are only potentially multiplied by a polynomial
in d.

Having reduced the first gap, we continue with the second, and so forth. However, one must use
different Hecke operators for this. For instance, if )\f( = /\5( = p‘l)\é( , then we wish to increase the
volume of a rank 2 dense sublattice, taking care not to reopen the first gap. This can be achieved
by considering another family of sublattices as above, with a different structure inside L. Following
all steps up to the last gap, with high probability, we can obtain a sublattice with gaps bounded
by a polynomial in d, depending on r.

At the level of Hecke operators, closing all gaps conceptually uses an entire set of generators
for the local Hecke algebra. We also note that this procedure is expensive in terms of the rank r,
but provides a good algorithm in terms of d.

7.1 Closing one gap

The following implements the idea that, given a gap in the successive minima, carefully choosing
a sublattice in terms of the size of that gap can effectively close or shrink it. It is the main tool of
this section.

Lemma 7.1. Let L be a module lattice of rank v with XS, ..., \X its K-minima. Assume that there
exists m € Z, n > 2, such that )\,ﬁl > n)\kK for some k < r. Let M be the primitive sub-module of
rank k containing the vectors of length at most )\kK. Assume that L, C L is a sub-module of rank r
such that L/L,, is isomorphic to (O /nOx)¥ and nM is primitive in L,. Then

ME(L) =nAE, i=1,...k,

and

2K

7 )

i=k+1,...,7

7 —

ME <KL, < (1 - FK;/M>
Proof. We start by noting that M is well-defined. Indeed, since )\kKH > )\f , the vectors of length
up to )\kK have a K-span of dimension k. We can now define M to be the maximal sub-module of
rank k containing these vectors and we recall Definition 2.4.

Since nM is primitive in L,,, we can find a sub-module M’ C L, such that L, = nM & M’'. We
have L, C M & M’ C L and, computing indices, we find that L = M @& M’.

For any i € {1,...k}, we clearly have the inequality A\X(L,,) < nAX(L). To prove the inverse

inequality, assume that there exist K-independent vectors wi,...,w; € L, with lengths strictly
smaller than nAX (L). The lengths of wy, ..., w; are also strictly smaller than A, (L), by assump-

tion. Therefore, by definition of the successive minima, the K-span of these vectors is included in
the K-span of M. We can therefore deduce that

spang (wi, ... w;) C K- M =K -nM.
Next, because nM is primitive in L,,, we have
K -nMNL, =nM.

It follows that the vectors wy,...,w; lie in nM. Dividing by n, we obtain ¢ K-linearly indepen-
dent vectors wi/n,...,w;/n in M C L. Since n is a rational number, their lengths are simply
|wi]| /n, ..., ||lw; /n. These are strictly smaller than A\ (L) by assumption, so we reach a contra-
diction.
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We now consider the other successive minima. Let (u;)i<, be a K-linearly independent family
of vectors in L with w; = v; + w;, where v; € M, w; € M', and ||u;|| = )\Z-K for each i € {1,...,7r}.
In particular, u; € M if i < k.

For each i > k, let v} € nM be the closest vector to v;, so that

Vkd Vkd Vkd

o} = vill < covnM) <
where M is the covering radius of a lattice M and we use the inequality given in [MG02, Thm. 7.9].
Let uj = v; + w; € Ly. By construction, (u1,...,ux, uj,...,u,) are K-linearly independent.
Furthermore,
Vkd
2
which proves the result. ]

gl = i+ will < lloi = will + llos + will < Tre=——=A* + A%,

In the previous lemma, we consider specific sublattices L,, of L, formed by scaling a fixed sub-
module M, containing short vectors, by n. Conversely, we now consider how many sublattices with
the same structure can be formed this way. We first start with n replaced by a prime ideal.

Lemma 7.2. The number of sublattices L' C L such that L/L' = (O /pOx)¥ is given by
(1—g")-(1—g ")
(1-gq) - (1=g")

where ¢ = |F| = N(p). Out of these, given a fized primitive sub-module M C L of rank k, the
number of sublattices L' such that pM is primitive in L' is

qk(rfk)'
Proof. Any sublattice L' as in the statement satisfies pL. C L' C L. As such, they correspond
bijectively to subspaces of dimension r — k of the vector space L/pL = F" over the field F' :=
Ok /pOk. It is well-known that the number of such subspaces is given by the Gaussian binomial
coefficient, by definition given by the formula in the first part of the lemma.
For the second part of the lemma, recall that pM is primitive in L if and only if L'Nspan(pM) =
pM, as in Definition 2.4. Since M is also primitive in L, we have

L'Nspan(pM) = L' N L Nspan(M) = L' N M.

Thus, we are counting L’ as above such that L' " M = pM.

If 'NM = pM, then L' (M +pL) = (L'NM)+pL (since pL C L'), so L'N(M +pL) =pL.In
other words, the images of L' and M inside the vector space L/pL should have trivial intersection.

Conversely, if L'N(M+pL) = pL, then L'NM C pL. Since pL = pM +pM’ for some sub-module
M’ by primitivity, we can also deduce that pL N M = pM, since pM is primitive in L. Therefore,
L'NM cpLnNM C pM and the reverse inclusion is obvious.

Let V.= L/pL and U be the image of M inside V', a subspace of dimension k = rank M. The
previous paragraphs show that the sublattices L as in the statement are in bijection with (r — k)-
dimensional subspaces W C V that intersect trivially with U. We can study these using the action
of GL,(F') on (r — k)-dimensional subspaces (the Grassmannian). Indeed, we can choose a basis
€l,...,€r, such that (e,_g41,...,€,) forms a basis for U. Then any (r — k)-dimensional subspace
of V' can be given as span(gey, ..., ge,_x) for some g € GL,.(F).
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The stabilizer of Wy := span(ey, ..., e,_k) under this action is given by the subgroup

"= {g _ (61 g) | A€ GL,_1(F),D € GLy(F), B e M,nk,k(F)} .

Let now W = g - Wy be some (r — k)-dimensional subspace. Write

(1)

as a block matrix, analogously to the description of H, and suppose we multiply ¢g from the right

by an element
A 0
(0 id) < H.

This would replace S by S - A and we can therefore assume that S is in column echelon form (by
Gauss elimination), that is, in lower triangular shape.

Assume now that W NU = 0. This implies that, if S = (si;)i1<ij<r—k, then s,_p,_p # 0.
Otherwise, since S is lower triangular, we would have the vector g - e,_j in the intersection W NU.
Multiplying by another matrix in H, we can assume that s,_j,_, = 1 (we are working over a field)
and that the rest of the last row of S is zero. The same argument now reiterates to show that
Sp—k—1,—k—1 # 0, and so on, allowing us to assume that S = id,_.

In this form, we can multiply g from the right by

id —T
(0 id)eH

and reduce to T' = 0. This now implies that V' must be invertible and another multiplication by an
element of H allows us to assume that V = id,.
We have thus found representatives
_[id ©
9=\v 1

for all (r — k)-dimensional subspaces W such that W NU = 0. It is easy to see that these form a

system of representatives (one for each coset of H). Since U € My, ,_(F) is free, we have ¢*("—*)
such representatives. ]
Lemma 7.3. Let p € Z be a prime and suppose we have the decomposition pOx = [[9_, p; (where

we allow ramification). Let L be a module lattice of rank r over K with a given primitive sub-module
M of rank k. For every i € {0,...,g}, compute L; inductively and probabilistically as follows:

e define Lo =L;
o given L;, define Liy1 as a random sub-module of L; such that L;/Liy1 = (O /p:Ox)".
The lattice Ly contains pM as a primitive sub-module with probability at least 1 —d/(p — 1).

Proof. We use Lemma 7.2 at each stage, with M equal to M, p1 M, p1poM, ..., pM, successively.
Let g; = N(p;). At step 4, the probability of the required outcome is

@ g — 1) (g - 1)
(¢F — 1) (g * 1)

(@ —1)-- (g = 1)
¢ qf

>
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where we estimated qg -1< qg in the denominator. It is now easy to see (e.g. inductively) that

<qz~—1>-~<qf—1>:ﬁ(1_$>21_i¥>1_1,

i qF Faler q' g T g-1

Writing ¢; = p®¢, multiplying these bounds together and applying the same reasoning as above, we

obtain the bound ’
1 1 d
H<1— . >21—§j — >1-—
e pri—1 —pri—1 p—1

using that a; > 1 and that g < d. O

Putting everything together, we obtain the gap-decreasing algorithm.

Proposition 7.4. Let L be a rank r module lattice over a degree d number field K, with K-minima
M NEL Suppose that A,{;_l > p)\kK for some prime p and k < r. The algorithm described in
Lemma 7.3 then produces, with probability at least 1 — d/(p — 1), a full-rank sub-module L' C L of
covolume p?, such that, if p are its K-minima, then

/J/’L[(:pA’LI(7 1::17""]{;7

and

i=k+1,...,r

A<l < (1 + FKQV kd) A

7.2 Reduction to balanced lattices

We now describe and analyze an algorithm for closing all gaps of a lattice. It is adequate for reducing
SIVP for lattices with gaps of size 2¢ to SIVP for lattices with gaps of polynomial size in d.

Algorithm 3 Finding a balanced sublattice

Require: A module lattice M of rank r, and a parameter ¢t € Ny 1.
Ensure: A sub-module N C M.

1: Put No = M.

2: fori=1tor—1do

3. Pick g; € {21,22,23,..., 2!} uniformly random. ‘Guess the gap’
4: if g; < 4d then

5: Putp, =1 and N; = N;_1.

6: else

T: Pick a prime p; satisfying ¢;/2 < p; < g;.

8: Decompose p; = H?Zl p; over K (with possible ramification).
9: Put P, :=N; 4.

10: for j=1togdo

11: Take a random sub-module P; C P;_; satisfying Pj_1/P; ~ (Zx /p;)".
12: end for

13: Put N; = P,.

14:  end if

15: end for

16: return N := N,_;.
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Theorem 6. Let M be a Zi-module of rank r > 1; and let t € Nso be a parameter that satisfies
1
2t > (1 + FKTM)T -max; )\]}1( ) Then, with probability at least (2t)~—Y | Algorithm 3 outputs

(M) -
a sub-module N C M such that for some primes p1,...,pr—1 at most 2¢,
e det(N) = det(M) - [T;=) pf".
AL (V)

() <4d- (1 FKF) foralll<i<r—1.

Jj=1

o AN <TI0 (HFK}/ﬁ)( Z;ilps)-)\iK(M).foralllgigr.

Moreover, this algorithm runs in polynomial time in the size of its input.

Proof. In this section, we use the notation

K
(2
A (L)
for a module lattice L and ¢ = 1,...,r—1. These signify the gaps between the K-successive minima.
For the ﬁrst item, note that in the i-th step of the algorithm, |Pj_1/Pj| = N(p;)’. Hence,
IN;—1/N;| = N(p;) = p% (with d = [K : Q]). Therefore, taking the product over i yields

|IN/M| = |N, /Noy =1 pgh, which gives the claim.

For the second item, recall the notation vX(N’) = AE,(N')/AK(N') for any module N’. We
follow the algorithm through steps i = 1 to r — 1. We say that the ‘gap guessing’ in step 3 (of the
i-th loop) is successful whenever either g;/2 < v/ (NN;_1) < 2 g;. This happens with probability at
least 1/t. After choosing a prime p;, as in step 5 and step 7, note that 1 < 4 (N;_1)/p; < 4d in
this successful case.

Assume now that we are in the non-trivial case of g; > 4d and, thus, p; > g¢;/2. According to
Corollary 7.4, with probability at least 1 — d/(p; — 1) > 1/2, the module N; satisfies \[(N;) =

PdMS(N;_1) for t < i and AE(N;) < mAK(N;_1) for t > i, where we write x; = 1 + FKé/m for
brevity. This is also true in the trivial case of ¢g; < 4d, where p; = 1, with probability 1.

We assume for the rest of the proof that we are indeed in such a successful ‘gap guessing’ case,
for all ¢. The probability computation follows at the end of this proof.

For all / < ¢, we have

)‘£+1(N) o /\ﬁl(Ni—l) K

3 AN AK(Nia) =% (Ni-1)

Yo (N:) =

whereas for £ = i, we have

ML) ki AE L (Nis1) kg
K 141 1 \LVe— 7 K
i (V) = < = — 4 (Ni1).
v ( ) )\ZK‘( z) pz)\K( i 1) Di Y ( 1)
By induction, one can then conclude that
i T - d
%’K(N):’Yf(Nz'—l) % Y; (N )§4d-mi:4d.<1+f<\2/f>

since we assumed that fyiK(Ni,l)/pi < 4d.
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For the bound on Af(N), we use Corollary 7.4 again: )\f(Ni) = pi)\jK(Ni_l) for 7 < i and
)\]K(Ni) < mi)\f(Ni_l) for j > 1. Therefore,

r—1 r—1 1—1
AK(N) = XK (Ny_y) — (Hps) AE (Vi) < (nps) - (H ) AK (No).
s=1 s5=1 j:l

which proves the third item.

As promised, we finish with the probability claim. For the entire algorithm to be successful, both
the ‘gap guessing’ and the ‘gap closing’ should be successful in each of the i-steps. These success
probabilities are 1/t and at least 1/2, respectively. Since these are independent events, taking the

product takes the overall success probability, yielding (2¢)~("—1). O

Corollary 7.5. Let M be an O -module lattice of rankr > 1, and v > 1. Suppose M is a-balanced.

Let cx = l—i—FKTm. There is a polynomial time reduction which, given M and o, reduces (c}{l )~
SIVP in M to v-SIVP in a rank-r module lattice N, where N is (4d - cx)-balanced with probability

p = (2(r — 1) logy(ex) +2logy(a) "V,

Proof. Let t = (r — 1)logy(ck) + logy(ar). Algorithm 3 finds a sub-module N C M satisfying the
properties of Theorem 6 with probability

p=(2t)"0" = (2(r — 1) logy(cx) + 21ogy(a)) =Y.

In that event, the module N is (4d - ¢k )-balanced. Furthermore, we have

r—1 -

T .

W) <] (1 I ;d) (M) < A (M),
=1

so a solution of 4-SIVP for N provides a solution of (' -~)-SIVP for M. O

Theorem 7 (Reduction to the bulk). Let cx =1+ FKTM, and € = Wil)/Q. Let O be an oracle
which solves v-SIVP for (4d-ck)-balanced rank-r module lattices. There is a randomized polynomial
time algorithm which given access to O, solves (c;(_1 (14 &)™ . 4)-SIVP with probability at least
1/2. The expected number of oracle calls is poly, (log|Ax|).

Proof. Consider a rank-r module lattices or which we wish to solve (cj ' - (14 &)"~! - ~)-SIVP.
By Theorem 5, the problem reduces to ¢t < r instances of (6?1 - )-SIVP in a-balanced module
lattices, with a = F%(Q%(Td_l). Let k € Z~¢ be a parameter to be tuned later. To each of these ¢
instances, apply the reduction of Corollary 7.5 independently k times (and solve them using the
oracle O), and keep the smallest response. For each of the ¢ instances, the probability that the
best-of-k solutions is small enough is 1 — (1 — po)* with

po = (2(r — 1)logy(cx) + 2logy(a)) 1)

is the success probability from Corollary 7.5. The probability that all ¢ instances are solved suc-

cessfully is (1 — (1 — pg)*)t. We have (1 — (1 — pg)¥)* > 1/2 if and only if k& > %. For
0 <z <1, wehave 0 < /2 < —log(1 —z), and for any t > 1, we have —log(1—2"%) < 1+log(t),
0

logy(1 — 271/t log(l —271%)  —2log(l —271/%) _ 2+ 2log(t)

logy(1—po)  log(1—po) Po B Po
In particular, choosing k > %ﬁg(t) = poly, (log(T'x), d) = poly, (log |Ak|), we obtain a probability
of success of at least 1/2. O

68



8 Sampling

8.1 Road map

In the following two sections we tackle two challenges. The first one regards how to sample an
element in GL,(KR) with respect to the distribution f, as in Section 4.1, assuming real arithmetic
and uniform samples from [0, 1]. In other words, how can the distribution f, be “built” from known
distributions. This is the subject of section Section 8.

On actual computers (or Turing machines), though, no real arithmetic and uniform samples
are possible, so the natural second challenge then consists of showing that discretization does not
impact much the final distribution of this paper’s algorithm. This is the subject of Section 9. We
now elaborate more on the first of these two challenges.

We note that Section 8 is more of an expository section, making clear the building blocks of the
initial distribution f,, whereas Section 9 contains the precise procedure of sampling from a finite
discretized version D, of f,; and the proof that these two are close in some precise sense. In both
Section 8 and Section 9 we use column notation for matrices and vectors.

Sampling in GL,(Kg) according to f,.

We will crucially rely on the fact that we can decompose
SL,(Kgr) = SU,(Kg) - diag’(Kg) - SU(KR)

where diag?(KR) are the determinant 1 diagonal matrices with coefficients in Kp, and that the
Haar-measure of a function g on SL,(Kg) is dictated by the restriction of g on the completions K,
in Kg =[], K, ; which is given by the rule [MP21, Proposition 10]

/ H sinh(a; — a;) 5 Rlg(ky exp(a)ke)dk;dadky

ACA* 1 ili<y

‘.
(k1,k2)€SUr(Kl,)2

where we mean with exp(a) the rxr diagonal matrix diag(e®!, ..., e% ) and where A* = {(ay,...,a,-1) €
Rt ay >...>a_.1>— Z:;ll a;} and a, = — ::_11 a;; and where ¢ € Ry is a normalization

constant only depending on r and [K), : R].

By Equations (19) and (21) and Definition 2.29, the matrix norm part (p) and the determinant
part (7) are independent; and both p and 7 are invariant under SU,(KR). Hence, we proceed as in
Algorithm 4.

Remark 8.1. As explained in Section 4.1, the initial distribution will be defined as a push-forward
of a distribution on Y, (see Equation (4) and Equation (18)) under the projection m,. The choice of
the left quotient GL, (O, a) = Aut(O% ' @ a) in the definition of X, 4 in Equation (3) is arbitrary
and done there for conciseness.

In the present section we let this quotient instead depend on the pseudo-basis (B, I) of the input
module lattice M, where I = (ay,...,a,) and B € GL,(KR). In other words, we rather define

an = Aut(a1 D...D Clr)\ GLT<KR)/(UT(KR) . R>0),

and send (the coset of) z := B €Y, to (the coset of) z = B in X, 1, which then corresponds to the
module lattice M.

Note that the other class group components of X, (K) as in Equation (2) may be chosen arbi-
trarily as long as the full class group is covered.
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In the present section, we will also see the distribution f, on Y, (see Equation (4)) as a distri-
bution on GL,(Kg) and vice versa. This will not lead to confusion, since the support of f, consists
of modules that all have the same absolute determinant, and since for any m in the support of f,,
the entirety of m - U,(Kg) has equal density.

Algorithm 4 Computing a sample from f, in GL,(Kg)

Require:
o A pseudo-basis (B, I) of a rank r module lattice M,
e 0 > 0, a Gaussian parameter,

e t € Ry a width parameter for the diagonal.

Ensure: A pseudo-basis of a module lattice R of rank r.

1: Sample h € H~{h' € [[,R| >,[K, : R] - hl, = 0} according to a Gaussian distribution with
parameter o (as in Equation (19)), where H is the hyper plane where the logarithmic units live
in.

2: Put M, = diag(e"",...,e"") € GL,(Kg). Note that log|det(Mj,)| = h and thus 7(Mj,) =
|h||?>. We denote M}(LV) for the v-th component of M} in the decomposition GL,(Kgr) =
[T, GL,(K),).

3: For each place v separately, sample ) = (ay,...,a,_1,a,) with (ay,...,a,_1) € A* from the
distribution

c’/ H sinh(a; — aj)[K“:R]l[o,t] (p(exp(a))da. (30)
aCA* Jili<y

Also sample k%y), kg'/) € SU,(K,) uniformly (which is possible because it is a compact group)

and put (for each v separately) g*) := k§”) exp(a™)M }(Ll’) k‘gy), where exp(a) is the r x r diagonal
matrix diag(e®,...,e").

4: Assemble the g := (¢)), € [, GL.(K,) component-wise.

5 return (g-B,I);

That Algorithm 4 indeed yields the desired distribution f, for z := B, is the object of Lemma 8.2.
Note that, computationally, there are three distributions for which a sampling procedure is required.
One, the Gaussian distribution on h € H, which is already treated in an earlier work [BDP+20)]
and will therefore only come up in this work in the section about discretization (Section 9.5). Two,
the uniform distribution on SU, (K, ), which can be computed by assembling uniform distributions
on spheres in the shape of Householder transformations. This is treated in Section 8.3. Three, the
distribution on A* as in Equation (30), which can be seen as a distribution on a polytope Ay. We
will sample from this distribution by a rejection sampling procedure where the proposal distribution
is the uniform distribution on some polytope Aj. This is treated in Section 8.4.

8.2 Sampling according to the density f, in SL,(KR)

Lemma 8.2. For any input pseudo-basis (B, 1), the pseudo-algorithm described in Algorithm /
indeed samples g < GL,(KR) according to the distribution f, as in Section 4.1, with z = B.

Proof. By the definition of f, in Equation (21)~, it enough to show that g € GL,(KR) as in line 4
of Algorithm 4 is distributed with density I;l f. The definition of f Equation (19) reads

F() = Lo g(pla)) exp(— 57 (x)),
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where p and 7 are defined in Definition 2.29. By the very definition of f, the determinant-part
and the SL,-part are independent (due to the product in the density function) and can hence be
sampled independently.

We focus for now on sampling the SL,-part, i.e., elements g € SL,(Kg) for which det(g) =1 €
Kpg (i.e. 1 at each local component). We decompose g = (g,), via the isomorphism SL,(Kgr) ~
1, SL, (K, ) from which we can directly see that deg(g,) =1 € K, for all v. Hence, for g € SL,(Kg),

fl9) =1 (lgvllop < t and ||g, *flop <t for all )

For each g, we have a unique decomposition g, = u,d,v, with u,,v, € SU,(K,) and d, € D,(R)
of ordered diagonal matrices (i.e., diag(di,...,d,) with d; > ... > d,) of determinant 1.
The Haar measure of a function h on SL,(K,) is given by [MP21, Proposition 10]

¢ / / [T sinh(a; — a)) B h(ky exp(a)ks) dki da dk
(k1,k2)eSUR(K )2 Ja

€A™ 1<ici<r
for some constant ¢; here exp(a) is the r-dimensional diagonal matrix diag(e®) with a, = — f—
Substituting f for h, using that p(g,) = p(uydyv,) = p(d,) and hence f (k1 exp(a)ks) = 1jg (max;_; |ail),
we can deduce the following.
Sampling, for all v, kl(,l), k:,(,2) € SU,(K,) independently and uniformly, and sampling a, € A} :=
{a, eR™™ | t>a1>...>a,_1 > a, > —t} with a, = — ’;11 a; according to the distribution
¢ ][ sinh(a;— a;) v Rlg
1<i<j<r

yields a g, = kM exp(al,)k,(,Q) € SL,(K,) such that the combination g = (g,), (via SL,(Kgr) ~
[1, SL,(K,)) is (Haar) distributed according to f given a unit determinant. Here, ¢ is defined such
that ¢/ faeA: [Ti<icj<sinh(a; — a; )57 Rldq integrates to 1.

By sampling h <— H according to a Gaussian G, p, defining

M, = diag(e"/",...,e"") € GL,(Kg)

and denoting M,(LV) for the v-th component of M}, in the decomposition GL,(Kr) = ], GL,(K,),
subsequently putting g, := k:g) exp(ay, )M éy)kl(?) and combining g = (t,), € GL,(Kr) we see that
g is distributed according to f (with varying determinant). O

Lemma 8.3. Let t,0 > 0 be parameters of Algorithm 4, and let e1 € (0,1) an error parameter. Let
(B,I) be a pseudo-basis of an a-balanced module lattice M. Then, with probability at least 1 — €1,

the output (g - B,T) of Algorithm j is (227 V2d108(2d/=1) . o) _balanced.

Proof. We have that g is of the shape g = k1 - § - M}y, - ko with k1, ks € SU,.(Kg) and M}, and ¢
diagonal matrices (over K) as in Algorithm 4. Hence, by replacing (B, I) by (k; 'B,I) (which does
not change the balancedness of B, as ko is unitary), we may assume ko is the identity. With the
same argument, as we only consider the balancedness properties of (g - B, I), which are the same
as those of (k‘fl -g-B,I), we may assume k; is the identity as well.

Let now write t = § - Mj,. Our aim is to relate the successive minima of M and of tM. We can
deduce, by taking {my,...,m;} the first j successive minima of M, that

A (EM) < max ([t | < [[tl] - [[my | < [1£] - A (1),
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In a similar fashion, by taking {tm],... ,tm;} the first j successive minima of tM, with m} € M,
K - - —1\K
Aj (M) < max [t~ | < [[¢7 ] < ([t < [t A (£M).

Hence, for all j,

L1yl AR (M)
117 < Sean <M
)
and so % K K
AR (tM t| NS (M At (M

AFEM) [t IIAT (M) AR (M)

In other words, if M is a-balanced, tM must be (cd(t) - )-balanced, where cd(t) = ||¢|||[t~!]| is the
conditioning number of ¢.

Since t = d - M}, we can use the exact same computations as in the proof of Proposition 9.1,
except for the fact that h, in the specific continuous distribution of line 1 of Algorithm 4, is

bounded by o - \/2dlog(2d/e1) with probability e for any e; € (0,1), by Lemma A.8. Therefore,
cd(t) = cd(8)-cd(My) < e*t.e27V/2d108(2d/21) "except with probability e;. This finishes the proof. [

8.3 Uniform sampling over SU,(KR)

In the following lemma, we explain how we can sample uniformly in SU, (Kg) if we are allowed to
use samples from U([0, 1]), the uniform distribution over [0, 1].

We do this by first decomposing SU, (Kgr) = ], SU, (K, ) where K, is the completion of K at the
place v, i.e., K, = R if v is real and C otherwise. Hence sampling a uniformly distributed element
from SU,(KR) reduces to sampling uniformly distributed elements from SU,(C) and SU,(R). As
uniformly sampling in these two special orthogonal groups can be tackled similarly, we focus on the
R-variant: SU,(R).

For sampling in SU,(R), we note that (roughly speaking, via fibrations) SU,(R) >~ [];_, SI—1(R),
where S"! is the unit sphere in R”. Indeed, by applying a linear transformation 7 that sends the
first column (an element of S"~1(R)) of a U € SU,.(R) to the unit vector e;, we immediately deduce
that the bottom-right block of TU lies in SU,_1(R). The decomposition of SU,.(R) then follows by
induction. So, we can conclude that uniform sampling in SU,(R) reduces to uniform samples in
spheres.

To uniformly sample in S”(R), we apply inverse transform sampling by writing the coordinates
of S"(R) in angular coordinates (61, ...,0,). By an adequate sampling of these (61, ...,60,) one then
obtains a uniform distribution on S"(R).

Lemma 8.4. Let r > 1. Then there is a procedure that allows to compute a uniform sample in
S™(R) given r uniform samples (u1,...,u,) from U([0,1]).

Proof. We start by defining a map, which described the sphere in spherical coordinates [Blu60],
[0,27] x [0, 7]~ = S"(R), (61,...,0,) — z:= f(b1,...,0)

by the rule

zj = f;(0) = (H sin(@)) cos(f;-1)
k=
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where we put 0y := 0. We seek a distribution D on [0,27] x [0, 7]"~! such that f(6) is uniformly
distributed on S™(R) for § < D. We put

a1 T I=10)  if i > 1
pi() = 4 vE 1y O i
(0) = .

= if j=1

And define the distribution p(0) := []j_; p;(;). This is indeed a distribution, since by the reduction
formulae for definite integrals over powers of sines, we have’, for j > 1,

2(j—2)!1

/07r sin~1(0)dh = { G

(J

—v if j is even
g:‘ﬂ' if j is odd

By the fact that T'(k + 1/2) = (zk ! f and I'(k) = (k — 1)!, we see that,

+

L3 _

5 (312_(,1)_”1\)/,% = (2’?;)”2‘)/,? = (gj__lg;'”‘/; for j = 2k is even
i k—1)12k—1 k 1 i—1)N . .
I'(3) 5/5(253)” = (2(,3 3)2”)f (j(zQ)l!!)\/; for j = 2k — 1 is odd.

Hence, indeed, p;(0) is a distribution, and so is p(6).

Under the function f : [0,27] x [0,7]"~2 this distribution changes into a distribution 7 over
ST(R). Our aim is to prove that this latter distribution 7 is uniform.

For A C S"(R), we have, by the substitution formula for integrals and the inverse function
theorem,

oef 1(A) a D a

hence 7(a) = p(f~(a))|D(f)(f~1(a))|~! is the density function on a € S™(R). It is a fact [Blu60,
p. 66] that the Jacobian of the spherical coordinates defined by f is equal to

0) := H sinj_l(ﬁj),
j=1

and hence, for all a € S™(R ), we have p(f~'(a)) = ¢|D(f)(f~'(a))| for some constant ¢ € Ry.
This means that 7(a) = p(f~1(a))|D(f)(f~(a))|~! is constant, and hence is equal to the uniform
distribution.

One now obtains a uniform sample a € S"(R) by the following procedure:

1. Sample (uq,...,u,) € [0,1]" uniformly.
2. Compute Fj(z) = [ p;(0)df either symbolically or numerically.

3. Compute 0; = F ]71(uj) for all j. Note that, by the inverse transform sampling principle, 6;
is now distributed with density function p;.

4. Compute z := f(0,...,60,) € S"(R).

"Here, !! denotes the double factorial, which equals n!! := HJLZ{)QJ (n — 29).
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5. Then x € S"(R) is uniformly distributed.

O

Lemma 8.5 (Uniform sampling in SU,.). There is a procedure that transforms the (r — 1)-tuple of
uniform samples (u, ..., ur) € [[;_o SI=1(R) into a uniform sample from SU,(R).

Likewise, there is a procedure that transforms that r-tuple of uniform samples (uy,...,u,) €

i1 SZ=L(R) into a uniform sample from SU,.(C)

Proof. We start with the proof of the first statement, which we prove by induction (where we use
SU;(R) = {1}). So, we assume we have a sample of SU,_; (R), using uniform samples (ug, ..., uy—1) €
I15=5 571 (R).

Since the (oriented) sphere S"~!(R) is a homogeneous space for SU,(R), and we have the
following fiber bundle [Ste99, p. 1.7.6]

SU,_1(R) = SU,(R) — S"}(R),

we can assemble a uniform sample in SU,(R) by combining a uniform sample in S"~!(R) and
SU,_1(R) as follows.

We construct such A € SU,.(R) by the following procedure. First, sample a € S™~!(R) uniformly.
This a € R” satisfies ||a|| = 1. Create a Householder transformation H, = I — 2vv' € U,(R) that

sends a to ey; that is, put v = m
Sample B € SU,_1(R) uniformly and put
B 0
I Pp—
el o)
That is, the last row and the last column of A’ consists of zeroes, except for A}; = —1. Then,

output A := H,A'.

By construction, det(A) = det(H,) det(A’) = — det(H,) det(B) = 1 since Householder trans-
formations have determinant —1. Hence A € SU,(R).

For the second statement, about SU,.(C), can be proven similarly, but instead with the spheres
S§%=1 via the fiber bundle (for r > 2) [Ste99, p. 1.7.10]

SU,_1(C) = SU.(C) = ST~YR).

Note that SU;(C) ~ S'(R). The uniform sample from SU,(C) is then constructed by sampling
a € S?~Y(R) uniformly, and seeing it as a vector in C” of norm 1. Subsequently, compute the
Householder transformation H, = I — 2vv* with v = ﬁ (note the difference between v* and

v" between the complex and the real case). We sample B € SU,_1(C) uniformly and put

,_|B 0
A._[O _J,

and define A := H,A’. By similar computations, we deduce that A is a uniform sample in SU,.(C).
O

Definition 8.6. For 0 € [[j_, S/~'(R) we denote by Up € SU,(R) the real unitary matrix associ-
ated with 6 defined by the procedure in Lemma 8.5. Abusing notation, for 6 € J[;_, S%—L(R) we
also denote by Uy € SU,(C) the complex unitary matrix associated with € defined by the procedure
in Lemma 8.5.
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8.4 Sampling from 1y 4(p(exp(a))) over the diagonal
8.4.1 The target distribution

The goal in the following text is to derive a procedure to sample determinant one diagonal matrices
over K, with operator norm (from p) bounded by some number ¢ € R+, according to the marginal
distribution inherited from the Haar measure on SL,(K) ), as in Equation (30).

This precisely coincides with sampling (aj,...,a,) € R with a; > ... > a,—1 > a, and a, =
— 3171 a;, satisfying max; |a;| < ¢, according to the Haar measure on the diagonal in SL,(K) with
K =R or C. This distribution can be shown ([MP21, Proposition 10] where we locally instantiate
d:=r and e := 1, see [MP21, Section 4]) to have density

(33)
0 elsewhere

¢ [licieicy sinh(a; — a; ISR for |a;| < t
g(ah ] ;ar—l) _ { 1<i<j<r ( 7 J) | 1‘
where ¢ € Ry is a constant such that g is indeed a density (with unit integral). We will write
g=c'g=Tli<icj<,sinh(a; — a;)IER (vestricted to |a;| < t) for the unnormalized function.

8.4.2 Rejection sampling

In rejection sampling (e.g., [Dev86, Section I1.3]), there are two distributions: a target distribu-
tion, from which we actually would like a sample, and a proposal distribution, for which we are
already able to find samples. By adequately, with a certain probability depending on the sampled
value, reject samples from the proposal distribution, we arrive at a sample procedure for the target
distribution.

In the case at hand, the target distribution has density function g as in Equation (33), whereas
we choose as the proposal distribution the uniform distribution on the simplex defined by (a1, ..., a;).
Such a rejection sampling procedure then reads as follows.

1. Compute an upper bound M > max|q, |« g(ai,...,a,—1) on g = c .
2. Sample a = (a1, ...,a,—1) € A} uniformly from the set
r—1
A ={(a1,...,ar1) ER |t >a1> ... > a1 > a, ::—Zai > —t}.
i=1
and reject with probability 1 — §(6117Mar71)

3. If a is rejected, re-sample (go to line 2); if not, output a.

. . . . . 1. 1 cflg(a) _ 1
In line 2 the algorithm is expected to reject a with probability TOI(AT) Joe A (1 — T) da =1—_;
t

and hence accepts a with probability (cM)~1. So one can deduce that the expected number of
uniform samples from Ay this algorithm needs, provided that ¢ <1, is

r(r— M 2 r_l
O(CM) = O(mgxg(a)) =0 ((167,2)(12)[KR] ) <4:> ) — eO(T2 log ) 't_(T_l),

by the later Lemma 8.7 in Section 8.4.4.
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8.4.3 Uniform sampling on the polytope Ay

Our aim is to uniformly sample in the polytope

A} ={(a1,...,ar—1) ER |t >a1 > ... >a,_1 > a, ::—Zai>—t}.

We apply the change of variables y; = 5% for i € {1,...,r — 1} that bijectively and linearly
transforms Aj in the set

r—1
S:{(yl,...,yr,1)6R|0<y1<...<yr,1§1,2y¢> andyr 1+Z%< —} (34)
i=1 i=1
Indeed, Ez_lyz—Z;“;l”g?i=%l QtZ =10 > %—%:%and
s t—a,_1 1 r 1 =t r
T— 1
yvul‘FZZ/i:T—FZ o _5 2<r1+zal> 5
i=1 i=1 =1
>0

This set S satisfies S € AY = {(y1,...,9-1) ER |0 < y1 < ... < yr_1 < 1}, a filled simplex. A
procedure for sampling in A exists [Dev86, §1.4.3, p. 17] by sampling » — 1 uniform distributions
Ui,...,U,_1 and sorting them U(l) < U(z) <...< U(r—l)-

We now sample y from AY in this way, and reject if y ¢ S. We aim to compute a lower bound

on the success probability of this rejection sampling procedure. Surely, if y; > 2((7;,?1)) we have

Sy > (7;2). Also, if y,—1 < 1/2, we must have y,_1 + >/ y; < 5. Hence,
vol(.5)
vol(ADY)

Y1 > 2((7;__21)) and yy—1 < 1/2}

-2
:IP’{ min U; > (r ) and max Ui<1/2}

=1,.r—1 2(r—1) i=1,...r—1
B ) (r—2) . (r—2)
=F { _jmax in_ Ui> o0 1)] F Lzl,”}??nl Uiz 50= 1)}

where U; are iid uniform distributions over [0, 1]. We have

(r=2) 1]:

whereas we can compute the conditional probability by defining U/ being uniform in [m,

(r—2) it = AN
; U7 ! _ 2 2-1
i:f{l.%,ri—l Ui > 2(r — 1)} P[i:gl.a.,)vf—l Ui <1/2] (1 (r—2) )

2(r—1)
1 r—1
_ 2(r—1)
(% + 550 )

vol(S) r—
wol(A0) > (2(r — 1))~ (35)

So, the expected number of uniform samples from [0, 1] required to compute a uniform sample in
AY via this rejection procedure, is

O((2(r — 1)1y = O(rlogm),

P [ max U; <1/2
i=1,...,r—1

Hence,
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8.4.4 Bound on the maximum of g

Lemma 8.7. Fort <1, we have

—1
r(r—1)[K: 4 2\ "
Bl < 7, < 10 ()

and

2 2 r—1
r(r— )[KR] 4
Liplg) < - - (16r%) " (Z)

Proof. For the first bound we compute, using |a; — a;| < 2t < 2.
= Hsmh []K R] < 27’('r 1)/2 H )[K:R] < (4t)r(r—1)[K:R]/2 < (4t)r(r—1)
1<J 1<j

For the second bound we use the lower bound on the integral I in Lemma 2.31. Hence, we can
bound g by (since |a; — a;| < 2t < 2)

g= 7t Hsinh(ai o aj)[K:]R] < 7 t. (4t)r(r71)[K:R]/2

i<j

1
re-yis (4 2\"
< (16r3) "7 (Z) .

For the bound on the Lipschitz constant, we bound the derivative of g on Aj.

Jg 4 0 . .
it o h(a; — a;) KR
Bar Bar 1<H sinh(a; — a;)

<i<j<r
& O ,
=71 H sinh(a; — aj)[K'R]a— sinh(a; — aj)[K'R]
1<i<j<r Uk <j<cj<r
ki, k%] i=k or j=k
We proceed with the right-hand side of above expression, which equals
o k-l
8ak H sinh(a; — ag) KR] H sinh(ax — a; )[KR}
j=k+1
o cosh(a; cosh(a; K:R] KR
= —Z[K:R] + Z K:R———= Hsmha—ak[ H sinh(ay— a)[ ]
= sinh(a; — ag) Pt smh( — ak) i kil
Hence
dg -l cosh(a; cosh(ai — ag)
— = |- K:R _
Oay, ( ;[ ]smh( — ag) + y Xk;rl s1nh(ai — ag) g

Since a; — aj < 2t < 2, we see that sinh(a; — aj) < 4t and cosh(a; — a;) < 2, for all ¢ < j. Hence,
we can bound

1 <y % Tt (4t)[K:R]7(T'El)T

oo <2071 (r — 1)[K : R](4t) KR
k

B ‘ 2 r—1
<o (1)

r(r— 1)[]K R] 472 r—1 . .
(—) , which is what we wanted to prove.

t
O

Now, Lip(g) < rmaxg || 22 [l < % - (16r2)

77



9 Discretization

9.1 Introduction

In Section 8 we described how to sample from the continuous distributions that occur in the random
walk procedure of the current work. On an actual computer (or Turing machine), none of these
continuous distributions can be computed. Instead, we will compute discretized versions of these,
which, in the end, will lead to a distribution D on a finite subset S C GL,(Kg) instead of the
distribution f.

The discreteness of the distribution D on S and the continuity of the distribution f on GL,(Kg)
cause them to be incomparable at first glance. However, the full random walk procedure of this paper
comes with a randomization framework and at the end the rounding algorithm (see Section 3). The
output of the rounding algorithm (and thus of the entire random walk procedure) is a distribution
in L'(X) over some discrete set of module lattices X.

For g € GL,(Kg) (where g is sampled, for example, from D or from f), we can write the output
of the entire random walk procedure of this paper on input g as ¥(g) € L*(X).

In order to show that the output distribution of the entire random walk procedure on input
g « f differs not much from if we instead had taken the input g < D (on the finite set S), it is
sufficient to show that

E ¢g / ¢g g9)dg ~ Z YgD( IE (1]

g(iGLT( ges gé—S

where both on the right side and the left side is a distribution over X, i.e., a function in L(X),
which is “averaged” over all possible g. Here the “~” sign means that we want the two distributions
to be close in statistical distance.

We will show that indeed these average end distributions are close in statistical distance. We
show this by changing the continuous distributions into discretized analogues one by one. So,
writing Dy = f, and D; for the distribution in which in f the left-multiplied uniform distribution on
SU,.(K,) (for all v) is discretized, Dy for which additionally the a € A* are discretized, D3 for which
additionally h € H is discretized, and D4 = D for which additionally the right-multiplied uniform
distribution on SU, (k) are discretized; this latter is equal to D because then all is discretized. We
will show that

géGIE (KR)WQ] ~ gEDl Wg} ~ QEDQ [1/19] ~ giEDs Wg] ~ gEM [wg]'

For each of the continuous distributions we will show how to discretize them appropriately and
how it impacts this final distribution. The discretization of the uniform distribution on the “left-
multiplied” SU,(K,) is treated in Section 9.7, the discretization of a € A* in Section 9.6, the
discretization of h € H in Section 9.5 and, as it is very similar, the discretization of the “right-
multiplied” SU,(K,) also in Section 9.7.

9.2 Result

The self-reduction of this paper on an input module lattice consists of two ingredients. The first
one is a random walk procedure that both changes the input module lattice slightly geometrically
and takes random prime power index sub-module lattices of it. The second ingredient is a rounding
procedure, called Roundy,,t, that allows for efficiently computing a rational module lattice close
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to the input module lattice, with the virtue that the specific input pseudo-basis representation is
hidden: only its module-lattice structure is known.

The random walk procedure on the space of module lattices involves random processes that can
be divided into a discrete random process and a continuous random process. The discrete random
process consists of choosing a random prime ideal and taking a random sub-module with quotient
group isomorphic to the corresponding residue field, whereas the continuous one involve sampling
from the continuous distribution f, for z € Y.

Recall that random process of taking submodules as above corresponds to the Hecke operator
Tp, defined in (12). Although Tp is defined on the space of lattices X,, we also use Tp to denote
the same process at the level of pseudo-bases, as in Algorithm 1, by choosing coset representatives
to average over. This should not lead to confusion, as it commutes with the push-forward through
the projection Y, — X, ;. Recall also the rounding algorithm Roundy,¢, defined in Algorithm 2,
taking in parameters €y and a balancedness parameter o.

Let z = (B, I) be the input corresponding to a module lattice L. We define f, and ¢, by slight
abuse of notation, as in Remark 8.1, and in all that follows we interpret f, and ¢, as distributions
by meaning literally f,uRiem and ¢, URiem, respectively.

The output distribution of the random walk procedure on input z is given by Tpf., which a
priori depends on the choice of pseudo-basis. If we additionally also apply the rounding algorithm,
we get the output distribution Roundy . (Tp f,). Since the the output of Roundy,,; is independent
of pseudo-bases with high probability (see Proposition 3.1), we can identify this distribution with
Roundy,at(Tpps).

Similarly, for any other distribution D, on Y;., we denote by Roundy,.+ (7D, ) for the distribution
that results if we took a sample from D, instead of f, and then subsequently applied taking random
sub-module and the rounding representation algorithm.

The goal of this section is to show that for all reasonably balanced module lattices z, there
exists an efficiently computable finite distribution D, such that Roundp.:(TpD,) is statistically
close to Roundy,at(Tpp.). This means that sampling from the continuous distribution f, (which is
impossible on an actual computer) is not required per se for our reduction to work: indeed, the
efficiently computable finite surrogate distribution D, will do, too, and causes only a tiny deviation
of the end distribution.

Proposition 9.1. Let a > 1,0 < e < 1, B > 1, and let (B,I) be a pseudo-basis for a module
lattice z be that is a-balanced. Denote by P the set of all prime ideals of norm up to B. Then there
exists a finite distribution D, such that

IRoundyat (TpD;) — Roundpat (Tpe:)|1 < e+ <o

that is sampleable in time exp(8r?log(r)) - poly(n,log(1/¢),log(1/eo), log B, size(B)), where g9 > 0
is an input parameter to Roundy.;, Algorithm 2, and ¢,,D, are defined through parameters t < 1
and o < 1.

Proof. Definition of D,. We define D, to be the distribution from Algorithm 4, where each
continuous distribution is replaced by a finite substitute. So, the Gaussian distribution in line 1
is replaced by a discrete and windowed Gaussian distribution as in Definition 2.19; the uniform
distributions over SU, (K, ) in line 3 are replaced by a finite counterpart defined in Definition 9.22
(for each place v); and the “diagonal distribution” in line 3 is replaced by a finite distribution as
in Definition 9.11.

Efficiency of D,. The efficiency of D, follows from the efficiency of all distributions involved,
for which the efficiency is shown in the discussion in Section 9.5.1, Lemmas 9.17 and 9.28. Note
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that that the running time is polynomial time in r,d,log N, except for the diagonal distribution,
for which it is O(d exp(8r2log(r))log N).

Closeness of distributions. By the description in Algorithm 4 we know that a sample from
the distribution f, can be described as z - ki - My, - a - ko where ki, ke < U(SU,(Kg)), where
My = diag(eh/ T et ") with h sampled from a Gaussian over H with parameter o, and where a
is some diagonal matrix in GL,(Kg) sampled from a specific diagonal distribution.

Slmﬂarly, a sample from the discretized distribution D, can be described by z -k - M;j - a - ko,
where k1, ko are from the distribution described in Definition 9.22, h is sampled from a discrete
Gaussian over H (Definition 2.19) and where a is from a discrete analogue of the specific diagonal
distribution.

The distributions Roundy,at(Tp (D)) and Roundy,.t(Tp(f.)) can be alternatively described by
respectively

E . [ROundLat(T'p(Z k‘l h -a - kg))] and E [ROundLat(Tp(Z . k‘l . Mh - a - kg))]

E1,h,a, ko k1,h,a,k2

By Algorithm 1, and since Tp changes the ideal part of the pseudo-basis only by multiplying one
ideal by a random p € P, (see also Remark 8.1) we may, by the law of total probability, instead
replace the operation T by a multiplication from the left by a matrix 7.

Writing z = T - z, we can measure the closeness of these distributions, we apply the triangle
inequality and discretize one-by-one (starting from the right):

IRoundy,at (Tp (D)) — Roundpat (Tp(f2)) |11 (36)

<||. E_[Roundpa(2z-k1-Mj -d-ko)]—_ E [Roundpa(z-ki - M -a- ko) (37)
k1, h,a,ko k1,h,d,k2 1

+||. E [Roundpas(z-k1-Mj-d-ko)]— E [Roundpa(z- ki - M - a- ko) (38)
k1,h,d,ko k1,h,a,k2 1

+ . E [RoundLat(E . kl . Mﬁ Q- kg)] - . E [RoundLat(Z . kl . Mh A - kg)] (39)
k1,h,a,k2 k1,h,a,k2 1

+| E [Roundiat(z-k1-Mp-a-ky)]— E [Roundpa(z-ki- My -a- ko)l (40)
ki,h,a.k2 k1,h,a,k2 1

We now bound each of the components in above sum. By Lemma 9.29, we can bound Equation (37)

by
O(N71/4‘Cd(5']%1 'M}i'd)l/Z'n5m)' (41)

By Lemma 9.18, we may deduce that Equation (38) is bounded by

Nﬁl/QO(dexp(&"2 log(r)) +n®cd(Z - k; - )1/2 \/log(1/20)) (42)

By Lemma 9.7 and the fact that M}, and a are both diagonal matrices (and thus commute), we
deduce that Equation (39) is bounded by

N7Y20(nt cd(z - k1)Y? - {/log(1/e0) + no). (43)

By Lemma 9.29, we can bound Equation (40) by

O(N~Y4. cd(2)? - n® {log(1/e0)). (44)
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Combining the bounds of Equations (41) to (44), and simplifying, we obtain
|IRoundyat (Tp(D;)) — Roundpat (Tp (f2)) |1
<ed(z-ky - M, -a@)? - N7V4 . Hlog(1/g0) - n® - (dexp(8r* log(r)) + no) (45)

We will now bound the conditioning number. We have, by submultiplicativity of the conditioning
number, and the fact that conditioning numbers of unitary matrices equal one,

cd(z -k - M, - @) < ed(2) - cd (k) - ed(Mj) - ed(d) = ed(2) - cd(M;;) - cd(a) (46)
<cd(2) - 21’7 . g2 (47)

< 28(7“cl)2 . |AK|7"+2 . 2(2rd+3)-size(B)+size(p) . 621120 2t (48)

< exp(O(n? 4+ n%o + n - size(B) + size(p) 4+ nlog |Ak|)). (49)

Indeed, since G is diagonal, where the entries at each v-component are bounded by [e7%, ¢!], so
the total conditioning number must be bounded above by e%. For the bound on the (discrete and
windowed) Gaussian distributed Mj, note that M; = diag(e?/",...,e"") and h is bounded by n?c
in absolute value, and hence cd(M;) < 2o

For the bound on the conditioning number of z =T - z, we use Lemma 9.2 and Lemma 9.3 to
see that (using ¢t < 1)

Cd(i) < (’I"d)4 . 22d . |AK|1/d . 251ze(B)+size(p) . cd(z) (50)
< (Td)4 .92d |AK‘1/d . 2size(B)+size(p) . 24(1*d)2 . |AK|7~+1 . 2(2rd+2)5’ (51)
< 28(7"d)2 . |AK’r+2 . 2(2rd+3) size(B)—I—size(p)_ (52)

Combining the bounds Equations (45) and (46), using 0 < 1, ¢t < 1, d < n = rd, we obtain
|Roundrat (T (D)) — Roundpat (Tp(f2)) |1
< N~Y4 . exp(O(n®logn + n - size(B) + max size(p) + nlog |Ak|)) - v/log(1/e0). (53)
Hence by choosing
log(N) = O(n?logn + n - size(B) + n? - log(B) 4 nlog |Ak| + log(1/e0) 4+ 4log(1/¢)) (54)
(where we use that maxyep size(p) < n?log B, by Lemma 2.3) we obtain an error
|IRoundy,at (T (D;)) — Roundpat (Tp(f2))|1 < e.

By the property (ii) in Proposition 3.1, we have that Roundf™ (T (f.)) = Round} & (T (.)). The
same proposition shows that

HRoundEggf(Tp( £.)) — Roundra(Tp( fz))H1 < &

and we are done by the triangle inequality. O
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9.3 Preliminaries on sizes and conditioning numbers

Lemma 9.2. Let (B,I) be a pseudo-basis of a module lattice M and put S = size(B,I) (as in
Section 2.3.3). Then cd(B) < 240D . |A g |1 . 22rd+2)S

Proof. By definition, cd(B) = ||B||||B~!||, where we interpret the induced norm || - || from the
Euclidean norm on K}. It suffices to bound both ||B|| and ||B™!| in terms of the bound on the size
S.

We have ||B| < (rd)?-max;; |Bi;|| < (rd)?-2%-|Ak|/?. 25 since the coefficient B;; = >, a; 5,
with (1, ..., 84) an LLL-reduced integral basis of O, satisfies

IBij| < maxfai] - max |55 < 20 |Ag |- 25,
Using Lemma A.1, seeing B as a basis of a free Ox-module, using that A\;(B - O%) > 27° (since

the least common multiple of the denominators occurring in B can be at most 2%), and using the
previous result on the bound on (columns of) B, we obtain

(rd)2 - 24 - |Ag|t/d. 25\
2-S

||B—1|| < (,rd)rd/2+1 . 25'. (

< (T,d)rd/QJrl . 9(2rd+1)S (Td)Zrd grd® A"
Combining the two results, we obtain
cd(B) < (rd)rd/2+1 . 9(2rd+1)S (rd)Qrd . ord? |Ag|" - (rd)Q .9d . |AK|1/d .95
< 9d(rd)? | |AK"V‘+1 . 9(2rd+2)s
Here, the last simplification in terms of rd can be obtained graphically. O

Lemma 9.3. Let (B,I) with B € K" and I = (ay,...,qa,) be a pseudo-basis of a module lattice
M with S = size(B,I). Let M' C M be a sub-module lattice satisfying M/M' ~ O /p for some
prime ideal p, constructed by multiplying one of the ideals a; by p and by multiplying B from the
right by id+ 3", o - €ij with o € a;/(pa;) (here e;; is the matriz that has 1 on the ij-th position
and zero elsewhere), see also Algorithm 1, resulting in the pseudo-basis (B',1') of M.
Then
Cd(B,) < (rd)4 . 22d . ‘AK|1/d . 25+size(p) . Cd(B)

and
size(B',T') < 35 + 4size(p) - d - log | Ak].

Proof. Writing A = id + }_;5; a; - €;; we have that, by submultiplicativity of the conditioning
number,

cd(B') = cd(BA) < cd(B) - cd(A).

Since A has a very simple and similar inverse, namely A~ =id — > j>i @ - €ij, we can bound
cd(A) = |A[AT] < (rd)* max [|ay[| < (rd)* - 27 - [Ag [/ - 2ms el
J

by similar arguments as in Lemma 9.2. Since «; € a;/(pa;), we can deduce that (by clearing
denominators of a; by k and observing that the Hermite normal form of the ideal kpa; has coefficients
at most N (kpa;)) we must have size(o;) < size(p) + size(a;) + d, and hence

cd(A) < (rd)*- 224 |A |4 . gStsize)
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which finishes the bound on cd(B’). For the bound on size(B’,I') note that size(I') = 377_; ,_; size(a;)+
size(pa;) < size(I) + size(p) + d < S + size(p) + d. For the size of B, note that B’ = BA, with
A =id+ 3,5, @; - €;;, which means that for each j > i, the j-th column of B is increased by «;
times the i-th column. Hence, the size of B’ can be maximally

S + size(p) - 2d - log |Ak| + size(B) < 25 + size(p) - 2d - log |Ak]|.

Combining the results then yields a bound of size(B’,I") < 35 + 4size(p) - d - log |Ak]. O

9.4 Discretization in general

Lemma 9.4. Let X be a probability space and let Y be any set. Let h € L'(X) be a distribution
and let h € LN(X) a distribution with finite support X. Let {Cz} be a collection of finite measure
subsets of X with & € Cz and let T C X, so that T'U Uz C
Az X — LY(Y) be a map sending x € X to a distribution on'Y .

s = X s a disjoint union. Let

Then
| B [As] - %h / Ay - h(z)dz — Y Az - h(@ (55)
ieX
< A(h,h) +C(h, h, A) + T (h), (56)
with discretization error )
- [ -
ieX :C‘
continuity error
@) [, 4e = Aclhde
A= 2 Mg
and tail error T(h) = [ cp h(x)dz.
Additionally, the continuity error satisfies the bounds
1
C(h, A) < max —— | Az — Azll1dx < max max ||A, — Azl
iex |Csl Juec ieX z€Cs
Proof. Use
A -h(z) — Az - h(i) = Ay - h(z) — Ay - h(Z) + Ay - h(&) — Az - h(&)
and the disjoint union X =T U J; 3 Cs to obtain
z)dx — A;zh(i
zeX ) v Z (x)
zeX
h(i)
= Azh(x)dx + / - dx 57
er 2 Sce, M@ 1] o0
+ ) h(@ / Ay — Azdz. 58
> @y [, e = 4] (58)
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Note that the expression in Equation (58) is a distribution in L(Y’). So, by taking the 1-norm on
L'(Y) and putting the norm within the integrals (a form of triangle inequality), one obtains the
following inequality, using that ||Az| =1,

/ Ap - h(@)de — 3 Ay (i (59)

J:EX
_ h(#) o1
< [ hiade / dr+ S h —/ A, — Aglld 60
=T (h) + A(h,h) +C(h, ﬁ, A). (61)

Here, the last equality holds by definition. Additionally, by Holder’s inequality, and the fact that
the h(Z) sum to one (it is a distribution), one obtains the bound

. 1
C(h, A) < max 7/ | Az — Az||1dr < max max || Az — Azl1-
|Ci| Jaecs ieX ©€Cs

zeX

9.5 Discretization of the Gaussian distribution over H
9.5.1 The continuous and the finite distribution

The continuous distribution We denote H = {( Vv € LR | XY, hy = 0} for the logarithmic
unit hyper plane, with standard Euclidean metric®. The continuous distribution over H is the
Gaussian distribution Gp , defined as in Definition 2.18.

The finite distribution Choosing an ordering {v1,...,vp11} (with ¢ = dim(H)) of the places,
we define a basis By of H consisting of the basis elements b; = e,,,, —e,, for j = 1,..., (.
Here, e,, is the element of H that is one at the place v; and zero elsewhere. Given a discretization
parameter N € Zx, this allows us to define the discrete Gaussian distribution, written Gy . (see
Definition 2.19) with ’

.. 1
14 .
H = BHZ { E zj v | zj € —NZ for all j}.

The finite distribution over H that we will use in this work is a finite approzimation of this
discrete Gaussian distribution [K1e00; GPV08], which we denote G,, that can be efficiently sampled
and that deviates only slightly from Gj; . More precisely [FPS+23b, Lemma A.7] states that, for
any g > 0, by paying time polynomial’in the size of the input and in log(1/eg), we can manage
to have the approximation as good as ||G, — G; i, Jl1 < eg; and, additionally, any sample v from
G, satisfies ||v|| < o - \/log(1/€) + 4n. That is, G, is supported on vectors in v € H satisfying

|lv]] < o -+/log(1/e) 4+ 4n (which is a finite set).

8The Euclidean length on H is not consistent with that in [BDP+20, Section 2.1], in which the Euclidean length
is defined over the embeddings and accounts to (> [K, : R]h%)lm, This does not pose a real problem, since it merely
increases the hidden constant of the main result [BDP+20, Theorem 3.3] of that work by a small constant.
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9.5.2 The tail error and the discretization error

The tail error We fix N € Z-( and ¢g = % and we write

— {he H | Ih] < v2-0-vn-\/logn/eq) +4}.

We write Fg :={x € H | z; € [— 2N’ 2N) for all 7} and for each h € Hg, we put Cj = h+ Fg. We
put 7' = H\(Uj,c 1 Cj,), so that T'U Uj,cj7 Cj, is a disjoint union.
We can then reasonably bound

T(Goit) = [ Gon(hdn < [ Gy rr(h)dh < eg = NV, (62)

heT |R]|>0-+/n(log(1/eg)+4)

This holds because writing h = Z?i:nf(H) c;h; in an orthonormal basis yields that max;c; >
|hll2/+/dim(H) > ||hll2/v/n > V20\/log(n/eg) + 4. Since the coefficients ¢; are all indepen-
dently Gaussian distributed with the same parameter o (but with a single variable), we have
that the probability that max;c; > t := /20 - \/log(n/eg) + 4 is at most n - exp(—t2/(20?)) <
n - exp(—(log(n/eg) +4)) < eg.

The discretization error To estimate the discretization error, we use that QU is an eg-close
approximation of G_ ;;, and hence we can conclude that

A(ga,Ha Ga) < A(gJ,Hv go‘,ﬁ) + €G- (63)

So it remains to bound A(G, m,G ”, ;7). Before doing that, we need to apply a result on Gaussian
smoothing.

We can apply Lemma 2.17 to the Gaussian sum gg g over the shifted ¢-dimensional lattice
H + h, where H = 4 +BpZ* and h € H. Since Me(H) < 2, we can deduce that for

log(2n(1+1/e)) 2
. \/ N (64

(for some £ > 0) holds that, for any h € H, (see Definition 2.18)

Gorr(H+h) el —e,1+¢]

det(H)

Lemma 9.5. Let N € Z and let H = £ByZ*, and let Fiy = +Bp[—1/2,1/2)" be a fundamental

domain of H in H. Let o > w - 4 (which is twice as large as Equation (64) with
e=1/N).
Then
A(Go,1: G, 1) < (1+8lo)N N~V2,

Proof. Writing out the definition of A(G, 1, G, ;) and QUH( )) = Go11(h) /G, 1 (H), we have

A(Go1,9, 1) / Z!gaH (h+h) —|F| 1goH )|dh

h H
_ 1 ‘F| gcrH H+h)goH(h+h) ga,H(h)
e B Ay " Gy ™ ()
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By Lemma 2.17 and the text immediately after that lemma (which applies it to H), we see that,
by Definition 2.19, by the fact that |F| = det(H),

.. 1 1

Hence, we obtain that Equation (65) is at most

Golh+h)  Go(h)
I 1/heF Z G, (H+h) fl)‘dh (66)
ga(h+h) Go(h)
<N 0 2 g e gt 0

where we used Holder’s inequality. Now we use a result from Pellet-Mary and Stehlé [PS21, Lemma
Go (hth) and Go (h)
Go (H+h) Go (H)
will postpone the check of the premise of [PS21, Lemma 2.3] (n1/2(a_1ﬁ) < 1/2) to the end of this
proof. We obtain that Equation (67) is bounded by

2.3], by seeing as distributions and the sum as the total variation distance. We

1 1/2 o —1/2
N+4\/E o- I}ILlaX1/||h||<—+8€ o- N~/ < (1+8lo)N~ /7,
where the last inequality follows from the definition of F. )
It remains to show that 7y 5(c™ H) < 1/2, i.e., n1/5(H) < /2. By [MR07, Lemma 3.3] we
have that 771/2( T) < 771/N( 1) < w N(H) < w : % < ¢/2. This finishes the
proof. O

We can conclude that the discretization error in case of the Gaussian (since eg := N~1) is
bounded as follows.

A(ga',Ha go’) S N_l + (1 + SEU)N—l/Z (68)

whenever o > w . %.

9.5.3 The continuity error

Lemma 9.6. Let A, (for h € H) be the output distribution of Algorithm 2 on input g - My, - g’ for
fized g, 9" € GL,.(KR). Let N € Z~¢ be the discretization parameter.

Then
C(Go, A) < 92072 HYlog(12r /o) cd(g)/? - N~Y/2,
where gq s part of the input of Algorithm 2.

Proof. Using the bound on the continuity error of Lemma 9.4, we have

(G < 1.
(Go, A) Jmax max A, — Al

The distribution A is the output distribution of Algorithm 2 on input g - M}, - ¢’, where g,¢' €
GL,(Kg). Writing R for the output distribution of Algorithm 2, we can show that, by Lemma 3.7,

writing L = 92n3{/log(12r /<o),
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[ A — Al = IR(g - My, - ¢') = R(g- Mj, - ¢')lla
< LlgM;, .9 (9Myg) ™ = I||V? < L|lgM; M g™t — 1)1/
< LlgMyg™ = I|'/? < Led(g)'?|| My, — I/

< Led(g)Y?y/n - N™Y2 < 92n7/2 Ylog(12r /eg) cd(g)'/? - N~1/2,

where the last inequality follows from, instantiating L = 92n3/log(12r/c¢) and the fact that
My, — I = diag(e™™ — 1) and hence ||Mj, — I|| < |e?/" — 1|, < /n/N. O

9.5.4 Concluding all errors
Lemma 9.7. Let Ay, (for h € H) be the output distribution of Algorithm 2 on input g - My, - g’ for
fized g, € GL,(KR) and input g9 > 0.

Let N € Z~q be a discretization parameter, and let o > Q(N_1/2) > log@2n(1+N)) | %. Let Go 1

s
respectively G, be the continuous respectively finite distribution described in Section 9.5.1, where

the finite distribution is instantiated with discretization parameter N € Z~q (and eg = N71).
Then,

I E (A= E [A] < N7'2.0(n* cd(9)"/? log(1/20)/* + no).

x(igU’H j‘*ga

Proof. This is just an application of Lemmas 9.5 and 9.6 and Equation (62), where we simplified
N=12(92n7/2 {log(12r /o) cd(g)'/?4+2+8do) into the big-O expression N~/20(n* cd(g)'/? log(1/e0)/*+
no). O

9.6 Discretization of the distribution over Aj

9.6.1 The continuous and the finite distribution

Continuous distribution
Definition 9.8 (Component-wise diagonal distribution). For a fixed place v, the diagonal distri-

bution D(V)

diag OLL the polytope A} for t € Ry (and rank r) is defined by the following procedure.

1. (Sample a uniform element from A7, see also Section 8.4.3)

2. Sample r — 1 independent uniform variables on [0, 1] and sort them, yielding
(z1,...,2,_1) € A°

3. If (z1,...,2,—1) ¢ S as in Equation (34), goto line 1.

4. If (z1,...,2,-1) €S, put a; =t — 2tx; for all 3.

5. (Rejection sampling with respect to the diagonal density g (see Equation (33)))

6. With probability 1 — g(al’i]\;’[a“”) reject and goto line 1, where

g= [ sinh(a; —a)"® and M := (46)"" > ||g]|

1<i<j<r
7. Output (ai,...,a,—1).
Definition 9.9 (Diagonal distribution). We denote by Dgiae the compound distribution over rank

r diagonal matrices over Kg where each v-component is independently distributed with D((jli’;g.
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Finite distribution

Definition 9.10 (Component-wise discretized diagonal distribution). For a fixed place v, the dis-

cretized diagonal distribution ﬁggg on the polytope Aj for t € R- (and rank r) and discretization

parameter N € Z~ is defined by the following procedure.
1. (Sample a uniform element from Aj, see also Section 8.4.3)

2. Sample r — 1 independent uniform variables in [0,1) N %Z; sort them, yielding

(1'1, ce ,ajr,l) € A°

3. If (x1,...,2y—1) ¢ S as in Equation (34), goto line 1.
4. If (1,...,2,-1) €S, put a; =t — 2ty; for all i.
5. (Rejection sampling with respect to the diagonal density g (see Equation (33)))

6. Compute 7 € 17 with |7 — %\ < 737, where

g= J[ sinh(a; - a;)H R and M = (46)" 7Y > |7 o
1<i<j<r

7. With probability 1 — 7 reject and goto line 1.
8. Output (ai,...,ar—1).

Definition 9.11 (Discretized diagonal distribution). We denote by ﬁdiag the compound distribu-
tion over rank r diagonal matrices over Kr where each v-component is independently distributed

with Dglj; o

Help lemmas

Lemma 9.12. We have, for N > 6472,

—8(r—1)27‘ 8(7‘—1)27‘

1
SN =z elem v ,e ~ ]-N"1.vol(S),

N
IA° A %ZT‘H € [T M L N1 y1(AY),
Furthermore,
‘{IL‘ esn %Z“l | x + (%, %]T_l g 5’}’ < W -N""1.vol(S)

Proof. We use Lemma A.7 with A = %Z’”_l, X=S—-t,g=1,t=0and c= w to obtain

1 —8(r—1)2r r— )27‘
SN2 € e ST N vol(S). (69)

Since Vo = (— 5k, 55)" L C (S —t') and ¢ = w]\;l) (and similarly for X O S). Note that in order

to have 1 = ¢ > 2¢, we require N > 8r2.
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For the last statement, put ¢ = w note that for z € (1 — ¢)[X — t/] +t/, we have
T+ Vo C(1-)X—-t)+t' +[X-t]=X

Now, using Lemma A.7 with A = +Z"1, X = (1 -¢)[S—t/],g=1,t =0and c = w we
obtain

—16(r—1)%r  16(r—1)3r

cle ¥ e N |-N"1.(1-¢) tvol(S)

1 r— / /
‘NZ Inj1-o(X —t)+t]

So, by (1 —¢)" =t > eclr=1) = 6_16(’”_1)2’”/]\[, we deduce that

1
’ZM N1 =) (X —t) + /]| > e 52D/ N Lyo](S),

N

Using Equation (69), we obtain

1o
2N’ 2N

1 r— ! /
~Z N[l —o)(X —t)) +t

8(r—1)2r —32(r—1)2r

<[e- ™ —e ¥ |-N"1vol(S)
< 64(r — 1)%r
- N

1
‘{xESﬁNZT_”x—i-(
1
N

r—1 _,C,_ S}‘

<|Sn=zY -

- N""1yol(S)

whenever L&l)% < 1/2, since €3 —e732% < 64z for x < 0.4, which can be verified graphically. [

Lemma 9.13. We have vol(A}) < ((2:517)!1. Similarly, vol(S) < (r_ll)!.

Proof. Write
r—1
W={(x;); eR" |1 >x1 >20>... > 2,1 > —1 and xr:—in}
i=1
. Then A} Ct-W. But one can prove that, by permuting the first » — 1 indices of .S, that

r—1
UJ(W) ={(x;)i eR" | z; € [-1,1) fori e {1,...,r — 1} and z, = —Z:cz} =U,
i=1

(e

where the o are all permutations of the first » — 1 indices. This is (up to sets of measure zero) a
disjoint union. The volume of the latter set equals 2"~'... One can see this by applying the linear
transformation ¢ that keeps the first » — 1 indices intact and maps x, to x, — x, — Zg;ll x; to
the set U; we have that ¢(U) = {(z;); € R" | z; € [-1,1],2, = 0} has volume 2". Hence, U itself

has volume 2", too, since det(¢) = 1 (by the substitution rule). Hence, vol(W) = % As a

r—1
consequence, vol(Ay) < % = t;tl ;

- For the bound on the volume on S, note that the map y; =
for very i € {1,...,r — 1} linearly transforms A} into the set S. O

9.6.2 The tail error and the discretization error

The tail error Since the space Af is a compact space, we choose 7" = 0, which leads to a tail
error of zero.
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The discretization error

Lemma 9.14. Let N € Zo satisfy N > O(de®1*5(")) and let t > 1. Then
A(Ddiag7ﬁdiag) <Nl O(d68T2 10g(7"))

Proof. This follows from the fact that each of the components of the distributions of Dgjae and
Dygiag are independent of each other. Applying Lemma 9.15, together with the fact that there are
at most d places v, we obtain the claim. ]

Lemma 9.15. Let v > 2, let N > 0(68’”21°g(’")), let t < 1 and let v some fized place of K.

Let w = ’D((hgg : Af — R denote the density function of the distribution as in Definition 9.9
)

and denote W = deg X — R for the probability function defined by the sampling process in
Definition 9.11, where X = [t-1— 3t - Z""1 N A} (where 1 is the all-one vector). Write, for every
i€X, F= (a+[ 5T NAT

Then

A<D iag’ D ia, / da < N™ ' O(eSTQIOg(T))~
b= 5 [ oo - i

Proof. Note that |X|=[t-1— 2. Z"" ' NA} =(&Z"~' N S) with the linear bijection 1) sending
y; — t — 2ty; for each component. Hence, by Lemma 9.12,

78(7'71)27' 8(7'71)21'

1X| = | Z”msy €le ¥ ,e ~ |-N"1.vol(S)

which implies, together with N > 87107 > 83 and Lemma 9.13, that | X| < N™~ 1. ﬁ
We have w(a) = g(a) = cg(a) (for all a € Af), as in Equation (33). We also would like to write

w(d) in terms of g(a). By the procedure described in Definition 9.11 we can deduce that

gla) 1 g(a) 1]

b(d) € ey o DY L 9\@) 70
w(a) €crco- | 7N A VR (70)
for some constants cj,cop € Rsg. By the fact that @ is a probability function, we also have

Yaex W(@) = 1, which gives means of estimating ¢ - cg. As an Ansatz, we put ¢y = %, where
0

Ny = N/(2t) and where ¢ € Ry is the same ¢ as in the identity g = cg; this choice is made in
order to make c; close to one. This then yields (using g = cg), and writing &g := cq/N?,

w(d) € ¢ [Ji’%d)l 50, N(E;a)l + do], (71)

Our proof will now consist of a few technical parts.

Claim (a):

S [ lota) - glaida < 6y = P U (72
aex Y& a

Proof of claim (a): We show that

Z |Filg(a) P /GGA* g(a)da =1

acX error 01
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by the Lipschitz-continuity of g. By splitting up the space A} into pieces Fj, we obtain, by the fact
that |a — a| < r/No,

S IFalgti) ~ [ oada< Y [ o) ~g(@lda< Y [ Lipg) - yda

GeX t qcX acx Vacka
< r - Lip(g) - vol(A}) _ 5
No
Claim (b):
. a 64(r — 1)%r T_
> [1Falg(a) — A2 | < 5y = BT g oyt var(s). (73)
- N, N
acX 0
Proof of claim (b): We will show that
o~ X IRal@)| < 3| 55~ Al <9
NTil alg\a NT 2-
aeX =10 aeX 0
This inequality stems from the fact that, for most @ € X holds that |Fj;| = (T 2 (all of them,

except those at the edge of Ay).
Our goal is to count those @ for which |F;| < Nof(r*l). By the last statement of Lemma 9.12

(considering the linear map between S and AY), there are at most M NT1.vol(S) of these.
Hence,

Ny U g@) - S |Falg(a)

acX acX

64(r — 1)2r

- N7
gl 0 N

-vol(S) - N1

IN

< = lglloe - (267 vol(S) = b,

where we use that Ny = N/(2t).
Claim (c):

g(a)
Ny

€ [1 =01 — 02,1+ 81 + d2). (74)
aceX
in particular 3y y A8 < 2 §) + 0 < 1.
0
Proof of claim (c): By using part (a) and (b) we can deduce that

—(r-1) .. ~ e ~ .
N Y o) 2 Y IRl s [ glepda=1
aeX error §p A€EX error 61 t
Claim (d):
|Cl—1|§63 :251+252+2|X’50 (75)

if 61 + 02 + | X| - 0o < 1/4. In particular, |c;| < 2 in that case. This requires the assumption of N
being sufficiently large in the lemma.
Proof of claim (d): Combining Equation (71) with the law of total probability, we deduce

-[M—|X|-5O MHM-%]

1 = Z w(a/) S Cl Ngil 9 Ng,l

acX
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Hence we can deduce that |¢; ' — Nof(r*l) >aex 9(@)] < |X] - do. So, using part (c),
lert = 1) <61 + 02 + | X - b
and, inverting, assuming the right-hand size being smaller than 1/4, we obtain
ler — 1| <261 + 252 + 2 | X| - do.

Conclusion: Combining these results, we obtain the following sequence of inequalities, assuming
that 61 + 02 < 1 and 61 + d2 +¢1 - | X|- o < 1/4.

O IRUCES ZED o) I

|da (since w(a) = g(a))

aeX acX eFa |F |
< Z / |g(a) - LTJ da + Z c19p  (by Equation (71))
aex a€Fy |F | qex
g(a) g(a .
< / l9(a) — 7|d + 03 + 200/ X|  (by Equation (75))
d;( a€F |Fa| NG aez;( Ny~ 1
g(d) :
< / a) — da + 23 + 25| X by Equation (74
<3 / — g(@)|da + 85 + 205 + 200|X|  (by Equation (73))
aeX aeFa
<61 + 0o + 203 + 250|X| (by Equation (72))
<6|X |60 + 501 + 5d2 (76)

where the last inequality follows from writing out the definition d3 = 27 + 202 + 2 - | X| - 09 and
using that |¢1| < 2.

We have §g = NS@CNQ = MNCT(Q?NQ and | X| < N™1. (Tfl)!. Hence, using that Me < (16r2)”(r_1)-

(%)Til by Lemma 8.7,

6eMe(2t) ! _ Ge(16r2)7 Y (8r2)"

< N~2. 82 log(r) .
(r—DINZ = (r — 1)IN2 SN0 ) (77)

61X |60 <

By the fact that vol(A¥) = (2¢)"~Y vol(S), and Ny = N/(2t) and subsequently the bound Lip(g) <
r—1
% - (16r2)7(r=1) (%) by Lemma 8.7, we obtain

5r - Lip(g)(2t)" vol(S) < 5r - (16r2)7 (=1 (82)"

< N1 8r2 log(r) _
N = (r— 1IN SN0l ) (78)

501 =

_ -1
For the last error, ds, note that, ||g|lec < Mc < (16r2)7(—1). (%)T by Lemma 8.7, we see that

r—1)%r
e Y (57)

This finishes the proof. ]

r—1

509 < <Nt O(e8r2 log(r))‘
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9.6.3 The continuity error

Lemma 9.16. Let A, (for x € GL,(Kg)) be the output distribution of Algorithm 2 on input’
g-e*-g for fired g,g' € GL.(KR). Let N € Z~q be the discretization parameter.
Then
C(Daiag, A) < N7V2.0(n° - cd(g)"/? - {flog(1/=0))

Proof. By using again that the v-components of ﬁdiag are independent and commute, we can deduce
that

C(ﬁdiagaA) < d- maXC( ((ilazg“A)

Hence, Writing out the continuity error, using the bound of Lemma 9.4, with X = %Zr_l NA} and

C (D((illgg ’

A) < maxmax HA — A1

FeX x€F.

Writing R for the output distribution of Algorithm 2, we see that (writing ¢® for the diagonal on
the not-v-component), using Lemma 3.7,

Az = Azl = R — Ryesear gt < L-|lge"e” g'(gee” o) — 1|/
<L-|ge"Fgt — 1| < ed(9)'? - Ll — 1|V

2-cd(g)/?-L-\/r
< .
= N1/2

gez ez /

The last inequality follows from the fact that ||z—3 s < 2/N whenever x € Fj (since # € 27"~

and t < 1); and the fact that e* — 1 < 2a for a < 1. Instantiating L = 92n% /log(1/eo) from
Lemma 3.7 yields the claim. O

9.6.4 Run time

Lemma 9.17. Let N > 0(68’”2 108()) Then the discretized diagonal distribution @dmg (Defini-
tion 9.11) can be sampled from using bit complexity O(d - e8r?log(r) 1o N).

Proof. We show that the procedure described in Definition 9.10 can be run with bit complexity
O(eg’"2 108(r) Jog N'). Then repeating this for each place v (which there are at most d) yields the

claim.
We now focus on the algorithm in Definition 9.10. The first (inner) loop is about sampling a

1 zr—1
uniform element from Aj and consists of lines 2 and 3; the acceptance probability is %.
N
By Lemma 9.12, we can estimate this acceptance probability by

‘S N %ZT_H _16(r—1)2r  16(r—1)2r VOI(S)

LT & S e N , € N -~ 7

|AON %Zr—l\ vol(A0)

vol(S)

Hence, using the lower bound on vol(AT) from Equation (35) in Section 8.4.3, and assuming
N > 1613, we deduce

SNz vels)
80n Lz 1] eveliam 2 ¢ GO

9We denote by e® with a diagonal matrix x € GL,(Kgr) the element of GL,(Kgr) with diagonal diag(e®?);, where
e” is also component-wise over all places of K.
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Hence, using that sampling a uniform element in [0,1) N +Z costs time O(log N), we obtain that
this first loop takes about O((2(r — 1))~""1 log(N)) bit operations.

For the second (outer) loop, the acceptance probability is at least (using the notation é and X
from Lemma 9.15)

1 g(a 1 1 1
_ © >_7+7—, i
Tisn zw\a;( = TN? \Sm%ZrycM&;(g()
1 N

>—— +—=—0 79
- N?Z eM|SN£Z7| (79)

where the last lower bound comes from Equation (74) (where we need to assume N > O(e87°108()),

We note that from N > 87% and Lemma 9.13, we see that [SN %Z’”*H < N7 L (r—e1)!' And, using the

_ r—1
bound eM < (16r2)7("—1). (%) by Lemma 8.7, we can continue lower bounding Equation (79)
by (using Ny = N/(2t))

1 —1)!/e-(2t)~ (=D 1 —1)!

> 2Jr(r )!/e- (2t) > Ly (r—1) _
N cM N2 ' e (16r2)r(=1) . (8¢2)

1

> _m + O( —8r2 log(r)) > 0(6—87'2 log(r))

)

by the assumption on N. Hence, the outer loop running time is O(eg’”2 1Og(r)), yielding a total running
time of O(e8°108(") Jog N). O

9.6.5 Concluding all errors

Lemma 9.18. Let A, (for x € GL,.(KR)) be the output distribution of Algorithm 2 on input'®
g-€®-g for fized g,9' € GL.(KR). Let N € Z~q be the discretization parameter that satisfies
N > O(d€8r2 log(r))

Then Then,
ILE [Ad= E [l <NT0@8 ) 0 ed(g) /2 {flog(1/e0).
liag T diag
Proof. This follows from Lemmas 9.14 and 9.16. O

9.7 Discretization of the uniform distribution in SU,(KR)
9.7.1 The continuous and the finite distribution

The continuous distribution

Definition 9.19 (Angle distribution). We denote ©(") = [0, 27] x [0,7]"~! and we define on it a
density function by the following rule: p(")(8) := i1 pi(05) for 0 = (61,...,0,) € O, where

1 M) sin/~1(0) ifj>1
p3(0) = { V7 T .

10WWe denote by e* with a diagonal matrix z € GL,(Kr) the element of GL,(Kr) with diagonal diag(e®);, where
e is also component-wise over all places of K.
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Definition 9.20 (Uniform distribution on SU,). As in Definition 8.6, we define the uniform dis-
tribution on SU,(R) by the distribution of Uy € SU,(R), the real unitary matrix associated with
¢ defined by the procedure in Lemma 8.5, where 6 € J[}_, SI=L(R) is for each component S~ is
sampled according to the (continuous) angle distribution as in Definition 9.19.

Analogously, we define the uniform distribution on SU,(C) by the distribution of Uy € SU,.(C),
the complex unitary matrix associated with 6 defined by the procedure in Lemma 8.5, where 6 €

i1 S2%=1(R) is for each component S?/~! is sampled according to the discrete angle distribution

as in Definition 9.19.

Both are just the uniform distribution over SU,(R) and SU, (C) respectively.

The finite distribution

Definition 9.21 (Discretized angle distribution). For N € Z~(, we denote
- 27 T
(T) — 2 /A r—1 727’71

and we define on it a density function 5" by the following procedure:

1. For each i € {1,...,r} do:

2. If i =1, sample 2z = ngr from [0,1) N +Z uniformly.

3. Ifi>1,

4. Sample z; = % from [0, 1) N +Z uniformly.

5 Compute ¢; € 4,7 such that 1y > ¢ — L F) > ¢
. Ompueqzem suc am>qz—ﬁr(%) = U.

6. Sample u + 37 N [0, ¢;] uniformly.

7. Compute p; € ﬁZ such that —ﬁ < pi—pilrz) <0

8. If u < p; proceed (accept 6;), otherwise go to line 4.

Definition 9.22 (Discretized uniform distribution on SU,). We define the discretized uniform
distribution on SU,.(R) by the distribution of Uy € SU,.(R), the real unitary matrix associated with
¢ defined by the procedure in Lemma 8.5, where 6 € [}, SI=L(R) is for each component S~ is
sampled according to the discrete angle distribution as in Definition 9.21.

Analogously, we define the discretized uniform distribution on SU,(C) by the distribution of
Uy € SU,(C), the complex unitary matrix associated with 6 defined by the procedure in Lemma 8.5,
where 0 € [}, S%~L(R) is for each component S%~1 is sampled according to the discrete angle
distribution as in Definition 9.21 (see also Definition 8.6).

Lemma 9.23 (Efficiency of the finite angle distribution). For N > 73r% + 2, there exists an
algorithm that computes a sample from the discrete angle distribution (Definition 9.21), assuming
we can sample perfect bits. This algorithm runs in time poly(log N,r).

Proof. Going over the lines of Definition 9.21, we show that this is an efficient algorithm (without
regarding the rejection probability). We finish the proof by showing that the algorithm has only a
polynomially small (in r) acceptance probability.

95



Since sampling uniformly in [0,1) N %Z can be efficiently done in time poly(log N), we deduce
it
that lines 1 — 4 can be handled efficiently. In line 5 we approximate ﬁrl(ﬂ(j))
2
1/N? which can be done in time poly(log N). In line 6, again a uniform sample is drawn, which
can be done in time poly(log N). In line 7, p;(7z;) is being approximated within an error range of
1/N?, which can be done in time poly(log N). In line 8 two rationals u, p; € 5177 are compared,
which can be done in time poly(log N).
For the acceptance probability, we assume that » > 1, otherwise the proof is trivial. We compute
the acceptance probability in a single loop over i (starting at line 3), we can deduce that it is at

least

within an error of

_ 1 1 1
g > (Pz’(mi) - 2> > — > pi(mzi) — — (80)
L N \/77 L N
z€[0,1)NFZ 2 €[0,1)N+Z

. F(i-‘rl)
since we have ¢; < ﬁ?g) + ﬁ < r.

As pj is mr?-Lipschitz, we can deduce that

> e [t

ze0,1)NE2Z t:€[0,m]

< i(zi +ti) — pi(zi)|dt;
fooer X ottt = pi(z0)

d
TN zi€[0,m)N K Z

2 3,.2
S/ mrtdt; = N2 - —~— =7
t;€[0,%] ZiE[O,zw):m;\f]Z by N2 2N

Hence, using that [, .1 pi(ti)dt; = 1 and Equation (80), we obtain a lower bound on the accep-

tance probability of
L(, (14 73r2/2) _ 1
VT N T2y
which is inversely polynomial in r.
Hence, the entire algorithm runs in time poly(log N, ). O

9.7.2 The tail error and the discretization error

For this distribution, it is nicer to write By = Ay, where Uy is defined by the procedure in
Lemma 8.5.

Recall that SU,(Kgr) ~ [],SU,(K,) and that an element in SU,(K,) can be encoded by a
sequence of angles as in

Ang” = {0V, 0,09, (6", 07 .. 0 @0, . 60y,

where each tuple is distributed as p{) as in Definition 9.19, which yields a distribution Dangv over
Ang”. The precise sizes of the tuples depend on whether v is real or complex.

We put Ang = [, Ang” and Da,g as the compound distribution. The discrete distribution ﬁAng
is defined as the distribution in which each of the angles in Ang” are distributed via the discrete
angle distribution.
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The tail error We choose the tail to be
T = {0 € Ang | there exists i such that 6; < 2N~'/2}.

By the law of total probability, the fact that Ang has at most 2dr? “angular components” and
subsequently by the 2772-Lipschitz constant of the probability distributions p(? (), we obtain

T (Ang) = / Dang(0)df < 2dr? max / pD(6)ae®
peT i€{1,....,r} Jo) eT ()
< 2dr?(2nr?) - 2N7Y2 < NTV4. O(n), (81)

where TU) = {#U) | there exists i such that Ol(j) < 2N~V

The discretization error

Lemma 9.24. Writing Dang for the uniform distribution over SU,(Kgr) and ﬁAng for the dis-
cretized version of it (via the angle distributions), we have

. 1672drt
A(DAngvang) < Ta

for N > 8m2r?

Proof. Note that, by the triangle inequality, by discretizing the v-components of Dapne (which are
Dangv) component by component, and subsequently discretizing the components of the distribu-
tion over Ang” (which are p() for i € {1,...,7}) component by component (which is possible by
independence), we have

-
A(DAnga DAng) <d- mgxx A(DAngyapAngu) < dz A(p(l)7 p(z))
i=1
The claim follows by Lemma 9.25. Note that in this upper bound we included the tail space T, but

since that can only increase the estimate, that does not matter. O

Lemma 9.25. For anyrg € Z~o and N > 8w%r3, the discretized angle distribution (Definition 9.21)
and the angle distribution (Definition 9.19) satisfy the following property:

A(p(ro), (o) /
( ) Z 9(ro) ¢ p(ro)

6(r0) ¢ (o)

(7"0)<9(7"0)) 167r27’8
vol(F(ro)) - N’

P (§170)) - (52

where F() = [0, 5) x [0, &) "

Proof. From the sample procedure in Definition 9.21 follows that the sampling probabilities of the
components 9ETO) of (") are independent, as well as those of #(0). We just write the corresponding
probability functions with /')'ET %) and p(r 0) By the trick ab—a't = (a—a' )b+ (b—"V')d’ (and applying

this inductively to p(r0) = =1L ,o(r0 and (7o) =1L pl ) we obtain

p(ro) (4(ro)
S [ ey - 2 ))|d9 (83)
G0 edro) VOO EFTO) VOl( (ro))

(r0) (g(ro) . gi(ro)) _

)

(7“0)(9(7“0)) ‘
vol([0, a;7m/N))

= Zl Z /(rO)E[Oa w/N) P

670 €a;m-([0,1)N L+ 2)
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where a; = 2 if 1 = 1 and a; = 1 otherwise. o)
(o

Now it is true, by the rejection sampling mechanism of Definition 9.21, that p(m)(ﬁ»

i) €
[ (TO)(g(TO))

—2N72, p(TO)(G( ))] where ¢; € Ry is a constant only depending on i, satisfying

(2 K3

e D (@) —2N2), 3 pU BT C [N 4 3T p (), ST plr) (6

é’ETO) QETO) GETO) 95’”0)

where Qvo) ranges over a;7 - ([0,1) N +Z) (with a; = 2 if i = 1 and a; = 1 otherwise).

(ro) .

Since p;  is 7 - r3-Lipschitz, we can deduce that

PO 4017 = p{) (7)o

fstow 55 )< |

(ro)
éETO) G(T €[0,a;7/N)

272 r%
N

<

Hence, since [ ) pgm)(e)de =1, we thus have

CaN 1 ST ), S @) = ran -ty N gp2 Ny gy

a;m a;m
@'Z(To) éETO) ¢ v

Which means that a;7/(¢;N) € [—2a;7N~2 — 2723 N1 + 1,27%r2N~1 + 1]. Choosing N > 87213
2,2
(Z{]X el— 4WNT° 1+ 4”;"2] and therefore,

(To)(Q(TO)) alN - [p<r0)(€'(r0)) _oN-2 p("ro)(é('ro))]'

vol([0,a;7/N)) ~— aym " ‘ ‘
Thus,
p§T°)(9§T°)) B (7‘0)(9’(7‘0)) < 87127”(2)
vol([0, a;m/N)) " ! - N
Using again the Lipschitz constant, we therefore deduce
{(r0) ¢ fj(ro) 2,.2
By (0;") (ro) (g(r0) . g(ro)y| « 167775
V) o) gl i) < )
ol /g P G ) s =y
Plugging this into Equation (84), we obtain a bound of
r0) ( (T 2.3
Z / ’T‘O (9(7‘0)) B p( 0)(0( 0))‘ 167‘( r
i) oo 70" et |” vol(F(ro)) |2 = N
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9.7.3 The continuity error

Lemma 9.26. Let Ay (for 6 € Ang) be the output distribution of Algorithm 2 on input g- Uy - g
for fized g, 9" € GL,.(KR). Let N € Z~q be the discretization parameter.
Then the continuity error satisfies

C(Dang, A) < NV 0(n° cd(g)'/? - {flog(1/e0).

Proof. We have, by Lemma 9.4, writing Ang for the support of ﬁAng,

C(@Ang,A) < max max ||.Ag — Al
feAng 0€C,

Since we may omit the tail space T, we can assume, by Lemma 9.27, that ||Uy — Uyll2 < 27%r3d -
N/2||§ =) Since ||§ — 0| < 4™ we can deduce, by Lemma 3.7, that, writing L = 92n° {/log(1/e),
Mo — Aslls < LllgUsg (9Usg") ™ = I1I'V* < L - cd(9)"/? - [Us — Ul "/
< L-cd(g)?- (23 N'2|0 — o))
< L-cd(g)'/? 20r®2d" 2NY4 |0 — o)1/

< NV 0(n® ed(g)'/? - {/log(1/0))-

O]

Lemma 9.27. Let 0 = (0y,...,60,,) € Ang satisfy 0; > 2- N~Y2 for all i € {1,...,m}. Then, for
any ¥ € Ang,
[UsUy " = Ill2 = U — Usll2 < 2x%r%d - N'72||6 — 9,

where U is defined as in Lemma 8.5.

Proof. We prove this first for the space Ang”, after which it, by the triangle inequality, can be
shown for the whole space Ang as well. We write 7 = 2N ~1/2.
Write Ang” = ) x ... x ©1). We have the maps

0 x ... x0W L gr « ... x 8T % SUL(R),

and we write Uy = gf(0) € SU,(R) for § € © := ) x ... x (1),

Clearly, Up = Uyery - - - Uy, Where 0 € ©U) and where Uy is described by the Householder
transformation that sends y; = f]( )) € S to e] This Householder transformation is defined,
Hy — ” by the rule Uyg;) := I — 2ww "

We have, since Uy, Uy € SU,(R) are unitary, that ||UgU; " — I||2 = ||Up — Up||2; indeed,

writing w =

1Us = Usllz = (UeUy " = DUsll2 < |UsUy " = Ill2||Usglla < [UgUy " = 1|2
= [|(Ug — Us)U; [l2 < |Us = Ugll2| Uy |2 = 1Us — Usl2-

Hence, by repeated application of the trick ab — o't/ = (a — a’)b+ (b —¥')ad’, and the fact that the
two-norm of a unitary matrix equals one, we find,

.
10Uy = Illa = U — Uglla = |Upr - - Upwy = Uty -+ - U ll2 < D 1Ugs — Uy ll2
j=1
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Now, writing Uy = I — 200" and Uy) =1 — 2ww " (with unit vectors v = 2= w = @,
; ' llyj—e;ll ly;—e;ll
with y; = f;(0V)) and y; = £(99))) we have, using that | AT |2 = ||Al|2,
1Us) = Ugia ll2 = 2llww ™ —vv Tl = 2ljw(w — ) T + [o(w — v) 77|

< 2fw(w —v) |2 + 2|o(w —v) || < 4]lw — o]

2

Assuming that ||y; —e;|| > 7 or ||y§ —ej|| > 7 and writing d = y; —yj, and using the reverse triangle
inequality |||a|| — ||b]]| < ||a — b||, we have that

A — v = 4 (yj —ej)lly; —ej +dl| — (g!j —ej +d)|ly; — el
ly; — ejillly; — e;ll
_ s —ei)(ly; — e +dll = lly; —ejll) — dlly; — el
ly; — e;lllly; — e;ll
yi — esllldll + lldllly; —e;ll _ Mvs =95l _, -
§4H i J‘HH H‘ H, \HU ill Sy L L RS VW)
lly; — ejHHyj — ¢ Hyj — ¢l

Since this inequality is symmetric in y; and y;, we can just assume |ly; —e;|| > 7. Since the function
yi = f; (019)) is w2r2-Lipschitz, we immediately deduce,
47?p?

T

1Ugr = Ui ll2 < 477 Hlys — o]l < 169 — 9@,
provided that y; = f;(0V)) satisfies |ly; — e;|| > 7. Note that, for the map f; : ©U) — 7, we have
xj = f]-(OJ(.J)) = cos(Gj@); hence, for sure, if Gj(j) > 24/7, we have |ly; — ej|| > 1 — cos(2y/7) > 7 for
T <1

So,
4r2y3

T

for 0 = (), ..., 00) with 9;” > 2/ forall j € {1,...,r}.

For general 6 € Ang (instead of just Ang”) we arrive at the similar claim, but with an additional
factor d, which finishes the proof. O

|UgUy ™t — I|l2 = |Up — Usll2 <

He_ﬁuv

9.7.4 Run time

Lemma 9.28. There exists an algorithm sampling from Ang within time poly(log N, dr).

Proof. By Lemma 9.23 one can sample a single angle component (note that the components are
independent) from Ang within polynomial time in log NV and 7. Hence, since Ang has at most 2dr?
angular components, we obtain at the claim of this lemma. O

9.7.5 Concluding all errors

Lemma 9.29. Let Ay (for 6 € Ang) be the output distribution of Algorithm 2 on input g - Uy - ¢
for fized g,g' € GL,(KR). Let N € Z~q be the discretization parameter satisfying N > 8m2r? + 2
Then,

I E [Ad— E [A]l < N™V*n°0(cd(g)"/? - /log(1/20)).

'T<_DAng df(—’bAng

Proof. This follows from Equation (81) and lemmas 9.24 and 9.26 and simplifying the expression.
O
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10 Conclusion

We finally piece together all ingredients and prove Theorem 1, our main theorem on the worst-case
to average-case reduction of SIVP.

Recall from Section 2.3.2 the invariant measure p on the space X, = X, (K) of module lattices
of rank r over the number field K. Recalling the definition of Roundr,; from Section 3, define the
average-case distribution as

D= RoundLat (Mcut)

where ficys is the Haar-measure induced distribution on X, restricted (hence the name “cut”) to
module lattices that are a-balanced, with a = O(B - d - cx) = exp (O(dlogd + log|Ak|)), where B
is as in line 1 in Algorithm 5 and where cx = 1 + F}(Tm with T'g < |AK|1/d.

Note that, by Theorem 4, the distributions p and pucy are close in statistical distance, and
that (by Proposition 3.1) Roundp,; rounds its input lattice to a very close lattice. This gives a
justification as to why Roundpag(peut) can be seen as a sound discrete average-case distribution.

Algorithm 5 Reducing a fixed (4d - ck)-balanced instance of SIVP over module lattices to a
random instance of SIVP over module lattices.

Require:
o A pseudo-basis (B,I) of a rank r module lattice Ly,
o An oracle O solving +/'-SIVP for Roundy(pcyt) with probability p = 9—o(n),
Ensure: With probability 1 — 27" a solution to 4-SIVP for Lo, with v = poly,.(|Ax|"/?, d) -~/
1. Put B = exp (Cy(dlogd + log|Ak|)) for a large enough constant C, > 0 depending on r, t =1
and 0 = 1/d2.
2: Instantiate the discretization parameter N as in Equation (54):

log(N) = O(n?logn + n - size(B) + n? - log(B) 4+ nlog |Ak| + log(1/c0) + log(1/¢)).

repeat
Compute a module lattice L1 = g - Ly using Algorithm 4 on input Ly with parameters ¢
and o as above, and where every distribution occurring is discretized as in Section 9 with
discretization parameter N, with g := 279 and ¢ = 279 a5 in Proposition 9.1.

5. Sample uniformly random p from the set P of all prime ideals with norm at most B (using
[BDP+20, Lemma 2.2]) and take a random sublattice Lo of L satisfying La/L1 = Ok /p
using Algorithm 1.

6:  Sample L3 <— Roundyyi(L2), where Roundy, is the algorithm given in Proposition 3.1, with
error parameter g as above and balancedness parameter « = O(Bdcg).

. Apply the oracle O on Ls.
8: until the output of O is of the form {v§3), . ,’1)7(13)} and satisfies H’l)j(»S)H <+ -0O(n- \AK]ﬁ) .

det(Lg)% for all j.
9: Use the transformation Y of Proposition 3.1(iii) to compute ’UJ(-Q) =Y v](g)

10: Put U](-l) = U](-Q) € Lo C Ly for all j.

11: Put v](-o) = g_lvj(.l) for all j, to get {vgo), e ,u,(f’)} C Lo with g as in Line 4.
(0) (0))‘

12: return (v; /,...,vp

oW

for all j.

Proof of Theorem 1. By Theorem 7, it is sufficient to reduce y-SIVP for (4d - ¢k )-balanced lattices
to 7/-SIVP for lattices sampled from D. We use here that ¢! - (1+d/2%+1/2)7=1 from Theorem 7
is poly, (|Ax|"/?, d), since T < |Ax|Y? (see Lemma 2.12).

101



Given a (4d - cx)-balanced module lattice Lo, we randomize it using the framework from Sec-
tion 4, but with discretized underlying distributions, as in Section 9. After that, we apply Roundy .
(from Proposition 3.1) and feed the randomized and rounded module lattice to the oracle solving
+/-SIVP for Roundya¢(ptcut)- This yields an output for SIVP for this rounded and randomized mod-
ule lattice. By undoing the “rounding” and the “randomization”, we get an SIVP solution for the
original lattice Lg. This process is described in a precise manner in Algorithm 5.

For this reduction in Algorithm 5 to be sound, we need to prove three things. One, we need
to show that the distribution of L3 in line 6 is statistically o(p)-close to Roundpat(picyt) in order
for the oracle in line 7 to succeed with probability Q(p). Two, we need to upper bound the loss in
quality of the output SIVP solution caused by the randomization (and de-randomization). Three,
we need to bound the expected number of queries to the oracle, and show that every step can be
performed in polynomial time in the size of the input (where we assume r = O(1)).

(1) Statistical closeness. Because the final oracle solving the random instance has success
probability at least 27°(™ it suffices to allow a statistical error of 2=("), In this proof, we will
instantiate with parameters aiming for a statistical error of 2" = 2-0(4) a5 1 = O(1). Note that
most of the ingredients of the proof can handle arbitrary errors € > 0, consuming additional time
log(1/¢).

Let z = (B,I) be the input pseudo-basis for Ly, and we use the notation f., ¢, and D, as in
Section 9 (see the discussion before Proposition 9.1).

Note that, by construction, L3 in line 6 is distributed according to Roundp.i(T»(D;)). Our
strategy is to bound the distance |Roundpa(Tp(D,)) —Roundpas (Tp(¢2)) |1, as well as || Tpp, — ull1
and || — preut|l1 by 27", Assuming this, by the data processing inequality (Proposition 2.22)
applied to Roundy,, and the triangle inequality, this reasonably yields

[Roundpat(Tp (D)) — Roundpat (peut) (1 < =),

First, |[Roundya(Tp(D.)) — Roundpa; (Tp(¢-))|1 is bounded by o + & = 279 by Proposi-
tion 9.1 and our choices of €y and ¢ in the algorithm. Next, || — pcut||1 satisfies the same bound
by Theorem 4. Indeed, a p-random module lattice L satisfies

NE(L) /ML) < An(L) /M (L) < n|Ag]Y4

with probability at least 1 — 2%(*1°87) "and on the other hand o = Q(n - |Ag|"/9).
Next, we bound the statistical distance between Tpp, iRiem and p, which is

1 1 _
5 A ‘TPSOZ : MRiem(Xr) - 1| d/'L = 5 HTP(Pz - MRiem(Xr) 11XT 1’

where the L'-norm is now with respect to jRiem. Applying Cauchy-Schwarz, we have

S \/ IRiem (X7) - HTP% — fRiem (X)) M1y, )

< exp(C(d + log|Ak)) | Tpe: = priem (X,) M1,

HTP(PZ - ﬂRiem(XT)_ler

L, (39)
for some constant C' > 0 depending on r, using Lemma 2.37.

To finally apply Theorem 3, we rework its statement using the assumption that » = O(1) and
using that logz = O(2?) for any 6 > 0. Let kg = ko = k/d? to simplify notation and note that
k > Vd/o = d°/? in the theorem (we make a valid choice of x below), so that kg > vd > 1.
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For the first term, we trivially bound r, < d and 7,(logr,)® = 0o(d?), so we may assume that
max(r,(logr,)3,1/0) = 1/0 = d?. We also bound

C1 < B™Y4(dlog kg + log|Ak|).

For the second, denote by a(z) the balancedness of L. Thus, a(z) < deg < d3/?|Ag|/? (using
Lemma 2.12 again), so that
Cy < exp(O(dlogd + log|Akl)).

Let
k3 = k%/d = max (d5/2,C(d+log|AK|) + dlogd + d) .

Since kg is polynomial in d and log|Ax|, we have that dlog kg + log|Ax| = O(dlogd + log|A k).
All in all, applying again some trivial bounds to simplify expressions, we have

2
, < exp(2dlogd — 2k3) + B~Y/2 exp(C" - (dlog d + log| Ak |))

Tpy, — NRiem(Xr)illXT
H

for some constant C’ > 0 depending on 7.
We plug this last bound into (85) and use simplifying bounds as above, such as logx < x, and

that \/z +y < /x + /y for z,y > 0 to arrive at

HTP% — URiem (X)) 'y, ) < e 4 =9 Un),

We use here that our choice of kg implies that
exp(C(d + log|Ak])) - exp(dlogd — r3) < e™@

and that
BY* > exp (C'(dlog d 4 log| Ak |) /2 + C(d + log|Ak|) + d) .

This is possible with a minimal
B = exp (O, (dlog d + log| Ax]))

where the implied constant depends on 7.

(2) Bound on the loss in SIVP-quality. The processing of the SIVP-vectors happens in lines
8,9, 10 and 11.

We prove in part (1) of this proof that L3 follows a distribution that is 272 _close to Roundy o (Heut)-
Since module lattices L sampled from p satisfy A\, (L) < O(n|A K|71d) : det(L)% by Theorem 4 with
probability at least 1 — 2721087 gurely module lattices L sampled from jiey satisfy the same
inequality (even with a higher probability).

So, with probability 1 —2-2"1987) e have that det(Ls)n < An(L3) < O(n-|Ag|27)-det(Ls),
and hence line 8 suffices to check whether the oracle is successful, though it might allow for an
extra slack of O(n - ]AK\ﬁ) = poly,(d,|Ak|"/?), which is acceptable for our use-case. There-
fore, since p = 27°") we may assume with probability 1 — 27" that after line 8, the solution
{vgs), . ,vT({o’)} satisfies ||v](-3)|| <~ - poly(d, |Ag|"?) - \p(L3). Additionally, we can assume that

An(L3) < O(n|Ak|2a) - det(Ls) 7.
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By Proposition 3.1(iii), we see that det(Lg)% < 2det(L2)% and that applying Y only changes
vector lengths by a factor O(1). Therefore, {v%l), e ,UT(ZI)} satisfy, for all j € {1,...,n},

3=

0§71l < Ol Ak(#) -+ - det(Ls) T < O(nlAx|37) - - det(Lo) T
< O(n|Ag[2) - BY™ o' - det(Ly)
< poly, (e, [Ax| ) -+ - det(L) 7

3=

where the last inequality holds by our choice of B in line 1 of Algorithm 5. Since g has conditioning
number e2n°o+2t (see the proof of Proposition 9.1), by the very same arguments as those of Propo-
sition 3.1(iii), multiplying by ¢g~! changes the determinant and the lengths of vectors by at most
O(1). Hence, we have, for all j € {1,...,n},

10\ < poly,.(d, |Ak|4) -4 - det(Lo)» < poly,(d,|Ax|4) -7 - Aa(Lo),

where the last inequality holds by the fact that det(Lg)'/" < (IT7=: A (Lo)Y™ < An(Lo). So,
indeed, the algorithm solves 7-SIVP for Ly with v = poly,.(d, |AK|§) -y

(3) Number of queries and efficiency. Line 4 uses Algorithm 4 with discretization, which
can be computed efficiently according to Proposition 3.1. Line 5 uses the algorithm described in
[BDP+20, Lemma 2.2] as well as Algorithm 1, which run both within polynomial time in the size
of their input (Lemma 2.5). Line 6 uses Algorithm 2, which runs within polynomial in the size of
the input. But for this algorithm to be applicable on Lo, we need to show that Ls is a-balanced for
a = O(B-d-ck). By similar arguments as earlier in the proof, g does not change lengths of vectors
much, and hence, since Lg is (4d - cx )-balanced, we can conclude that Ly is O(d - cx)-balanced. As
Ly is a sub-lattice of L; of index at most 2B, we deduce, by Lemma 2.15, that Ls is O(B - d - ¢k )-
balanced, which is what was required to show. Since lines 9, 10 and 11 are mere linear operations
applied to vectors, these lines all run in polynomial time in the size of the input.

For the expected number of queries, note that the distribution of L3 is o(p)-statistically close
to Roundyat(fteut ), hence we may assume that the oracle O gives a sound output with probability
O(p). So the expected number of queries is O(p~!). For the total reduction (which includes the cusp
and the flare part) the number of queries is multiplicatively increased by poly, (log|Ak]), which
yields the total expected number of queries. ]

A Appendix

The lemmas in Appendices A.1 to A.3 are almost literally from [BPW25], and are stated here for
sake of self-containedness.

A.1 On the matrix norm of an inverse basis

Lemma A.1. Suppose B = (ay,...,a,) € R"™" is a square real matriz and a basis of a lattice
L CR™. Then

- - o byl
B 1 9 S nn/2+1 . )\1 L 1 . || 7 ’
B o (I

where B = (by,...,by,).

104



Proof. For j € {1,...,n}, put C; = [[by]]

A (ay = 1. We have that B! = 2zadj(B). Also, adj(B);; is
J

defined by the determinant of the minor of B where the i-th row and j-th column are deleted. By
the Hadamard bound and subsequently by Minkowski’s second theorem (see, e.g., [MG02, Theorem

1.5]),

ladj(B ’Lj| < H [bx|| = Hck Ak (L
k#i k#i

<n"? (T[] Ck) - det(L)/Xi(L) < n™'*( H -det(L) /A1 (L).
ki k=1
Observing that det(B) = det(A), we obtain

n
- - max [adj(B);j| < n™/2 - ( H W)/ M (L
ij

1
B, <|Blr<
| 2 < || lr < dct(B)

A.2 On the weight of discrete Gaussians on strict sublattices

We show in the following two lemmas that the discrete Gaussian distribution over a lattice with an
arbitrary center point has no heavy weight on any strict sublattice. This fact is used that we can
compute a sample from a discrete Gaussian conditioned on the event that it is linearly independent
to earlier samples.

Lemma A.2. Writing po(z) = e ™I=I?/9* we have that for any lattice A C V (where V is a
Euclidean space), any o > 0 and any t,w € V, we have

Po(A+t+w) + po(A+t—w) > 2p,(w)ps (A + 1),
where ps(A+1t) =D pcp po(f +1).
Proof. This lemma is a simple generalization of [HR 14, Claim 2.10], and we follow the same strategy:

po(Att+w) 4 po(Att—w)= D (emletvll/o? 4 emrlle—ul®/o?)
rEA+t

= 2¢~mllwl*/o Z (e_””“””2/02 cosh(27r<x,w>/a2))

TEA+t
> 2ps(w)ps (A + 1),

where the last inequality follows from cosh(a) > 1 for any real a. O]

Lemma A.3. Let A CV be a lattice and V' an Euclidean space, t € V and o > c¢-\/n - Ay (A) for
some ¢ > 0. Then, for any strict sublattice \' C A

po (N + 1) 1
Pr [zeAN+1t]= < )
xegAH,U[ ) po(A+1) = 14e-m?

Proof. Let A’ C A be a sub-lattice of A and let w € A\ A’. Then, by Lemma A.2,

po(N +t+w)+ ps (A +t—w)

po(A+1t) > po(N +1t)+ 5

> (14 po(w))ps (A +1).
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Writing Ga 4, for the Gaussian distribution on A +t with parameter o, we have,

N+t 1
p e N 4 g = Lol < .
2nrrs & ] pe(A+1) = 1+ po(w)

Note that the set {¢ € A | ||¢|| < /nAn(A)} contains a HKZ-basis of A [LLS90]. Hence, for any
A C A there must exist w € A\A’ with ||w]] < /nA,(A).

So there exists w € A\ A’ such that ||w|| < v/n - A (A) < o/c, hence py(w) > exp (—mc™?),
proving the lemma. O

A.3 On the number of lattice points in a convex measurable volume

Lemma A.7, which shares some similarities with [PP21, §4.2], provides means to estimate the
number of lattice elements in a convex measurable volume. This estimate is essential in Section 9
about discretization. To prepare for the proof of this lemma, we will need some facts on Minkowski
sums of sets.

Definition A.4. Let V be a Euclidean vector space. For two sets X,Y C V, we define the
Minkowski sum X HY as follows.

XBY ={x+y|xeX,yeY}
For ¢ € Ry we denote by cX the set
cX ={c-x|xe X}

Lemma A.5. Let V be a Fuclidean vector space and let r,s > 0 and let X C 'V be a convex volume.
Then
(rX)B (sX) = (r+s)X.

Proof. We start with inclusion to the right. Suppose y € (rX) B (sX), i.e., y = rx + sx’ where

x,x' € X. Then ;¥ = %“:‘/ € X, since it is a weighted average of two points in X and X is
convex. Soy € (r+s)X. Inclusion to the left holds because y € (r+s)X means that y = (r+s)x =
rx+sx € (rX) B (sX). O

Lemma A.6. Let V be a Euclidean vector space, let v > 0, let X, Y CV be sets and let S CV be
a symmetric set, i.e., x € S < —x € S. Then

(XBS)NY C[XN(YBS)HES.

Proof. Suppose x +s =y € (XBS) NY. Thenx =y—-se€ XN(YHS),soy =x+s €
(XN(YBS)|ES. O

Lemma A.7. Let V be a n-dimensional Euclidean vector space, let A C V be a full-rank lattice,
let X CV be a convexr measurable volume for which Vo C c¢X for some ¢ € Rsq, where Vy is the
(origin-centered) Voronoi cell of A. Then, for all t,t' € V and all ¢ > 2c,

/ —2nc/q 2nc/q _qn'VOI(X)
(A+0)0g0X -+ 0] € o2, el L300,

where ¢(X +t') ={q- (x +t') | v € X} is the scaling of the (translated) set X +t' by q € Rxp.
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Proof. As |(A+1t) N (¢X + qt")] = |(A +t — gt’) N gX]|, we just assume, without loss of generality,
that t' = 0. Note that Vy C ¢X, and that X is convex. So, by Lemma A.5, we have (¢X)H Vy C
(¢X) B (cX) = (¢+ ¢)X. Similarly, (¢ — ¢)X BVy C ¢X. Therefore

[(A+t)NgX]BW € (¢+c)X. (86)

Note that Vy is symmetric and (A + t) B Vy = V, the whole vector space. So, by Lemma A.6 and
(g—o)X BV CqX,

(g—o)X

[(A+t) BV N (g - )X (87)
ClA+t)N((g—c)X BV) BV C[(A+1t)NgX]BV (88)

By Equations (86) and (88) and the fact that Vy is a fundamental domain of A with volume det(A),
we obtain
(g — )" vol(X) < |(A+t)NgX]|-det(A) < (¢4 ¢)" vol(X).

Dividing by det(A) and using the estimate e=2"/7 < (1 — ¢/q)" < (1 + ¢/q)" < €2/ (note that
q > 2¢) we arrive at the final claim. O
A.4 Gaussian tails

Lemma A.8. Let V' be a real vector space of dimension n and s > 0. For any € € (0,1], it holds

that Prye gy ([|z]] > s-v/2n-log(2n/e)) <e.

Proof. Let B be an orthonormal basis of V' and write x = (z1,---,z,) the coordinates of x in
this basis. Then the random variables x; are linearly independent Gaussian distributions over R
with standard deviation s. Moreover, for any ¢ > 0, if ||z|| > ¢, there should exist some ¢ such that
|z;] > t/+/n. Hence, we obtain

t2
>t)<n- > < . —
LB (el =8 <ne Pr (o] > t/vi) < omeesp (- 5o,

where the first inequality comes from the union bound and the last one comes from Chernoft’s
bound. Taking ¢t = s - /2n - log(2n/e) leads to the desired result. O

A.5 Sizes of elements
Lemma A.9 (Rules on sizes of elements).
1. Formj € Z, size(Hle m;j) < Z?Zl size(m;) and size(zg‘-”zl m;) < logy (k) + max;(size(m;)).
2. For q; € Q, size([1iz; @) < X1y size(q;) and size(Y1_, ¢i) < 335 size(qy).
8. Forvj € K, we have size(3_;v;) < 33 size(y;). Additionally,
k k

size(H v;) < k-3d*- ([log |Ak|] + Zsize(’yj)).
=1 j=1

4. For fractional Ok ideals a,a; of K, we have size(a) < d?size(N(a)) and size([TF_; a;) <
d? Yk size(a;).
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Proof. 1. We have size(mn) = 1+ [log,(|m|) +1logy(|n])] < size(m)+size(n). This generalizes to
larger products. Assume without loss of generality that mq is the largest (in absolute value)
among the m;. Then we have

k k
size(z mj) =1+ [logy | ijﬂ <1+ [logy(k - |mi|)] < size(k) + size(mq).
j=1 j=1

2. We have size(§ - §) = size(ac)+size(bd) < size(a)+size(c)+size(b) +size(d) < size()+size(5),
(by part (i )) which generalizes to larger products.

Write ¢; = 32, and write

Then, by definition and by part (i),

k k
size(q) < size H + size Z(aj H b)) Z size(b;) + max size(a; H by) + size(k).
J
j=1

j=1  t£j j=1 t#]
k k
<2 size(q;) + size(k) < 3 size(q;).
=1 =

3. Note that the size of v = Z§:1 7; is dictated by its rational coefficients in the Og-basis
(B1,--.,Ba), which are just the rational coefficients of v; added together. Hence, size(y) <

3 Z’? 1 size(ry;) by part (ii).
Writing v = ZZ 19:03; and 0 = Z —1 d; i, we obtain

k=1

v-6= (Z gz‘ﬁi)(z difi) = Zgz‘djﬁzﬂj Z (Z 9id; [ Bi3;] ) Br,

where [$;8;]rx € Z denotes the coefficient in Q of §;5; in terms of the basis element S,
ie., BiB; = Zz:ﬂﬁzﬂj]kﬁk- By the fact that 5;3; can be written in the (51, ..., 84)-basis with
integer coefficients bounded by Vd|A|?+2, i.e., |[8:B;]k] < Vd|Ag|¥? < |Ak[|3? (this follows
from the assumptions in the beginning of Section 2.3.3) for all 4, j, k, we see that, by part (ii),

size(y0) = Zsme (Z 9id;( 5 B5] ) < 3d- Z size(gid;) + 3d[log|Ak|])

i,

< 3d*[log |Ak|] + 3dZ size(g;) + size(d;)) < 3d°([log|Ax|] + size(y) + size(d))
7]

For larger products, by dividing the products in two in a binary fashion, we obtain, by
induction,

k k
size(H v;) < k-3d*- ([log |Ak|] + Zsize(’yj)).
=1 j=1
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4. For any integral ideal a C O, we have that size(a) < d?size(N(a)), since a is represented by
its HNF generating matrix (with entries in Z), of which the product of the diagonal entries
must equal N(a). Hence, by the HNF properties, each of the coefficients must be bounded
in absolute value by N(a). For fractional ideals, the scaling of the generating matrix of a
can be chosen to be the denominator of N(a). Hence, also for fractional ideals a holds that
size(a) < d?size(N(a)). By the fact that the product of the diagonals equals the norm, we
also have size(N(a)) < size(a).

It follows then that size([TF, a;) < d? YK, size(a;).
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List of symbols

Symbol Description

a,b,c,... Ideals of the ring of integers Ok of a number field K

Ay The adeles of the number field K

B(t) The ball of radius ¢ in SL, (KR ), with respect to the the distance notation
p (page 25)

B Bound in the definition of the set of all prime ideals P(B) whose norm
is bounded by B (page 31)

B Basis part in (B, I), with B € K"*" a pseudo-bases of a module-lattice
M, sometimes also just a basis in Q"*"

d Degree d = [K : Q] of the number field K

G. Either discrete Gaussian or continuous Gaussian distribution, depending
on the subscript (page 20)

H The hyperplane where the logarithmic embedding of the units O lives
in (page 23)

I Ideal part in (B,I), with I = (ay,...,a,), where (B,I) is a pseudo-basis
of a rank r module-lattice M

K Number field of degree d = [K : Q] and discriminant Ag

L Generally, a lattice

Lr(.) The space of LP-integrable functions over the specified space

M A module (lattice) of rank r over the field K

n The dimension n = d - r of the module lattices occurring in this work
over R

N() The absolute norm of elements of ideals of the field K

O(-),0(+) Landau’s big-O and small-o notation

Ok The ring of integers of K

Ox The unit group of K

p A prime ideal of K

P,P(B) A set of prime ideals of K, generally P = P(B), the set of all prime
ideals with norm bounded by B

r The rank as a module over K, of modules (module lattices) occurring
in this work

r1 The number of real embeddings of K

79 The number of complex embeddings of K

Tu The rank of the unit group Oj

Perf
Roundy,a¢, Roundy o¢

The algorithm rounding a module lattice to a close rational module
lattice (page 32)

size(-)

The number of bits required to represent the algebraic object at hand
(page 15)
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Symbol

Description

A parameter in the continuous randomization (or initial distribution) of
the input module lattice of the random walk method of this paper (see
also B(t)) (page 25)

T, The Hecke operator corresponding to uniform averaging over submod-
ules N C M such that at M/N = Og/p (page 29)

Tp, Tpp) The Hecke operator corresponding to averaging over all T, with p € P
or P(B) (page 31)

X, X, (K) The space of similarity classes of modules lattices over K of rank r
(page 15)

Xra The component of the space of similarity classes of modules lattices over
K of rank r, dictated by the ideal class of a (page 15)

Y, The space of invertible r x r matrices over K up to rotation and scaling
(page 23)

o Balancedness parameter for a module lattice (page 18)

'y The maximum of the quotient between the outermost successive minima,
An(I)/A1(I) over all ideal lattices I of the number field K (page 18)

Ag The discriminant of the number field K

€ A small error parameter in [0, 1], often indicating the failure probability
of an algorithm

€0 The closeness of the Roundp,¢-algorithm to the perfect distribution
Round? ! (page 33)

Aj(A) The j-th successive minimum of the lattice A with respect to the 2-norm
(page 18)

)\g-oo) (A) The j-th successive minimum of the lattice A with respect to the oco-
norm (page 18)

)\JK (M) The j-th successive K-minimum of the module lattice M with respect
to the canonical norm (page 18)

1 The Haar measure on X, (page 15)

Leut The ‘cut’ Haar measure on X, (page 101)

URiem The Riemannian measure on X, (page 22 and page 15)

Po The Gaussian function z — e~ 71717/ (page 20)

o The deviation for the Gaussian function or the (discrete) Gaussian dis-
tribution

02 The initial distribution on X, by ‘folding’ the distribution f, (page 42)
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