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Abstract

The problem of finding short vectors in Euclidean lattices is a central hard problem in
complexity theory. The case of module lattices (i.e., lattices which are also modules over a
number ring) is of particular interest for cryptography and computational number theory. The
hardness of finding short vectors in the asymptotic regime where the rank (as a module) is fixed
is supporting the security of quantum-resistant cryptographic standards such as ML-DSA and
ML-KEM.

In this article we prove the average-case hardness of this problem for uniformly random
module lattices (with respect to the natural invariant measure on the space of module lattices
of any fixed rank). More specifically, we prove a polynomial-time worst-case to average-case self-
reduction for the approximate Shortest Independent Vector Problem (γ-SIVP) where the average
case is the (discretized) uniform distribution over module lattices, with a polynomially-bounded
loss in the approximation factor, assuming the Extended Riemann Hypothesis.

This result was previously known only in the rank-1 case (so-called ideal lattices). That proof
critically relied on the fact that the space of ideal lattices is a compact group. In higher rank, the
space is neither compact nor a group. Our main tool to overcome the resulting challenges is the
theory of automorphic forms, which we use to prove a new quantitative rapid equidistribution
result for random walks in the space of module lattices.
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1 Introduction

1.1 Motivation

A lattice is a discrete subgroup in a Euclidean vector space. It is typically described by a basis,
a collection B = (b1, . . . , bn) of linearly independent vectors, and the lattice is the group Λ =
b1Z + · · ·+ bnZ obtained from all linear combinations with integer coefficients. Since it is discrete,
a lattice contains a non-zero vector of smallest possible Euclidean norm, a shortest vector.

The task of finding such a shortest vector (the Shortest Vector Problem, SVP) is a central hard
problem in complexity theory. More generally, one can look for a lattice vector whose norm is within
a small factor γ ≥ 1 of the shortest (the approximate Shortest Vector Problem, γ-SVP), or for a
collection of n short independent vectors (the approximate Shortest Independent Vector Problem,
γ-SIVP). For small enough approximation factors, problems of this type are believed to be hard,
and the best known algorithms have exponential complexity in the dimension of the lattice, in both
the classical and quantum paradigms. In their hardest regimes, they are even known to be NP-hard
[Mic98; HR07]. However, applications typically fall outside this NP-hard regime, often depend on
the average hardness of the problems, and mobilize lattices with additional algebraic structure, like
module lattices. The main question addressed in this article is:

How hard are lattice problems on average in module lattices?

Average hardness. No NP-hard problem is known to be hard on average (for random instances),
and generating random instances that appear consistently hard is a delicate task. This property
is critical for applications to cryptography: one needs randomly sampled instances of the problem
to be hard with overwhelming probability. Lattice problems are a remarkable family of problems
enjoying some proofs of average-case hardness. This property is typically ensured by proving a
worst-case to average-case reduction: a proof that if random instances of a problem A can be
solved efficiently with good probability, then all instances (even the “worst”) of problem B can be
solved efficiently. Thus, if there exist hard instances of B, then random instances of A are hard. A
self-reduction, when A = B, is particularly interesting, as it implies that random instances of the
problem are, in a precise sense, as hard as they could possibly be. In approximation problems, like
γ-SVP, a reduction might degrade the approximation factor. One strives to keep this loss as small
as possible, to stay in a regime where the problem is hard.

Ajtai [Ajt96] launched the field of lattice-based cryptography by proving a worst-case to average-
case reduction from the approximate shortest vector problem (the worst case, although in a regime
unlikely to be NP-hard) to SIS (the average case, for some carefully designed distribution on the
set of instances). This line of research has since evolved into a front-runner of quantum-resistant
cryptography, now making it into the real world [Nat24b; Nat24a]. SIS, and later LWE [Reg05], have
provided highly fertile ground for cryptography, leading to breakthroughs like fully homomorphic
encryption [Gen10].

Beyond applications to cryptography, understanding worst-case to average-case reductions for
lattice problems helps with the analysis of lattice algorithms. Algorithms such as LLL [LLL82] have
experimentally appeared to perform better than their worst-case analysis suggests, both in terms
of the running time and the output quality. This mystery has found some explanation through the
study of random lattices, see for instance [NS06; KV18]. Indeed, the analysis of algorithms is often
eased by heuristics on their geometry, such as the Gaussian heuristic. Such heuristics are only true
in an average sense, for random lattices. The average case being easier to analyze, a worst-case to
average-case reduction provides a bridge to deduce information about the worst case. This approach
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has already been fruitful in the case of ideal lattices [BDP+20; BPW25], a particular case of module
lattices.

Module lattices. Many variants of lattice problems have been studied, and applications to cryp-
tography and computational number theory motivated algebraically structured variants: finding
short vectors in lattices which are ideals or modules over a number ring (they are called module
lattices, of which ideal lattices are a special case). These can be thought of as lattices with “many
symmetries”, offering opportunities for more complex algebraic manipulations, faster arithmetic,
and shorter representation of elements — all great features for the design of cryptosystems.

A module lattice over a number field K is essentially a lattice Λ ⊂ Kr such that xΛ ⊆ Λ for
any integral element x of the field K (this last condition means that Λ is a module over the ring
of integers OK ⊂ K). This is a simplification of the definition provided in Section 2.3.2. For the
present discussion, we further assume that Λ has full-rank (it contains a basis of the vector space
Kr), and we call r the rank of the lattice. Forgetting about its module structure, the lattice Λ
has Z-rank r · deg(K), where deg(K) = [K : Q] is the degree of the number field, its dimension
as a Q-vector space. There is thus a spectrum of ways to construct large lattices: one can balance
between choosing a field of large degree deg(K), or choosing a large rank r. In one extreme case,
one can let K = Q so deg(K) = 1, and we obtain generic lattices (with no additional module
structure). At the other end of the spectrum, one can consider a large degree field K and set r = 1,
and obtain “rank one” module lattices Λ ⊂ K, also known as ideal lattices; they are in a sense the
“most structured” case.

The computational study of module lattices started in the context of computational number
theory, as the efficient manipulation of ideals in number fields requires seeing them as lattices
(see [Coh13] for a variety of examples). The domain accelerated after its introduction to cryptog-
raphy, first with Ring-LWE [Mic02] (proven to be at least as hard as an ideal version of SIVP),
then with Module-LWE [LS15] (proven to be at least as hard as a module version of SIVP). The
digital signature scheme ML-DSA [Nat24b; DKL+18], and the key-encapsulation mechanism ML-
KEM [Nat24a; BDK+18], both based on module lattices, recently became the first public-key
cryptosystems standardized by the American National Institute of Standards and Technologies
for resistance against quantum adversaries. These cryptosystems are proven secure under the as-
sumption that some module-variants of lattice problems are hard, and it has become critical for
cryptographers to understand this presumed hardness. The modules at play in these schemes have
small rank (at most five). This regime of “small rank” module lattices is precisely the focus of the
present paper.

The invariant probability measure. To study the average hardness of lattice problems, one
first needs to specify a probability measure on the space of instances: what is a random lattice? In
this paper, we work with arguably the most natural choice, a measure on the space of lattices that
is both mathematically canonical, and practically relevant.

Every lattice can be described by a basis, an element of GLn(R). Rescaling has no impact
on the difficulty of finding short vectors, so we only consider lattices of volume 1, with basis in
SLn(R). Now, two bases describe the same lattice if and only if they differ by a change of basis: a
matrix in SLn(Z). Therefore, the space of lattices (of volume 1) can be identified with the quotient
Xn = SLn(Z)\ SLn(R) (see Section 2.3.2 for the case of module lattices). This is a homogeneous
space for the group SLn(R) and it inherits the Haar measure. A fundamental result in reduction
theory is that the space of lattices has finite volume and we can thus normalize the measure to
a probability measure. It is also referred to as the SLn-invariant measure, or simply the invariant
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measure, written µ in this introduction. Several facts motivate the study of this particular measure.

• This measure was first introduced by Siegel [Sie45] to prove that the expected value of the
number of lattice points inside a ball centered at zero is approximated by the volume of
the ball. An important line of research then continued to study more refined such statistics
[Rog55], as well as interactions with algorithms (e.g. [Ajt02; NS06]). This distribution is often
the most natural and convenient choice when speaking of “random lattices”.

• The invariance of the measure also allows for the theory of automorphic forms to be used as
a tool. This rich theory unlocks the spectral analysis of the space L2(Xn) of square-integrable
functions f : Xn → C. As Section 4 shows, we take full advantage of this.

• Lattice problems are believed to be hard, so to hope for a worst-case to average-case reduction,
easy instances must be rare: more precisely, the probability to sample a lattice for which
the problem is easy must be negligible. There are easy instances for SVP: for instance, if a
lattice contains one particularly small vector (exponentially smaller than all other independent
vectors), the LLL algorithm [LLL82] will find it in polynomial time. Such “very imbalanced”
lattices should have small measure. Conveniently, this is the case for the invariant measure.
Sections of the space X containing very imbalanced lattices are referred to as cusps, and they
do have very small µ-volume, a fact quantified in Section 5 for module lattices. In fact, most
of the µ-random lattices, forming the bulk of the space, are rather balanced.

• For a worst-case to average-case reduction, we need the average-case distribution to be ef-
ficiently sampleable. Conveniently, the invariant measure naturally comes up as the limit
distribution of simple random processes. In particular, one can start from an arbitrary lat-
tice (say L0 = Zn ∈ Xn), select a “large” prime number p, and sample a uniformly random
sublattice L ⊆ L0 of index p. The probability distribution of L is, in a precise sense, close
to the invariant measure [CU04; GM03] — we call this phenomenon Hecke equidistribution.1
This convenient construction is deceptively simple, as it compares a discrete distribution to a
continuous distribution, and hides some computational difficulties. It is nevertheless a pow-
erful idea at the heart of our results, and at least suggests that sampling from the invariant
measure should be easy.

Finally, let us point out the main downside of the invariant measure: it is continuous. In a
computational context, we do not actually manipulate continuous values. Continuity is extremely
convenient for algorithmic design and analysis, but in the end, all needs to be discretized, and
one must prove that the analysis carries through this discretization. In particular, the average-case
distribution for lattice problems is actually a discretized version of the invariant measure. These
issues are the object of Section 9.

Prior work, and the inspiring case of ideal lattices. As fruitful as the worst-case to average-
case reduction of Ajtai [Ajt96] has been, it has drawbacks. SIS can be posed as a shortest vector
problem, so Ajtai’s reduction can essentially be seen as a self-reduction (not quite, but an SIVP
variant achieves that [Ajt99]) to an average-case distribution that does not resemble the invariant
distribution (the SIS distribution is supported on a “small” subset of carefully designed lattices).
Yet, the reduction does not preserve the dimension of the lattice. This dimension change incurs
a loss in the approximation factor — an obstacle towards approaching an NP-hard threshold. In
our regime, this causes an additional issue: we work in fixed rank, and the analogous reductions

1This is short for the equidistribution of Hecke points, as it is commonly referred to in the literature.
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for modules do not preserve the rank [LS15]. Changing the rank makes for weaker asymptotic
statements — especially since there seems to be a hardness gap between rank 1 and other small
ranks (see [LPS+19] for an analysis on the relative hardness across ranks).

Self-reductions of SVP and variants have successfully been developed for ideal lattices (i.e.,
rank 1). They first arise in the work of Gentry [Gen10] on fully homomorphic encryption. There,
he develops a worst-case to average-case reduction for the closest vector problem (CVP, a problem
closely tied to SVP) in ideal lattices. The distribution he is considering is the uniform distribution
on prime ideals of bounded norm. Translating this result to SIVP through the quantum equivalence
of Regev [Reg05] results in a worst-case to average-case (quantum) reduction for SIVP where the
average-case distribution is uniform on the inverse of prime ideals of bounded norm.

The ideal shortest vector problem was then approached by de Boer, Ducas, Pellet-Mary, and
Wesolowski [BDP+20]. They prove a random self-reduction for the average-case distribution defined
by the invariant measure, assuming the Extended Riemann Hypothesis (ERH). Their reduction is
based on a continuous random walk on the space of ideal lattices, viewed as the so-called Arakelov
class group. The use of this rich structure was a fruitful addition to the literature on lattice-based
cryptography. It was used in the article [FPS+23a] to extend Gentry’s work to the uniform dis-
tribution on prime ideals (instead of their inverse), with applications to the NTRU cryptosystem.
Surprisingly, this work critically relies on the results of [BDP+20] on the invariant measure to ana-
lyze a different distribution on ideal lattices. The work [BDP+20] provides a rigorous understanding
of random ideal lattices (assuming the Extended Riemann Hypothesis) which has unlocked algo-
rithmic advances. It was used by de Boer [Boe22] to develop the first polynomial time algorithm
to compute power residue symbols, and more recently, it has unlocked the first rigorous subexpo-
nential algorithms for some of the most fundamental problems in algebraic number theory like the
computation of class groups and unit groups [BPW25]. We are hoping that our generalization from
the ideal case to the module case will find such varied applications.

The article [BDP+20] is a direct precursor of our paper, both through its choice of the natural
invariant measure, and through its methods. They transfer computational problems in an ideal
lattice to random sublattices, effectively performing a random walk in the space of ideal lattices.
This space is a compact and abelian topological group, and the study of this random walk boils
down to a study of generalized class groups and Fourier analysis.

Extending this strategy to modules of higher rank presents significant challenges, related to the
fact that the space of module lattices in rank > 1 is no longer compact, nor is it a group. A key
insight is that the Fourier analysis underlying [BDP+20] is the theory of automorphic forms for
GL(1). The much deeper automorphic machinery for the non-commutative group GL(r), r > 1,
provides a higher rank analog, as already observed in [DK22]. However, exploiting it has proved
considerably more delicate due to the necessity of studying important, yet historically overlooked
aspects with high precision.

A concrete and fundamental issue arising with r > 1 is imbalancedness. On one hand, ideal
lattices cannot have extremely short vectors: their shortest vectors are not much shorter than the
vectors of their shortest bases — we say that these lattices are balanced. On the other hand, mod-
ule lattices of higher rank can be arbitrarily imbalanced. Topologically, this manifests into the fact
that the space of module lattices for rank r > 1 is not compact. This is an entirely new dimen-
sion of the problem, and it leads to serious limitations to a naive generalization of the random walk.

We note that the idea of random walks giving rise to reductions and their study using automor-
phic theory also emerged in another branch of cryptography based on abelian varieties, in particular
elliptic curves. See for instance [JMV09] and [PW24]. In contrast to the above, this setting is dis-
crete by nature, given by graphs of abelian varieties connected through isogenies. For example, in
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the case of supersingular elliptic curves, one may study random walks using automorphic forms on
definite quaternion algebras [PW24].

1.2 Results

We obtain in this paper the first random self-reduction of a shortest vector problem for module
lattices beyond ideal lattices, Theorem 1. This also marks the first application of automorphic forms
on GL(n) to the complexity theory of lattice problems.

Let us start by formalizing the main computational problem we consider in this article, γ-SIVP.
Recall that the successive minima of a lattice L of dimension n are defined as

λj(L) = min
{
λ ∈ R>0

∣∣∣∣∣ there exist R-linearly independent vectors (xi)j
i=1

such that xi ∈ L and ∥xi∥ ≤ λ for all i

}
,

for j ∈ {1, . . . , n}. Given as input a basis B of an n-dimensional lattice L and an approximation
factor γ ∈ R≥1, the γ-shortest independent vector problem (or γ-SIVP) is the computational task
of finding R-linearly independent lattice vectors x1, . . . , xn ∈ L that satisfy ∥xi∥ ≤ γ · λn(L) for
all i ∈ {1, . . . , n}. The problem remains the same when we look at module lattices: the input is a
module lattice M , and we require the same condition ∥xi∥ ≤ γ · λn(M).

Let us now briefly introduce the average-case distribution: the discretized version of the invariant
probability measure µ on the space Xr(K) of module lattices of rank r over a number field K. It
can be described through a rounding algorithm, which we call RoundLat and defined in Section 3.
Given an arbitrary lattice L, the output RoundLat(L) is a randomly generated rational module
lattice (one which can be represented and manipulated on a computer or, more formally, on a
Turing machine) that is geometrically close to L. We write RoundLat(µcut) for the distribution
on rational module lattices coming from applying RoundLat to µ-random lattices (with a tail-cut,
removing a negligibly small section of the space, to ensure that the distribution is supported on a
compact set). This defines the average case; see Section 10 for the precise definition.

We insist that RoundLat replaces any lattice with a “very close” one: the distinction between
µcut and RoundLat(µcut) is similar to the distinction between the continuous uniform distribution
on [0, 1], and its discretization by rounding real numbers in [0, 1] to a certain number of bits of
precision.

Theorem 1. Let K be a number field of degree d and discriminant ∆K . Fix a rank r ∈ Z>1,
and let n = rd. Assume ERH for the L-function of every Hecke character of K of trivial modulus.
Let O be an oracle for γ′-SIVP which succeeds with probability2 p = 2−o(n) when its input follows
distribution RoundLat(µcut). There is a probabilistic polynomial time algorithm for γ-SIVP over
any module lattice of rank r over K with γ = polyr(|∆K |1/d, d) · γ′, making an expected number of3
polyr(log |∆K |) · p−1 queries to O.

This result relies heavily on a quantitative Hecke equidistribution theorem for specific natural
test functions that is uniform in all parameters. The full statement is given in Theorem 3, and
we believe it is of independent interest. See a special case of this theorem in a simplified version,
Theorem 2, in the next section.

2The oracle is Monte Carlo in the sense that when it does not succeed, it might still return an incorrect response.
The assumption that the error probability satisfies p = 2−o(n) is not fundamental: the problem can be solved in time
2O(n) anyway, and we did not attempt to fine-tune our approach for the narrow regime where p is in 2−O(n) but not
in 2−o(n).

3The notation f = polyr(g) means that |f | = |g|O(1) where the implicit constants in O(1) may depend on r (but
on no other parameter).
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Indeed, the problem of equidistribution of Hecke points has a rich history: it was already consid-
ered by Linnik and Skubenko [LS64] and became particularly influential at the turn of the century
through its generalizations (see e.g. Sarnak’s ICM address [Sar91]). Solutions of greater and greater
generality were proven using a wealth of methods, from representation theoretic in [COU01] to
ergodic theoretic, based on measure rigidity in [EO06] (see the cited papers for more references).

Most of the literature has focused on proving statements as general as possible, with explicit
and sharp rates of equidistribution for general test functions. However, we return to the classical
interpretation in terms of lattices and ask the following natural question. Let L be any given lattice
and consider a smoothened δ-distribution centered at L (i.e. take a bump function as test function).
How does the equidistribution rate of Hecke operators applied to this distribution depend on L
and, in particular, on the rank and balancedness of L? Adapting the work of Clozel–Ullmo [CU04],
introducing geometry of numbers and carefully making constants explicit, we give an answer to this
question. We expect further interesting refinements to be possible.

We rely on another result that we believe to be of independent interest: we prove that random
module lattices are somewhat balanced with overwhelming probability; it is the content of our
Theorem 4. This is related to recent work of Gargava, Serban, Viazovska and Viglino [GSV+25b;
GSV+25a] but our methods are different. Precisely, relying on computations by Thunder [Thu98]
and generalizing work of Shapira and Weiss [SW14], we bound the proportion of semistable lattices
in the sense of Grayson–Stuhler [Gra84].

1.3 Technical overview

In this section, we give an overview of our worst-case to average-case reduction for γ-SIVP.

Randomizing lattices. For the moment, let us forget about modules, and consider generic
lattices. The starting point of our strategy is rather simple: we leverage the fact that given a lattice
L0 and a large prime p, a uniformly random sublattice L ⊆ L0 of index p is equidistributed in
the space of lattices, with respect to the measure µ. Before properly quantifying this property
and translating them to module lattices, let us sketch how it can be used to build worst-case to
average-case reductions.

Suppose we have an algorithm for γ-SIVP that works well on average: given a µ-random lattice
L, the algorithm finds linearly independent vectors (xi)n

i=1 such that ∥xi∥ ≤ γ · λn(L) with good
probability. Now, we are given a lattice L0, a worst-case instance. A straightforward idea would be
to pick a large enough prime p and a sublattice L ⊂ L0 of index p, and use our algorithm on L.
As L is equidistributed, we expect the algorithm to find linearly independent vectors (xi)n

i=1 such
that ∥xi∥ ≤ γ · λn(L) with good probability. Since L ⊂ L0, these vectors are also in L0. However,
proposing (xi)n

i=1 as a solution of SIVP for L0, the lengths must be compared to λn(L0) instead of
λn(L).

In general, we only have λn(L) ≤ pλn(L0) (an inequality reached with L0 = Zn ⊃ Zn−1⊕ pZ =
L), which suggests that (xi)n

i=1 only solves pγ-SIVP, a considerable loss in the quality of the
solution. However, the extreme case λn(L) ≈ pλn(L0) is actually rare, and in a precise sense,
for random sublattices L, one expects λn(L) ≈ p1/nλn(L0). Indeed, as L is equidistributed, the
Gaussian heuristic applies, thus we expect λn(L) to be of the order of det(L)1/n = p1/n det(L0)1/n =
O(p1/nλn(L0)). This “balancedness of random lattices” is studied in more detail in Section 5, where
we prove Theorem 4.

The problem of imbalancedness. In conclusion, this simple strategy appears to provide a
worst-case to average-case reduction for SIVP, with a loss of p1/n in the approximation factor.
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Now, what does p sufficiently large mean? On one hand, we want it to be small, to stay in a regime
where SIVP is as hard as possible: the smaller the better, but let us aim for an approximation factor
that is polynomial in the dimension n (a regime in which all known algorithms have exponential
complexity). In other words, we require that p1/n = nO(1), i.e., p = nO(n). On the other hand,
we require p to be large enough for the random sublattice L to be equidistributed. This is where
difficulties arise, as this constraint actually depends on the initial lattice L0.

For instance, consider the lattice Lε = εZ ⊕ Zn−1, where ε ∈ R>0 is very small. It contains
the small vector xε = (ε, 0, . . . , 0). For any index-p sublattice L ⊂ Lε, we have pxε ∈ L, so
λ1(L) ≤ ∥pxε∥ = pε. If L were equidistributed, we would expect λ1(L) to be of the order of
det(L)1/n, yet λ1(L) ≤ pε and det(L)1/n = (pε)1/n. Therefore, for index-p sublattices of Lε to be
equidistributed, we need p to be at least as large as ε−1.

These lattices Lε, with vanishingly small ε, are imbalanced, they contain unusually short vectors.
We can think of these imbalanced lattices as living in a remote corner of the space of lattices, so far
away that to reach the rest, we need to take a gigantic step of index p > ε−1. For such initial lattices
L0 = Lε, the simple reduction sketched above cannot work, as the loss p1/n in the approximation
factor could be arbitrarily large.

A trichotomy. This notion of balancedness is key, and to quantify it properly, let us return to
our actual objects of interest: module lattices. For the rest of the article, we fix a number field K
of degree d, we fix a rank r = O(1), and we will consider module lattices of rank r over K. Such
a module lattice M is still a lattice in the usual sense, of dimension dr, and we can speak of its
successive minima λi(M). Its module structure gives rise to a convenient variant of this notion, the
K-successive minima λK

i (M) defined as

λK
j (M) = min

{
λ ∈ R>0

∣∣∣∣∣ there exist K-linearly independent vectors (xi)j
i=1

such that xi ∈M and ∥xi∥ ≤ λ for all i

}
,

for j ∈ {1, . . . , r}. Each λi(M) is approximately as large as λK
⌈i/d⌉(M) (see Lemma 2.13). Now, we

say that a module lattice M is α-balanced if λK
j+1/λ

K
j ≤ α for all j ∈ {1, . . . , r − 1}.

As discussed above, the straightforward reduction consisting in taking random sublattices fails
for very imbalanced lattices like Lε. The notion of α-balancedness measures this precisely, and
allows us to divide our reduction into three regimes, illustrated in Figure 1.

• The bulk. “Most” lattices are fairly balanced: they form what we call the bulk of the space.
Informally, we say that M belongs to the bulk if it is α-balanced with α = dO(1). We prove
that for such M , the simple strategy sketched above (reducing SIVP to random sublattices)
can be made to work. In Section 1.3.1, we give more details on this regime and an overview
of the proof of equidistribution. The full proof is the object of Section 4 and Section 5.

• The cusp. As illustrated with Lϵ, the simple strategy fails for imbalanced lattices. When
the imbalancedness is extreme enough, it can be detected and exploited by polynomial time
algorithms like LLL. This region of the space is referred to as the cusp, and roughly consists
of lattices which are not α-balanced for some threshold α = 2O(d). This region has very small
µ-measure, and can be thought of as very “thin” and “elongated”, with lattices like Lϵ going
“to infinity” as ε→ 0 (see Figure 1). In Section 1.3.2, we give an overview of the strategy to
reduce SIVP from the cusp to the balanced case. The full proof is the object of Section 6.
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Bulk Flare Cusp c

Figure 1: Schematic illustration of a single connected component of the space of module lattices.

• The flare. Between the bulk (where randomization works well) and the cusp (where algo-
rithms like LLL come in handy) remains a region of moderately-balanced lattices: the flare4.
It consists of lattices that are 2O(d)-balanced, but not dO(1)-balanced. From such a lattice, we
prove that we can reduce SIVP to another lattice which is in the bulk. We give an overview
of this step in Section 1.3.3. The full proof is the object of Section 7.

1.3.1 The bulk

In this section, we explain our technique in the regime where lattices are balanced: we start from a
lattice L0 in the bulk. As already explained, we reduce SIVP in L0 to SIVP in a random sublattice
L ⊆ L0 — but we are now in the context of module lattices. We work in the space Xr of rank-r
module lattices (over K). It is defined analogously to the space SLn(Z)\SLn(R) of generic lattices,
but the module structure introduces technicalities, the details of which are deferred to Section 2.3.2.

Instead of a prime number p, and a sublattice L ⊆ L0 of index p (i.e., L0/L ∼= Z/pZ), we
consider a prime ideal p (in the ring of integers OK of K) and consider sub-module lattices L ⊆ L0
of index N(p) with L0/L ∼= OK/p as OK-modules (we might say that L has “index p” in L0).

Random processes and Hecke operators. This process of taking random sublattices can be
thought of as a random walk in the space Xr. It can be formalized as an operator on probability dis-
tributions of Xr, or, more conveniently, on the Hilbert space L2(Xr) (of square-integrable functions
Xr → C for the measure µ). Given a prime ideal p in OK , the Hecke operator Tp : L2(Xr)→ L2(Xr)
is defined for each f ∈ L2(Xr) and each L ∈ Xr as

Tpf(L) = 1
Dp

∑
M⊂L

L/M∼=OK/p

f(M),

where Dp = 1+N(p)+ . . .+N(p)r−1 is the number of terms in the sum. This operator is averaging
over all “index p” sublattices. Its probabilistic interpretation is as follows. Suppose that f ∈ L2(Xr)
is a probability density function. Then, Tpf is the probability density function for the experiment
which consists in sampling a lattice L with density f , then selecting a uniformly random sublattice
of L of index p. Assuming that the measure µ is a probability measure implies that the constant
function 1 is its probability density function. Note that Tp1 = 1.

4This notion is not canonical. It comes from the gradual widening in Figure 1.
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The idea that, for p large enough, sublattices of index p are equidistributed can be formalized
as follows. For an initial probability distribution f ∈ L2(Xr), the L1-distance (which is the notion
of statistical distance we use in this paper) ∥Tpf −1∥1 converges to 0 as N(p) grows. To apply this,
we must now ask for an explicit rate of convergence, which will depend on f .

Note that, starting from a lattice L0, it is tempting to consider the Dirac distribution δL0

centered at L0, and to study the distribution TpδL0 of uniformly random sublattices of L0. However,
these are discrete distributions in a continuous space: no matter how large p is, the distribution
TpδL0 remains discrete and ∥TpδL0 − 1∥1 = 1. Instead, we “smoothen” the distribution δL0 , and
consider a continuous distribution φL0 that is highly concentrated around L0. One can think of
it as the uniform distribution in a small ball around L0: it samples random lattices which are,
geometrically, very close to L0. The precise definition of φL0 is the object of Section 4.1.

Equidistribution via the theory of automorphic forms. The question becomes: given a
lattice L0 and a probability density function φL0 concentrated around L0 as above, how fast does
TpφL0 tend to 1 in L1-norm as N(p) grows? In other words, how large does N(p) need to be for
the distance ∥TpφL0 − 1∥1 to be negligibly small?

To answer this, we follow the ideas of Clozel–Ullmo in their work on Hecke equidistribu-
tion [CU04]. They apply the principle behind the Weyl criterion, which suggests spectrally de-
composing φL0 and analyzing the action of Tp on the spectral components, given in terms of
automorphic forms or automorphic representations. For GL(r), doing this relies on deep theorems
by Langlands and Moeglin–Waldspurger, who made the decomposition explicit enough for compu-
tations. We review this theory in Section 2.7.

The main input is the spectral gap for Tp, an important object of study in number theory
(see the Ramanujan Conjecture [BB13]), consisting in strong bounds for its eigenvalues. However,
generalizing Clozel–Ullmo [CU04] to number fields requires some care due to the fact that L2(Xr)
contains a large subspace behaving like L2(X1), where Tp acts by unitary characters. Its eigenvalues
thus have absolute value 1 there.

To make this formal, we introduce a “splitting” of GL(r) into SL(r) and GL(1) using the
determinant function (see Section 2.6). It corresponds to a decomposition

L2(Xr) = L2
det(Xr)⊕ L2

det(Xr)⊥.

On L2
det(Xr)⊥, the operator Tp has small eigenvalues, whilst the space L2

det(Xr) captures the spectral
theory of GL(1). We also use this splitting through corresponding “distance functions” that allow
us to define φL0 : first, take a basis z ∈ GLr(KR) for L0 and construct the normalized bump function
fz that is the characteristic function of a ball in the SL(r)-direction and a Gaussian in the GL(1)-
direction, both centered at elements corresponding to z. Then we average fz over all bases of L0 to
obtain φL0 (this is sometimes called an automorphic kernel). See Section 4.1 for more details.

Schematically, we now do the following. We choose a special basis of automorphic forms (ϖ) for
the space L2

det(Xr)⊥ and (χ) for the space L2
det(Xr). In particular, there is the constant function

1 = χ0. These spaces have discrete, as well as continuous spectrum, and we informally write the
decomposition of φL0 as

φL0 =
∫

χ
⟨φL0 , χ⟩χ+

∫
ϖ
⟨φL0 , ϖ⟩ϖ.

Crucially, the operator Tp acts on ϖ and χ by scalars. It is normalized so that Tp1 = 1. By
representation theoretic methods, one may compute that Tp acts on ϖ with eigenvalue bounded in
absolute value by rN(p)−3/8, fact which relies on bounds towards the Ramanujan conjecture.
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However, on χ it acts by χ(p), a number of absolute value one. Fortunately, we have a phe-
nomenon generalizing the orthogonality of characters: a sum of the shape ∑p χ(p) exhibits cancel-
lation for all χ ̸= χ0. A strong quantitative version of this fact was proved and used in [BDP+20]
to treat the case of ideal lattices (the GL(1) case) under the Extended Riemann Hypothesis. We
therefore study an average of Hecke operators

TP = 1
|P|

∑
p∈P

Tp,

where P consists of all primes of norm at most B for some B > 1. At the level of the algorithm,
this means we randomize the prime p.

The spectral gap and the results of [BDP+20], together with Parseval’s identity, show a bound
of the rough shape (see below for a more precise statement)

∥TPφL0 − 1∥ =
∥∥∥∥∫

χ ̸=χ0
⟨φL0 , χ⟩TPχ+

∫
ϖ
⟨φL0 , ϖ⟩TPϖ

∥∥∥∥
≤ rd3/2B−3/8 ∥φL0 − 1∥ ≤ rd3/2B−3/8 ∥φL0∥ .

This generalizes the work of Clozel–Ullmo to number fields.
However, we turn to the question of how this rate of equidistribution depends on L0: we must

bound ∥φL0∥, which is one of our new contributions. We reduce this to a counting problem that has
been encountered in other contexts of analytic number theory. When K = Q, taking a basis matrix
z ∈ SLn(R) to represent L0, it asks for a bound on the number of γ ∈ SLn(Z) such that γz lies in a
ball of small radius around z in the symmetric space SLn(R)/ SO(n). While a generalization of the
classical circle problem asks for bounds uniform in the radius, in this case we require uniformity in
the center of the ball. Indeed, if z goes deeper into the cusp, defining a very imbalanced lattice L0,
then this number of γ grows.

We solve this problem over any number field in Section 4.2.2, producing bounds in terms of
the K-successive minima of the lattice L0. Considering lattices defined by diagonal matrices and
unipotent γ, our bounds seem to be essentially sharp.

Piecing everything together, we obtain the quantitative equidistribution theorem, Theorem 3,
with very explicit dependence on all parameters. We give a simplified variant here to point out the
quantities that show up.

Theorem 2 (Hecke equidistribution theorem: special case). For ℓ prime, let K be the ℓ-th cyclo-
tomic field, and let d = ℓ− 1 be its degree. Let Xr(K) be the space of rank r module lattices over K
equipped with the invariant probability measure µ. Let φL0 be the bump function on Xr(K) centered
around a lattice L0 defined in Section 4.1, and let 1 denote the constant 1 function on Xr(K). If p
is a prime ideal of norm p, define Tp as the Hecke operator averaging over submodules with quotient
space given by OK/p. For a large parameter B ≫ d log d, let

TP = 1
|P|

∑
p∈P

Tp,

where P is the set of primes of norm at most B. Finally, assume ERH for the L-function of every
Hecke character of K of trivial modulus. Then, for any ε > 0, if L is α-balanced, we have

∥TPφL0 − 1∥ = O
(
d3/2+εB−1/2+ε + (rd)O(r2d)αO(r3d)B−3/8+ε

)
where the implied constants depend only on ε.
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Note that the Q-dimension of a module lattice L over a degree d field K is given by n = dr.
For the quantity ∥TPφL0 − 1∥ to be negligible, e.g. smaller than 2−n, we must have that

B ≫ max((rd)Cr2d, αCr3d) (1)

for some large enough constant C > 0. With such B, the process of choosing a random sublattice
L ⊂ L0 produces a µ-random lattice L (up to a negligible error).

Following the steps and observations described above, we can now solve SIVP for L0 by solving
it in L: we find linearly independent vectors (xi)n

i=1 in L such that ∥xi∥ ≤ γλn(L), and since L is
µ-random, we have with overwhelming probability that λn(L) is roughly bounded by det(L) 1

n =
O(B1/nλn(L0)) (Theorem 4). This results in a loss of B1/n in the approximation factor. Minimizing
B above, this remains polynomial in n if α ≪ nO(1/r). This means that the randomization works
well when L0 is α-balanced for5 α = polyr(d). This region of the space with polynomially-bounded
α constitutes the bulk as defined above.

As this randomization requires L0 to be balanced, we next show how to reduce SIVP in imbal-
anced lattices to the balanced case.

1.3.2 The cusp

Very imbalanced lattices are generally speaking easier instances of short vector problems due to
the existence of the LLL algorithm, as previously noted. However, applying such an algorithm in
our situation still requires some careful lattice “surgery”, cutting and glueing together instances
following a divide and conquer strategy. We obtain in Theorem 5 a reduction from SIVP in any
module lattice of rank r to SIVP in at most r module lattices, still of rank r, but now with the
guarantee that they are somewhat balanced (they are in the flare).

Finding dense sublattices. The idea is the following. Consider a lattice L that is not α-
balanced, for some α (large enough, and part of our task here is determining what large enough
means). There is an index k such that λK

k+1(L) > αλK
k (L). This translates to a gap of the form

λj+d(L) > αλj(L) between the standard successive minima. One can compute an LLL-reduced
basis (bi)i of L, with the guarantee that

∥bi∥ ≤ 2(rd−1)/2λi(L),

for all i. If α > 2(rd−1)/2, we obtain that ∥bi∥ < λj+d(L) for all i ≤ j. This means that the first j
vectors founds by LLL are all in the subspace generated by the first j+d−1 smallest vectors of the
lattice. This is not sufficient yet, but under a slightly stronger bound for α, and looking at module
sublattices, we realize that LLL reveals K-independent vectors (b′i)k

i=0 such that ∥b′i∥ < λK
k+1(L). In

particular, these vectors span the same K-subspace V as the k first K-minima. We can therefore
deduce a basis of L′ = L ∩ V : a sublattice of L′ whose K-minima are exactly λK

1 (L), . . . , λK
k (L).

The detailed proof is the object of Lemma 6.2. Finding short vectors in L′ immediately reveals
short vectors in L. Furthermore, while L′ might still not be α-balanced, it has at least one fewer
gaps than L (the one separating λK

k (L) from λK
k+1(L)). A recursive application of this strategy

ultimately leads to a lattice with no gaps left: an α-balanced lattice.
5Note that the dependence in the rank is exponential, hinting at difficulties for the regime asymptotic in r.
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Lattice surgery. Note that λ1(L′) = λ1(L), so a solution for SVP can easily be transferred.
But for SIVP, we need to find n = rd independent vectors of L, that is more than exist in L′. A
solution of SIVP in L′ does not give a complete solution for L: we also need to solve SIVP in a
“complementary lattice”: the orthogonal projection π(L) of L along V = spanK(L′). The successive
minima of π(L) are very close to λK

k+1(L), . . . , λK
r (L); the small discrepancy causes a small loss in

the approximation factor. This is proved in Lemma 6.3.
In summary, LLL can detect large gaps between λK

k (L) and λK
k+1(L), and can effectively split

the lattice L “around that gap”, resulting in two lattices L′ (or rank k) and L′′ (of rank r−k) such
that the minima of L′ are λK

1 (L), . . . , λK
k (L), and the minima of L′′ are almost λK

k+1(L), . . . , λK
r (L).

To solve SIVP in L, it is sufficient to solve SIVP in L′ and L′′. Applying this recursively results
in a collection of lattices L1, . . . , Lt whose successive minima have no remaining large gap, and
whose ranks sum to r (Lemma 6.5). This reduction of the dimension sounds good in practice, but
to ultimately achieve a worst-case to average-case reduction, we wish to preserve the dimension.
Therefore, in a final step, we show how each Li can be embedded in a module lattice of rank r in
a way that preserves its balancedness (Lemma 6.6).

1.3.3 The flare

If α is larger than some polynomial in d but not exponentially large, we must proceed differently.
The idea is still to take sublattices with the goal of reducing the size of α, which measures “gaps”
in between the successive minima. The principle is as follows.

Take a unimodular lattice L of rank 2 over Q with shortest vector v of very small size λ1. There
exists a reduced basis (v, w) of L with w a vector of much larger size λ2 ≍ 1/λ1. Choosing a sublattice
of index p amounts to multiplying either v or w by p and taking some linear combinations to form
a new basis. Put another way, one chooses a subspace of dimension one inside the 2-dimensional
Z/pZ-vector space L/pL.

There are p+ 1 possibilities to do so, yet only one that contains the projection of v: indeed, v
is a primitive vector and spans a unique one-dimensional subspace in L/pL. Thus, with very high
probability, i.e. p/(p+ 1), the sublattice does not contain v, but it contains pv — the basis of the
new sublattice is of the form (pv, w+kv) for some 0 ≤ k ≤ p−1. If pλ1 < λ2, then pλ1 must be the
shortest length in the sublattice, and λ2 remains a good approximation for the second successive
minimum. The gap between λ1 and λ2 can thus be reduced by 1/p.

To generalize this idea to higher rank n, we must use different types of Hecke operators. This
corresponds to taking sublattices with different, fixed structures of the quotient space: consider
those sublattices corresponding to subspaces of L/pL of dimension k for some 1 ≤ k ≤ n− 1. Now,
let 1 ≤ i ≤ n− 1 and assume we have a large i-th gap λi+1/λi and p < λi+1/λi. Then we can prove
that, with high probability, sublattices L′ ⊂ L such that L/L′ ∼= (Z/pZ)i have i-th gap reduced by
1/p, i.e., equal to λi+1/pλi, and all other gaps remain approximately the same (see Section 7.1).

With this technique, we could close “exponentially large” gaps, but it requires knowing at which
index the gaps are, and how large they are. Gaps in the flare are moderately large, so they cannot be
detected in the same way as gaps in the cusp (Section 1.3.2). We therefore “guess” the dyadic sizes
and apply the process. There are O(n logn) dyadic intervals for each gap, but there are r-many
gaps. The number of possible guesses is thus exponential in the rank — this is fine in our fixed-rank
regime, but is another big obstacle to treating generic lattices. Once the correct guess has been
found, SIVP is reduced from the flare to the bulk (see Section 7).
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2 Preliminaries

2.1 Notation

For every abelian group A, let AR denote A ⊗ R. For a representation V of a group G, let V G

denote the space of fixed points {v ∈ V | gv = v for all g ∈ G}.
For two complex-valued functions f and g, we occasionally write f(x)≪ g(x) to mean f = O(g).

We write f = Or(g) of the implicit constants depend on a parameter r. We write f = poly(g) to
signify |f | = |g|O(1) and f = polyr(g) to signify |f | = |g|Or(1). For n ∈ Z>0 we denote [n] =
{1, . . . , n}. The expression log x denotes the natural logarithm of x and log2 x denotes the base 2
logarithm. For a finite set X, we denote by |X| its cardinality.

2.2 Number fields

Let K be a number field of degree d with signature (r1, r2) (i.e., there are r1 real embeddings
K → R, and 2r2 complex embeddings K → C). Let OK be its ring of integers with discriminant
∆K and denote by Cl(K) the ideal class group. Let hK be the class number, RK the regulator, and
wK the number of roots of unity in K. Let ru = r1 + r2 − 1 be the rank of the group of units O×K .

We fix a set of r2 complex embeddings {σ1, . . . σr2} such that the union of {σi, σi} exhausts all
complex embeddings. We have that KR ∼= Rr1 × Cr2 and there is a natural embedding K → KR,
with the real components given by the r1 real embeddings x 7→ ρ(x) and the complex components
given by the r2 embeddings x 7→ σ(x) fixed above. We call this map the Minkowski embedding.

There is a unique positive involution a 7→ a∗ on KR given by complex conjugation in each factor
under the isomorphism with Rr1 × Cr2 . The canonical metric on Rr1 × Cr2 is given by

⟨x, y⟩0 =
∑

ρ

xρyρ +
∑

σ

2 Re(xσyσ) = trKR/R(x · y∗).

At the non-archimedean places, given by prime ideals p ∈ OK , we have the completions Kp of
K and Op of OK . Let ÔK = ∏

pOp denote the profinite completion of OK and AK = KR ×
∏′

pKp

the ring of adèles of K. We refer to [Neu99] for more details on these constructions.

2.3 Lattices

2.3.1 Euclidean KR-modules

A Euclidean KR-module of rank r is a pair (V, ⟨·, ·⟩) where V is a free KR-module of rank r
and ⟨·, ·⟩ : V ⊗R V → R is a positive definite inner product on the real vector space V such that

⟨ax, y⟩ = ⟨x, a∗y⟩ for all x, y ∈ V and a ∈ KR.
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Example 2.1. The module V0 = Kr
R equipped with the standard inner product

⟨x, y⟩0 =
r∑

i=1
trKR/R(xiy

∗
i ) =

r∑
i=1
⟨xi, yi⟩0

is a Euclidean KR-module of rank r. More generally, for g ∈ GLr(KR), the KR-module V = Kr
R

equipped with ⟨x, y⟩ = ⟨gx, gy⟩0 is a Euclidean KR-module of rank r, and g : V → V0 is an
isomorphism.

Any abstract Euclidean KR-module is isomorphic to the more concrete V0. To see this, first
let (ev)v be the primitive idempotents of the R-algebra KR indexed by the infinite places v of K,
meaning that evKR ∼= R if v is a real place and evKR ∼= C if v is a complex place. Note that e∗v = ev

for all v.
Now let V be a Euclidean KR-module of rank r. Then the ev act as self-adjoint idempotents

on V , i.e. they induce an orthogonal decomposition

V =
⊕

evV

that commutes with the action of KR.
Let v be a real place of K. Then evV is a real Euclidean space of dimension r, and therefore

there exists an isomorphism gv : evV → Kr
v
∼= Rr to the standard Euclidean space of dimension r.

Let v be a complex place of K, fix an isomorphism Kv
∼= C, and let W be the C-vector space evV

of dimension r. For x, y ∈W , define

H(x, y) = ⟨x, y⟩ − i⟨ix, y⟩ ∈ C,

so that ⟨x, y⟩ = ReH(x, y). Then the identity ⟨ax, y⟩ = ⟨x, āy⟩ for x, y ∈ W and a ∈ C implies
that H is a positive definite Hermitian form on W . Therefore, there exists an isomorphism gv : W →
Cr to the standard Hermitian space of dimension r. In particular, we have

⟨x, y⟩ = ReH(gvx, gvy)

for all x, y ∈ evV .
Putting all places together, there exists an isomorphism g : V → V0 of Euclidean KR-modules.

2.3.2 Module lattices

A module lattice of rank r is a pair (M, ⟨·, ·⟩) where M is a projective OK-module of rank r
and (MR, ⟨·, ·⟩) is a Euclidean KR-module. We will often omit ⟨·, ·⟩ from the notation.

Example 2.2. Let M0 ⊂ V0 be an OK-sub-module such that M0 ·R = V0, i.e. that is also a lattice
in V0. Then (M0, ⟨·, ·⟩0) is a module lattice. We refer to those as embedded module lattices.

LetM be an arbitrary module lattice. By the previous section, there exists an isomorphism g : MR →
V0 of Euclidean KR-modules. Since M is projective, the restriction of g to M is injective. In other
words, (M, ⟨·, ·⟩) is isomorphic to an embedded module lattice.

Let λ ∈ R>0. A similitude f : M1 → M2 of factor λ is an isomorphism of OK-modules that
multiplies the inner product by λ. An isomorphism of module lattices is a similitude of factor 1, i.e.
an isomorphism of OK-modules that preserves the inner product.

Let Xr(K), also denoted Xr when K is clear from the context, be the space of similarity classes
of modules lattices of rank r. We recall that any such module lattice is isomorphic as an OK-module
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to Or−1
K ⊕ a for an ideal a in some fixed set of representatives of the ideal class group of K. Using

the Minkowski embedding OK → KR, this implies that we have an isomorphism

Xr(K) ∼=
⊔

a∈Cl(K)
GLr(OK , a)\GLr(KR)/(Ur(KR) · R>0), (2)

where Ur(KR) = {g ∈ GLr(KR) | g(gt)∗ = id}, the group R>0 is embedded via λ 7→ (1 ⊗ λ) id ∈
GLr(KR), and GLr(OK , a) = Aut(Or−1

K ⊕ a). We write

Xr,a = GLr(OK , a)\GLr(KR)/(Ur(KR) · R>0) (3)

and we often use the notation Γa = GLr(OK , a), when r and K are understood from context. Note
that we also have a map Xr(K) → Xn(Q) where n = rd, obtained by forgetting the structure
of OK-module.

Choosing a representative a ∈ Cl(K) and a matrix z ∈ GLr(KR) we uniquely determine a class
of module lattices, which we call Lz,a. By abuse of notation, we let Lz,a denote the representative
in this class given by

Lz,a = (Or−1
K ⊕ a) · z ⊂ Kr

R,

viewing OK ⊂ KR through the Minkowski embedding.
The Haar measure on GLr(KR) induces a measure µ on Xr(K), whose total volume is finite. We

normalize µ to be a probability measure and we often refer to it as the uniform measure. The mea-
sure µ gives a meaning to random module lattices, distributed according to µ, or with distribution
given by a density function f ∈ L1(Xr) with respect to µ. For computations, however, we often work
with a more explicit normalization of µ, namely µRiem, descending from GLr(KR)/(Ur(KR) · R>0)
and defined in Section 2.6.

In order to use representation theoretic arguments, it will often be easier to use the adélic
version of the space of lattices. We can rewrite our union of double quotients as a single adélic
double quotient as follows:

Xr(K) ∼= GLr(K)\GLr(AK)/(GLr(ÔK) ·Ur(KR) · R>0).

Let Xr = Xr(K) = GLr(K)\GLr(AK)/R>0. We can therefore write

L2(Xr) = L2(Xr)GLr(ÔK)·Ur(KR)

where GLr(AK) acts on L2(Xr) by g · f(x) = f(xg).

2.3.3 Representation and sizes of elements, ideals and modules

Assumptions. In this paper, we assume that K = Q[x]/f(x) is represented by a polynomial
f ∈ Z[x] satisfying log max |fi| ≤ poly(log |∆K |). Additionally, we assume that we have a Z-basis of
OK , written (β1, . . . , βd). Without loss of generality (by applying LLL and Lemma 2.12), we may
assume that it satisfies maxi ∥βi∥ ≤ 2d · |∆K |1/d.

Representations. We represent an element α ∈ K by its coordinates (a1, . . . , ad) ∈ Qd with
respect to the Z-basis (β1, . . . , βd). This means that α = ∑d

i=1 aiβi. A (fractional) ideal a of OK can
be represented by a generating matrix Ba = (α1, . . . , αd) ∈ Kd, for which we have that a is generated
by these αi as a Z-module. Each of these generators αi is then represented by (a(i)

1 , . . . , a
(i)
d ) ∈ Qd

and hence Ba can be written as a matrix in Qd×d. In this paper, we choose to have a unique
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representation for an ideal by always demanding that Ba (as a matrix in Qd×d) is in Hermite
normal form. That is, we write the generating matrix of a as 1

m · (m ·Ba), where m ∈ Z>0 and
m ·Ba ∈ Zd×d is in Hermite normal form.

A rank r module lattice M is represented by its pseudo-basis (see, for example, [Coh99]), which
consists of a matrix A ∈ Kr×r (with columns Ai ∈ Kr) and a sequence of r ideals I := (a1, . . . , ar).
Again, each of the Aij ∈ K can be represented by a sequence in Qd, and each of the ideals of I can
be represented by its generating matrix. The module lattice is then defined by the rule

M =
{

r∑
i=1

Ai · αi ∈ Kr | αi ∈ ai

}
.

Sizes of elements, ideals and modules. For n ∈ Z, we define size(n) = 1 + ⌈log2(|n|)⌉ (where
the extra 1 is for encoding the sign). For q = a

b ∈ Q with a, b ∈ Z coprime, we set size(q) =
size(a)+size(b). For α ∈ K represented by (a1, . . . , ad) ∈ Qd we put size(α) = ∑d

i=1 size(ai). For an
ideal a of K, we define size(a) := size(mBa)+size(m), where the generating matrix equals 1

m ·(mBa)
and (mBa) ∈ Zd×d is in Hermite normal form.

For a rank r module lattice M with pseudo basis (A, I) with A ∈ Kr×r and I = (a1, . . . , ar) we
put

size(M) :=
r∑

i,j=1
size(Aij) +

r∑
i=1

size(ai).

Rules for sizes. For the Z-basis (β1, . . . , βd) of OK , we surely have, by Cauchy-Schwarz, ∥βiβj∥ ≤(∑
σ |σ(βi)|2|σ(βj)|2

)1/2 ≤
∑

σ |σ(βi)||σ(βj)| ≤ ∥βi∥∥βj∥ ≤ 22d · |∆K |2/d per assumption. Addition-
ally, we can deduce that, writing B = (σ(βj))σ,j as a basis in the Minkowski space Kd×d

R , and using
Lemma A.1 and the fact that λ1(OK) =

√
d,

∥B−1∥ ≤
√
d
∏

i

∥βi∥ ≤
√
d · 2d2 · |∆K |.

Hence, ∥B−1(βi ·βj)∥ ≤ ∥B−1∥∥βi ·βj∥ ≤
√
d ·2d2+2d · |∆K |1+2/d. So, the co-ordinates of the product

βiβj in terms of the basis (β1, . . . , βd) are bounded by
√
d · 2d2+2d · |∆K |1+2/d.

Lemma 2.3 (Rules on sizes of elements). For fractional OK ideals a, ai of K, we have size(a) ≤
d2 size(N(a))≪ d2 logN(a) and size(∏k

i=1 ai) ≤ d2∑k
i=1 size(ai).

Proof. See Section A.5 in the Appendix.

Sizes and Module-HNF In this paper, we will make use of a Hermite-normal form algorithm
that works over module-lattices, and thus applies basis operations that are compatible with the
module structure [Coh99, Section 1.4]. Computing this Hermite-normal form of a given pseudo-basis
of a module lattice can be done within polynomial time of the input size [BF12]. This Hermite-
normal form can be made unique (i.e., not depending on the specific pseudo-basis given) with no
significant overhead [Coh99, Theorem 1.4.11].

Due to the polynomial time algorithm of [BF12] it must surely be true that the output (H, (hi)i∈[r])
of the module Hermite Normal Form algorithm must have size polynomially bounded in the size of
the input module lattice (B, (ai)i∈[r]), i.e.,

size(H, (hi)i∈[r]) ≤ poly(size(B, ai)i∈[r])).
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2.3.4 Sublattices

We record the following standard definition and refer to [FPS22, App. B.2] for a proof of the
equivalences.

Definition 2.4. Let M be a OK-module. A sub-module N ⊆M is said to be primitive if it satisfies
any of the following equivalent conditions:

• The module N is maximal for the inclusion relation in the set of submodules of M of rank
at most rank(N).

• There is a module N ′ with M = N +N ′ and rank(M) = rank(N) + rank(N ′).

• There is a module N ′ with M = N ⊕N ′.

• We have N = M ∩ spanK(N).

Algorithm 1 Computing a random sub-module M ′ of M such that M/M ′ ≃ OK/p

Require:
• A pseudos (B, I) of a rank r module lattice M , with B = (b1, . . . ,br) ∈ Kr×r and

I = (a1, . . . , ar).
• A prime ideal p of OK ,

Ensure: A pseudo-basis (B′, I′) of a module M ′ that satisfies M/M ′ ≃ OK/p.
1: Draw a random integer u from {1, . . . ,∑r−1

i=0 q
i}, with q = N(p) and pick the smallest j ≥ 1

such that ∑j−1
i=0 q

i ≥ u.
2: Put I′ = (a1, a2, . . . , paj , . . . , ar). I.e., multiply the j-th ideal in I by p to obtain I′.
3: Put, for all i < j, b′i = bi + γibj where γi is uniformly drawn from a set of representatives of

ai/pai, and put b′i = bi for i ≥ j. Assemble b′i into a matrix B′. Equivalently, we put B′ = B ·T
where T = I +∑i<j γieji where eji is the matrix with a one on place ji and zeroes elsewhere.

4: return (B′, I′).

Algorithm for taking a random index N(p) sub-module lattice

Lemma 2.5. Algorithm 1 is correct, outputs a uniformly random sub-module M ′ ⊆ M satisfying
M/M ′ ≃ OK/p and runs in time polynomial in the input size.

Proof. (Correctness) We have that M ′ ⊆M since any element of M ′ can be written as (with αi ∈ ai

for i ̸= j and αj ∈ paj ⊆ aj)

r∑
i=1

αib′i =
r∑

i=1
αi(bi + γjbj) =

r∑
i=1,i ̸=j

αibi + (1 +
j−1∑
i=1

γi)bj ∈M,

since γi ∈ ai for all i < j. Additionally, a set of representatives of M/M ′ can be given by {γjbj} ⊆
M ′ with γj from a set of representatives of aj/paj . Hence M/M ′ ≃ aj/paj ≃ OK/p.

(Uniformly random sub-module) The number of submodules M ′ ⊆M satisfying M/M ′ ≃ OK/p
corresponds with the number of hyper planes in M/pM , which equals (by the q-binomial theorem)(r

1
)

q
= ∑r−1

i=0 q
i. One can readily verify that the number of M ′ that Algorithm 1 outputs is indeed∑r−1

i=0 q
i, and that the way that they are all picked with equal probability.
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(Polynomial time) Each of the operations can be reasonably seen to be able to be computed
in time polynomial in the input size. We spend some extra words on line 3, where a random
representative of ai/pai needs to be chosen. This can be done by computing the Hermite normal
form of both ai and pai (after scaling up), take random elements in the finite quotient group (of
these two lattices) of order N(p) = q (seen as a subgroup of Zd with d = [K : Q]) and lift the
elements to ai.

2.3.5 Successive minima

It is useful for us to work with two different notions of successive minima, corresponding to linear
independence with respect to Q and, respectively, K.

Definition 2.6. For a OK-module lattice M of rank r we put

λj(M) = min{λ ∈ R>0 | dimQ spanQ(Bλ ∩M) ≥ j},

for j = 1, . . . , rd, where Bλ is the ball of radius λ with respect to the norm on M . In other words,
λj(M) is the minimal λ such that there exist j vectors in M of length at most λ that are Q-linearly
independent.

Definition 2.7. For a OK-module lattice M of rank r we put

λK
j (M) = min{λ ∈ R>0 | dimK spanK(Bλ ∩M) ≥ j},

for j = 1, . . . , r, where Bλ is the ball of radius λ with respect to the norm on M . We often call
these quantities K-minima.

Definition 2.8. A OK-module lattice M with K-minima λK
1 , . . . , λ

K
r is α-balanced if λK

i+1/λ
K
i ≤ α

for all 1 ≤ i < r.

When comparing the two types of successive minima, we also require the sup-norm successive
minima of the underlying ring of integers.

Definition 2.9. Consider OK as a Z-lattice through the Minkowski embedding. Define

λ∞j (OK) = min{λ ∈ R>0 | dimQ spanQ(B∞λ ∩ OK) = j},

for j = 1, . . . , r, where B∞λ is the ball of radius λ with respect to the sup-norm on KR.

The reason for using the sup-norm is the following bound.

Lemma 2.10. Let L be a module lattice, x ∈ L and a ∈ KR. Then

∥ax∥ ≤ ∥a∥∞ · ∥x∥.

Proof. Embed L in Kr
R. Then the action of a ∈ KR is component-wise.

The successive minima of the ring of integers OK can be estimated.

Definition 2.11. Let ΓK = supL λd(L)/λ1(L), where L ranges over all ideal lattices in K.

Lemma 2.12 ([BPW25, Lemma 2.13]). For any OK-module lattice L of rank 1, we have:

(i) λd(OK)/
√
d ≤ ΓK ≤ λ∞d (OK) ≤ |∆K |1/d.
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(ii) If K is a cyclotomic field, then ΓK = 1.

(iii) λd(L) ≤
√
d · ΓK · det(L)1/d.

(iv) λ1(L) ≥
√

d
|∆K |1/d · det(L)1/d.

The relation between the two types of successive minima is given in the following result.

Lemma 2.13. For any 1 ≤ j ≤ rd, we have

λK
⌈j/d⌉(L) ≤ λj(L) ≤ ΓKλ

K
⌈j/d⌉(L).

Proof. Fix (k, i). Let λ = λd(k−1)+i(L) and S the set of vectors in L of length at most λ. By
definition dimQ spanQ(S) ≥ d(k − 1) + i. But then dimK spanK(S) ≥ d(k−1)+i

d > k − 1 and there-
fore dimK spanK(S) ≥ k, so that λK

k (L) ≤ λ: this proves the first inequality.
Let (ui)k

i=1 be K-linearly independent vectors in L of length at most λK
k (L). For each i, let

(vij)d
j=1 be Q-linearly independent vectors in OKui of length at most

λd(OKui) ≤ ΓKλ1(OKui) ≤ ΓKλ
K
k (L).

The family (vij)i,j contains dk many Q-linearly independent vectors of length at most ΓKλ
K
k (L),

hence λd(k−1)+i(L) ≤ λdk(L) ≤ ΓKλ
K
k (L).

The n-th successive minima of α-balanced lattices can be bounded by a power of α multiplied
by the root determinant of that lattice.

Lemma 2.14. Let M be an α-balanced OK-module lattice of rank r. Then

λrd(M) ≤ ΓK ·
√
rd · αr−1 · det(M)1/(rd).

Proof. We use Minkowski’s second theorem [Cas97, Chap. VIII, Thm. 5] and Lemma 2.13, we write
λj = λj(M) and n = rd, to obtain

det(M)1/n

λn
≥

√
π

2 · Γ(n
2 + 1)1/n

 n∏
j=1

λj

λn

1/n

≥
√
eπ/(4n)

 rd∏
j=1

λK
⌈j/d⌉

ΓKλK
r

1/(rd)

≥
√
eπ/(4n)

 r∏
j=1

(λK
j )d

Γd
K(λK

r )d

1/(rd)

=
√
eπ/(4n) · 1

ΓK
·

 r∏
j=1

λK
j

λK
r

1/r

≥
√
eπ/(4n) · 1

ΓK
·

 r∏
j=1

α−(j−1)

1/r

=
√
eπ/(4n) · α

−(r−1)

ΓK

Rewriting and using that 4/(eπ) < 1 yields the result.

We will also use the following simple bound on the balancedness of submodules.

Lemma 2.15. Let M be an α-balanced rank r module lattice and let M ′ ⊆ M be an index q
sub-module lattice. Then M ′ is α · q-balanced.
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Proof. Suppose, to derive a contradiction, that M ′ is not α · q-balanced, i.e., λK
i+1(M ′)

λK
i (M ′) > α · q for

some i ∈ {1, . . . , r − 1}. Write j for the smallest i satisfying this imbalancedness property.
Write v′1, . . . , v′j ∈ M ′ for the vectors in M ′ attaining λK

1 (M ′), . . . , λK
j (M ′) and v1, . . . , vj , vj+1

for the vectors in M attaining λK
1 (M), . . . , λK

j (M), λK
j+1(M).

By definition there exists a k ∈ {1, . . . , j + 1} so that vk /∈ v′1OK + . . . + v′jOK (which is
the module lattice generated by v′1, . . . , v

′
j). We claim that a · vk + M ′ for a ∈ {0, . . . , q} are all

different cosets in M . Indeed, if two cosets were the same, we would have that a · vk ∈M ′ for some
a ∈ {0, . . . , q}, and hence

λK
j+1(M ′) ≤ ∥a · vk∥ ≤ q · λK

k (M) ≤ q · λK
j+1(M).

But then
λK

j+1(M ′)
λK

j (M ′)
≤
q · λK

j+1(M)
λK

j (M ′)
≤
q · λK

j+1(M)
λK

j (M)
≤ α · q,

which leads to a contradiction.
Hence, indeed, a · vk + M ′ for a ∈ {0, . . . , q} are all different cosets in M , and count to q + 1.

But |M/M ′| = q, which in turn is a contradiction. Hence, M ′ must be α · q-balanced.

2.4 Probability

2.4.1 Probability distributions

Definition 2.16. For an n-dimensional Euclidean vector space V and x ∈ V , we write ρσ(x) :=
exp(−π∥x∥2/σ2) for the Gaussian function.

Lemma 2.17 (Gaussian weight lemma). Let Λ be an n-dimensional full-rank lattice in an n-
dimensional Euclidean vector space, let c ∈ span(Λ) and σ ≥

√
log(2n(1+1/ε))

π ·λn(Λ) for some ε > 0.
Then we have ∑

ℓ∈Λ
ρσ(ℓ+ c) = ρσ(Λ + c) ∈ [1− ε, 1 + ε] · σn

det(Λ) .

Proof. This is a combination of the bound on the smoothing parameter [MR07, Lemma 3.3] and
the proof of [MR07, Lemma 4.4].

Definition 2.18 (Gaussian distribution). Let V be a Euclidean vector space. For σ ∈ R>0, we
denote GV,σ(x) := σ−n · e−π∥x∥2/σ2 = σ−n · ρσ(x) for the Gaussian distribution over V , where
n = dim(V ) and where ∥ · ∥ is the length notion over V .

Definition 2.19 (Discrete Gaussian distribution). Let Λ ⊆ V be a full-rank lattice in a Euclidean
vector space. For σ ∈ R>0, we define the discrete Gaussian over Λ with center c ∈ V by the rule

GΛ,σ,c(ℓ) := GV,σ(ℓ+ c)
GV,σ(Λ + c) = ρσ(ℓ+ c)

ρσ(Λ + c) , for ℓ ∈ Λ,

where GV,σ(Λ+c) := ∑
ℓ∈Λ GV,σ(ℓ+c). In the case that c = 0, the center c is omitted in the notation.

Lemma 2.20. Let Λ ⊆ V be a full-rank lattice in a Euclidean vector space. For σ ≥
√

log(8n)
π ·λn(Λ)

and κ ≥ 1/(2π), we have

P
v←GΛ,σ,c

[∥v − c∥ >
√
n · κ · σ] ≤ 4(κ

√
2πe)n · e−πκ2n
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Proof. We have

P
v←GΛ,σ,c

[∥v − c∥ >
√
n · κ · σ] = ρσ((Λ + c)\

√
n · κ · σ ·B2)

ρσ(Λ + c) ≤ 2Cn ρσ(Λ + c)
ρσ(Λ)

≤ 2 · 1 + 1/3
1− 1/3 · C

n ≤ 4Cn ≤ 4(κ
√

2πe)ne−πκ2n,

where the first inequality follows from [MR07, Lemma 2.10] and the second inequality follows from
Lemma 2.17 (with ε = 1/3). Here C = κ

√
2πe · e−πκ2 . This yields the claim.

2.4.2 Statistical distance and the data processing inequality

Definition 2.21 (Statistical distance). Let (Ω,S) be a measurable space with probability measures
P,Q. The statistical distance between P and Q is defined by the rule

SD(P,Q) = sup
X∈S
|P (X)−Q(X)|.

In the present work we only consider discrete or continuous domains Ω. For a discrete space Ω, we
have

SD(P,Q) = 1
2
∑
x∈Ω
|P (x)−Q(x)| =: 1

2∥P −Q∥1.

For a continuous space Ω with probability densities P,Q, we have

SD(P,Q) = 1
2

∫
x∈Ω
|P (x)−Q(x)| =: 1

2∥P −Q∥1.

Often, in this work, due to the equivalence of these notions (up to a constant 1
2) we will describe

closeness of probability distributions in terms of the distance notion ∥ · ∥1, instead of SD(·, ·).

The data processing inequality captures the idea that an algorithm (by just processing a single
query) cannot increase the statistical distance between two probability distributions. A proof can
be found in, for example, [CT06, §2.8].

Proposition 2.22 (Data processing inequality). Let (Ω,S) be a measurable space with probability
measures P,Q. Let f be a (potentially probabilistic) function on Ω. Then

∥f(P )− f(Q)∥1 ≤ ∥P −Q∥1.

Statistical distance is well compatible with conditional events. If two distributions are close, the
conditional counterparts are also close, where the statistical distance is multiplied by the probability
of the conditioned event happening.

Lemma 2.23. Let (Ω,S) be a measurable space with probability measures P,Q. Let U ∈ S be an
event with non-zero weight for both P and Q. Then

SD(P |U , Q|U ) ≤ 2 · P (U)−1 SD(P,Q),

where P |U , Q|U denotes P respectively Q conditioned on the event U .
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Proof. We have, by the law of conditional probability, writing p = P (U) and q = Q(U),

SD(P |U , Q|U ) = sup
X∈S

∣∣∣∣P (X ∩ U)
p

− Q(X ∩ U)
q

∣∣∣∣ ,
= 1
p

sup
X∈S

∣∣∣∣P (X ∩ U)− p

q
·Q(X ∩ U)

∣∣∣∣
≤ 1
p

sup
X∈S

(
|P (X ∩ U)−Q(X ∩ U)|+ |1− p

q
| ·Q(X ∩ U)

)
≤ 1
p

sup
X∈S
|P (X ∩ U)−Q(X ∩ U)|+ q − p

p
≤ 2
p
· SD(P,Q).

2.5 Computational problems

We consider the following three types of “shortest vector problems” in lattices.

Problem 2.24 (Shortest Vector Problem (SVPγ)). Given as input a basis B of a lattice L and
a γ ∈ R≥1, the γ-shortest vector problem is the computational task of finding a non-zero lattice
vector x ∈ L that satisfies ∥x∥ ≤ γ · λ1(L).

Problem 2.25 (Shortest Independent Vector Problem (SIVPγ)). Given as input a basis B of
an n-dimensional lattice L and a γ ∈ R≥1, the γ-shortest independent vector problem is the
computational task of finding R-linearly independent lattice vectors x1, . . . , xn ∈ L that satisfy
∥xi∥ ≤ γ · λn(L) for all i ∈ {1, . . . , n}.

The parameter γ in the definitions above is called approximation factor and is generally written
as a function in the dimension n of the lattice. No known polynomial time algorithm can solve these
problems for γ = poly(n). However, they are easy for γ = 2O(n): by [LLL82, Proposition 1.12], the
LLL algorithm finds a basis (xi) of L such that ∥xi∥ ≤ 2(n−1)/2λi(L) for any i.

2.6 Riemannian geometry, the determinant map, volumes

The space of lattices Xr(K) comes equipped with an invariant probability measure. For computing
with this measure, it is useful to work with an explicit realization coming from a Riemannian
metric. The latter generalizes the canonical metric for Minkowski space and allows us to compute
the volumes of different spaces that show up while proving the Hecke equidistribution theorem.
We also consider in this section a way of “splitting” GL(r) into SL(r) and GL(1), as announced in
Section 1.3.1.

2.6.1 Riemannian structure

We introduce a Riemannian metric on GLr(KR) and its quotients. For this, we equip the Lie
algebra Mr(KR) of GLr(KR) with the positive definite inner product

(x, y) 7→ trKR/R tr(tx∗y).

This gives GLr(KR) the structure of a Riemannian manifold with a metric that is left-invariant by
arbitrary elements and right-invariant by Ur(KR)·R>0. In particular, it defines a volume form µRiem
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on GLr(KR) that is a Haar measure and we note that GLr(KR) is unimodular. This also induces
a Riemannian metric and measure on the quotient

Yr = GLr(KR)/Ur(KR) · R>0. (4)

The measure µRiem further descends to Xr,a = Γa\Yr and Xr(K). The probability measure µ on
Xr(K) is then equal to µRiem(Xr(K))−1µRiem. Throughout this section and much of Section 4, we
endow all spaces with the corresponding Riemannian measures and this defines all norms and inner
products where the dependence on the space is given as a subscript. Unless specified otherwise, this
is the measure implicit in the notation L2(Xr) and the other L2-spaces.

The map
K×R /U1(KR)→ Rr1+r2

given by g = (gv)v 7→ log | det(g)| = (log |det gv|)v is an isometry of Riemannian manifolds, where
for x = (xi)i ∈ Rr1+r2 we define

∥x∥2 =
r1∑

i=1
x2

i + 2
r2∑

i=r1+1
x2

i .

Let H ⊂ Rr1+r2 be orthogonal to (1, . . . , 1), so that the logarithmic embedding of units lies in H.
Let πH : Rr1+r2 → H denote the orthogonal projection onto H. We obtain an isometry Y1 → H
given by g 7→ πH(log | det g|).

2.6.2 The determinant map

Let ∆: Yr → Y1 be the map induced by the determinant GLr(KR) → K×R . For an ideal a ⊂ OK ,
this restricts to a map

∆a : Xr,a → X1,a.

Pulling back functions, we obtain an injective map

∆∗a : L2(X1,a)→ L2(Xr,a)

defined by (∆∗af)(x) = f(∆ax). We denote the image of the pull-back by

L2
det(Xr,a) = ∆∗a(L2(X1,a)) ⊂ L2(Xr,a),

and, putting all connected components together,

L2
det(Xr) =

⊕
a∈Cl(K)

L2
det(Xr,a) = ∆∗(L2(X1)) ⊂ L2(Xr).

Lemma 2.26. For non-negative measurable functions f : Yr → R≥0, we have the integration for-
mula ∫

y∈Yr

f(y)dy = 1
rru/2

∫
δ∈Y1

(∫
y∈∆−1(δ)

f(y)dy
)
dδ, (5)

and an analogous formula for Xr,a. Integration on the fibers of ∆ is done with respect to the
restriction of the Riemannian metric.
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Proof. At the level of the Lie algebra, notice that the complement of the kernel of the derivative
D∆ of ∆ consists of the scalar matrices. Locally, at one place v, the vector X = diag(1, . . . , 1) has
length

√
r in the Riemannian metric. Since det(exp(λX)) = exp(rλ), we see that D∆(X) = r · 1,

where 1 is the unit vector in the Lie algebra of R× or C×. These computations now show that the
Jacobian of ∆ is

√
r

ru . Put another way, ∆ is a Riemannian submersion when the metric on Y1 is
scaled by 1√

r
. The statement now follows from the coarea formula (see [Nic11, Thm. 2.1]) applied

to ∆.

It is convenient to have an explicit form of the fibers of ∆. Let g ∈ GLr(KR) and δ = ∆(g). We
have

∆−1(δ) =
(
SLr(KR) · R>0/(g SUr(KR)g−1) · R>0

)
g (6)

and the analogous formula

∆−1
a (δ) =

(
Γa\Γa · SLr(KR) · R>0/(g SUr(KR)g−1) · R>0

)
g.

We shall often encounter the volume of these fibers in computations.
Lemma 2.27. The volume µRiem(∆−1

a (δ)) is equal to µRiem(∆−1
a (1)) and is therefore independent

of δ.
Proof. Define Γ1

a = SLr(OK , a) and notice that a fundamental domain for the left action of Γ1
a on

SLr(KR) serves as a fundamental domain for the left action of Γa on Γa · SLr(KR), as well. Using
that µRiem is bi-invariant several times, we have that

µRiem(∆−1
a (δ)) = µRiem

(
Γa\Γa SLr(KR)/(g SUr(KR)g−1)

)
= µRiem(Γ1

a\ SLr(KR))
µRiem(g SUr(KR)g−1) = µRiem(∆−1

a (1))

for all δ.

Using the integration formula above, we now construct the orthogonal projection onto L2
det(Xr).

For this, define ∆′a : L2(Xr,a)→ L2(X1,a) by

∆′a(f)(δ) =
∫

x∈∆−1
a (δ)

f(x) dx.

Next, define the operator

πadet = µRiem(∆−1
a (1))−1∆∗a∆′a : L2(Xr,a)→ L2(Xr,a), (7)

and let πdet be the direct sum of the operators πadet over the class group.
Lemma 2.28. The operator πadet is the orthogonal projection onto L2

det(Xr,a).
Proof. Let f ∈ L2(Xr,a) and g ∈ L2(X1,a). Using the integration formula (5), we have

⟨∆′af, g⟩X1,a =
∫

δ∈X1,a

∆′af(δ)g(δ) dδ =
∫

δ∈X1,a

(∫
x∈∆−1

a (δ)
f(x)dx

)
g(δ) dδ

=
∫

δ∈X1,a

(∫
x∈∆−1

a (δ)
f(x)g(∆a(x)) dx

)
dδ

=
∫

δ∈X1,a

(∫
x∈∆−1

a (δ)
f(x)(∆∗ag)(x) dx

)
dδ

= r
ru
2

∫
x∈Xr,a

f(x)(∆∗ag)(x) dx = r
ru
2 ⟨f,∆∗ag⟩Xr,a .
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Moreover, we compute that

∆′a∆∗ag(δ) =
∫

x∈∆−1
a (δ)

(∆∗ag)(x) dx =
∫

x∈∆−1
a (δ)

g(∆a(x)) dx

=
∫

x∈∆−1
a (δ)

g(δ) dx = µRiem(∆−1
a (δ))g(δ) = µRiem(∆−1

a (1))g(δ).

In other words, we have shown that

∆′a∆∗a = µRiem(∆−1
a (1)) · id .

We finally deduce the formula

∥∆∗af∥
2
Xr

= µRiem(∆−1
a (1))r

−ru
2 ∥f∥2X1

, (8)

for any function f ∈ L2(X1), by piecing together the computations above.
We have πadet(L2(Xr,a)) ⊂ L2

det(Xr,a) and, by the properties above, πadet is self-adjoint and
restricts to the identity on L2

det(Xr,a).

2.6.3 Distance functions and volumes

Although the Riemannian structure provides a notion of distance, we require two finer ways of
measuring it.

Definition 2.29. For x ∈ Rr1+r2 , let ∥x∥H = ∥πH(x)∥, and for g ∈ GLr(KR) define

τ(g) = ∥ log|det g|∥2H .

For K = R or C, let ∥ · ∥op denote the operator norm with respect to the Euclidean norm on Kr.
For g = (gv)v ∈ GLr(KR) = ∏

v GLr(Kv), define

ρ(g) = max
v

log max
(
∥gv∥op

|det gv|
1
r

,
∥g−1

v ∥op

|det g−1
v |

1
r

)
.

The functions defined above satisfy the following properties. For all g, h ∈ GLr(KR) we have
the inequality ρ(gh) ≤ ρ(g) + ρ(h). Moreover, for all g ∈ GLr(KR), u ∈ Ur(KR) and a ∈ K×R we
have

ρ(g) = ρ(gu) = ρ(ug) = ρ(ag) = ρ(g−1)

and if a ∈ R>0 then
τ(g) = τ(gu) = τ(ug) = τ(ag) = τ(g−1).

In particular, ρ and τ both descend to Yr. One should think of ρ and τ as being a “distance to
identity” on the SL(r) part, respectively on the GL(1) part. We also define balls for the former as

B(t) = {g ∈ SLr(KR) | ρ(g) ≤ t}. (9)

We now compute the volumes of certain spaces, including the balls defined above and the full
space Xr. For this, we use two estimates from [MP21].

Lemma 2.30. We have
logµRiem(SUr(KR)) ≥ −d4r

2 log r.
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Proof. We apply [MP21, Proposition 11] to lower bound the volume of the local parts, after which
we sum over complex and real places. We use the notation a for r in [MP21, Proposition 11], and
r for d in [MP21, Proposition 11].

For the real case holds that a = r/2 if r is even, and (r − 1)/2 otherwise. Using the bound
j! ≤ jj , and using the fact that mk ≤ r, we have

− logµRiem(SUr(R)) ≤
a∑

k=1
log(mk!) ≤

a∑
k=1

mk log(r) ≤ log(r)r2/4.

Indeed, in the case that r is odd, mk = 2k − 1, yielding ∑a
k=1mk = a2 ≤ r2/4. In the case that

r is even, mk = 2k − 1 except for ma = a − 1, for which we can then deduce that ∑a
k=1mk =

(a− 1)2 + (a− 1) = a(a− 1) = (r−1)(r−3)
4 ≤ r2/4.

For the complex case, we have a = r − 1 and mk = k, yielding

− logµRiem(SUr(C)) ≤
a∑

k=1
log(mk!) ≤

a∑
k=1

mk log(r) ≤ log(r)a(a+ 1)/2 ≤ log(r)r2/2

Hence, summing over all places, − logµRiem(SUr(KR)) ≤ d log(r)r2/4, which finishes the proof.

Lemma 2.31. Let K be either C or R. Then, for t ≤ 1, we have

I :=
∫

(ai)i∈∆∗
t

∏
1≤i<j≤r

sinh(ai − aj)[K:R] ≥
(

t

4r2

) (r−1)(r[K:R]+2)
2

where ∆∗t = {(a1, . . . , ar−1) ∈ R | t > a1 > . . . > ar−1 > ar := −∑r−1
i=1 ai > −t}.

Proof. We follow the same steps as in the proof of [MP21, Proposition 14], where we use the
assumption t ≤ 1 instead. We write g = [K : R] ∈ {1, 2} for conciseness.

We apply [MP21, Lemma 13] with k = r − 1 to find intervals [αi, βi] (for i ∈ {1, . . . , r − 1})
satisfying the properties (1) - (6) of [MP21, Lemma 13]. For a certain reordering σ ∈ Sr−1, we put
Q := ∏r−1

i=1 [tασ(i), tβσ(i)]. By properties (1) and (2) of [MP21, Lemma 13] we can deduce that

I :=
∫

(ai)i∈∆∗
t

∏
1≤i<j≤r

sinh(ai − aj)gdai ≥
∫

(ai)i∈Q

∏
1≤i<j≤r

sinh(ai − aj)gdai.

The function x 7→ sinh(x) exp(−x) = 1−exp(−2x)
2 is increasing, and we have 1−exp(−2x)

2 ≥ x/2 for
x < 1/2. Hence, for x ≥ t

4r2 ,

sinh(x) = 1− exp(−2x)
2 · exp(x) ≥

1− exp(− t
2r2 )

2 · exp(x) ≥ t

4r2 · exp(x),

since t
2r2 ≤ 1/2. This yields

I ≥
(

t

4r2

)r(r−1)g/2 ∫
(ai)i∈Q

∏
1≤i<j≤r

exp(ai − aj)gdai

≥
(

t

4r2

)r(r−1)g/2 ∫
(ai)i∈Q

exp(g
∑
i<j

(ai − aj)
︸ ︷︷ ︸

β

)dai.
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In the proof of [MP21, Proposition 14], we see that β = 2∑r−1
i=1 (r − i)ai. By properties (3) and

(6) of [MP21, Lemma 13] we deduce that ai ≥ t/4 for at least ⌊r/5⌋ intervals [tαi, tβi] (meaning,
αi ≥ 1/4 for these intervals), and that all intervals have width at least t/(4r2). Hence,

I ≥
(

t

4r2

)r(r−1)g/2 ∫
(ai)i∈Q

exp(2g
∑
i<j

(r − i)ai)dai

≥
(

t

4r2

)r(r−1)g/2
·
(

t

4r2

)r−1
· exp(2gt

⌊r/5⌋∑
i=1

i/4)

≥
(

t

4r2

)r(r−1)g/2
·
(

t

4r2

)r−1
· exp(gr

2t

200 ) ≥
(

t

4r2

) (r−1)(rg+2)
2

,

which is what we wanted to proof.

Lemma 2.32. Let t ≤ 1, and r ≥ 2. We have

logµRiem(B(t)) ≥ − log(4r2/t) · dr2.

Proof. Noting that µRiem(B(t)) = ∏
ν I

(ν), where I(ν) = I as in Lemma 2.31 with K = Kν (which
is R or C), we compute (using ∑ν [Kν : K] = d and ∑ν 1 ≤ d),

logµRiem(B(t)) ≥ − log(4r2/t) · (r − 1) · (d+ rd/2)
≥ − log(4r2/t) · d · (r − 1)(r + 2)/2 ≥ − log(4r2/t) · dr2.

Proposition 2.33. We have

µRiem(Xr) =
√
dr

r2+1
2 2−

r2
2 µRiem(SUr(KR))−1hKRK |∆K |

r2−1
2

r∏
j=2

ζK(j).

Proof. Let a ⊂ OK be an ideal. By the computations and integration formula in Section 2.6.2, we
have

µRiem(Xr,a) =
∫

x∈Xr,a

dx = r−
ru
2

∫
δ∈X1,a

∫
x∈∆−1

a (δ)
dδ

= r−
ru
2

∫
δ∈X1,a

µRiem(∆−1
a (δ))dδ

= r−
ru
2

∫
δ∈X1,a

µRiem(∆−1
a (1))dδ

= r−
ru
2 µRiem(X1,a)

µRiem (SLr(OK , a)\ SLr(KR)/R>0)
µRiem(SUr(KR)) .

By Prasad’s formula, we have (see [MP21, Proposition 18], which is also valid in the non-compact
case):

µRiem (SLr(OK , a)\ SLr(KR)/R>0) = r
d
2 |∆K |

r2−1
2

r∏
j=2

ζK(j).

Finally, we have
µRiem(X1,a) =

√
d2−

r2
2 RK .
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Lemma 2.34. The residue ζ∗K(1) of ζK at 1 satisfies

ζ∗K(1) ≤
(
e log |∆K |
2(d− 1)

)d−1
≤ |∆K |

1
2 .

Proof. The first inequality is [Lou00, Equation (2)]. The second one follows from applying the
inequality e log |x|

|x| ≤ 1, which holds for all x, to x = |∆K |
1

2(d−1) .

Lemma 2.35. We have
log(hKRK) ≤ log |∆K |+O(1)

Proof. Apply Lemma 2.34 and the analytic class number formula.

Remark 2.36. In the original statement of Louboutin [Lou00, Equation (2)], one can see that, next
to
√
|∆K |, the dominant factor is

(
e log |∆K |

2(d−1)

)d−1
which might be much smaller than

√
|∆K |. Hence,

the bound above, though simple, is not tight and might be improved to get a better approximation
factor in the main result of this paper.

The results above finally imply a key inequality.

Lemma 2.37. We have

logµRiem(Xr) ≤ dr2

4 log r + r2

2 log |∆K |+O(log log |∆K |+ dr2).

2.7 Automorphic theory

The purpose of this section is to explain the spectral decomposition of L2(Xr) and analyze the
action of Hecke operators on the different components. Our main references here are [CU04, Sec.
3.2, Sec. 4.1] and [GH24, Sec. 10].

2.7.1 The spectral decomposition

We recall first that standard parabolic subgroups P ⊂ GLr are in correspondence with partitions∑
i ri = r. Given such a partition, called ℘ = (ri) for short, the Levi subgroup M℘ of the cor-

responding parabolic P℘ is isomorphic to ∏i GLri (the group P℘ is the group of blockwise upper
triangular matrices with blocks of sizes given by the partition). We attach to M(ri) a certain space
of characters, denoted by a∗M℘

, which we can interpret as a tuple of complex numbers or param-
eters. We denote the subspace of purely imaginary parameters by ℑ(a∗M℘

). If, for each i, we have
an irreducible automorphic representation πi appearing in the discrete spectrum of L2(Xri), and
λ ∈ ℑ(a∗M℘

), then we can construct the induced representation I(⊗i πi, λ), as in [GH24, Sec. 10.1].
A celebrated theorem of Moeglin and Waldspurger describes the discrete spectrum in terms

of Speh representations. To introduce the latter, let N ∈ Z>0 and let s be a divisor of N . There
is a unique standard Levi M ⊂ GLN isomorphic to ∏N/s

i=1 GLs. Given a cuspidal automorphic
representation σ of GLs, we can define the Speh representation Speh(σ,N/s) for M (see [GH24,
Sec. 10.7]) that occurs in the discrete spectrum of L2(XN ).

The spectral theorem of Langlands now states that L2(Xr) is a sub-module of

⊕
℘ :
∑

i
ri=r

⊕
si|ri

⊕̂
σi

∫ ⊕
λ∈ℑ(a∗

M℘
)
I(
⊗

i

Speh(σi, ri/si), λ)dλ, (10)
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where σi ranges over cuspidal automorphic representations of GLsi(K), and
∫⊕ denotes a direct

integral decomposition. We can identify the components that make up L2
det(Xr) by noting that

L2(X1) =
⊕

χ

C · χ,

where χ runs over all (unitary) Hecke characters of K, and that L2(X1) is isomorphic to L2
det(Xr) by

the map ∆∗. It is known that Speh(χ, r), for a Hecke character χ, is the one-dimensional represen-
tation of GLr(AK) given by χ ◦ det. Thus, L2

det(Xr) is the contribution of the terms corresponding
to the trivial partition r = r and s = 1 in (10).

2.7.2 Hecke operators

In terms of lattices, the Hecke operator Tp corresponds to uniform averaging over submodules
N ⊂ M such that at M/N ∼= OK/p at every module lattice M . More precisely, for a function
f ∈ L2(Xr), we define

Tpf(M) = 1
Dp

∑
N⊂M

M/N∼=OK/p

f(N),

where, if q = N(p), the number of terms in the average is Dp = 1 + q + . . .+ qr−1.
Interpreting Xr adelically, the operator Tp acts only at the place p. More precisely, let πp ∈ Op

be a uniformizer at p, and write

GLr(Op)


πp 0 · · · 0
0 1
... . . . 0
0 · · · 0 1

GLr(Op) =
⊔

g∈Rp

GLr(Op)g (11)

for some finite set Rp (of size Dp). For a function f ∈ L2(Xr) and x ∈ GLr(AK) we have

Tpf(x) = 1
Dp

∑
g∈Rp

f(xg−1) = 1
Dp

∑
g∈Rp

g−1 · f.

This is well-defined because the action (from the right) of GLr(Op) is trivial on Xr by definition.
Note that Tp1 = 1, where 1 is the constant 1 function on Xr. We remark also that, by defini-

tion, a Hecke operator also acts on the irreducible representations occurring in L2(Xr). On such
representations, it acts by a scalar, the Hecke eigenvalue. In particular, it is an endomorphism of
L2

det(Xr).
Let π be an irreducible automorphic representation of GLr(AK). The representations relevant

in our case are unramified at all primes p, meaning that, they contain nonzero vectors fixed by
GLr(Op). Clearly, all automorphic representations appearing in the decomposition of L2(Xr) ⊂
L2(Xr) are unramified. In this case, for every p we can attach to π (in fact, to the component πp
at p) its Satake parameters α1, . . . , αr ∈ C. These describe the action of the Hecke operators at p.
For instance (see [GH24, (7.2)]), the eigenvalue of Tp on π is

1
Dp

q
r−1

2

r∑
k=1

αk.
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In our application, we are satisfied with bounding the eigenvalue of Tp by

q−(r−1)/2
r∑

k=1
αk,

using the formula for Dp.
For example, the Satake parameters of the trivial representation of GLr(Kp) are

q−
r−1

2 , q−
r−1

2 +1, . . . , q
r−1

2 ,

and this corresponds to the fact that Tp acts by the scalar 1 on constant functions. However, Tp acts
on most unramified automorphic representations with smaller eigenvalues and this is the source of
equidistribution.

2.7.3 Eigenvalue bounds

We now analyze the action of Hecke operators using the explicit spectral decomposition. This is
formally contained in the work of Clozel and Ullmo [CU04], who treated the case K = Q. We follow
their method and adjust it to cover the general number field case.

Proposition 2.38. The operator norm of Tp, defined with respect to the L2-norm on Xr endowed
with µRiem, acting on the orthogonal complement of L2

det(Xr) ⊂ L2(Xr) is bounded by rq−3/8.

Proof. First, it is important to understand the Satake parameters of unramified cuspidal represen-
tations π of GLN , since these are the building blocks of the spectral decomposition. The Generalized
Ramanujan Conjecture (GRC) states that, if α1, . . . , αN are the Satake parameters of π at p, then
|αi| = 1 for all i. This conjecture seems far out of reach (see [BB13] for a survey), but there are
useful bounds towards it.

Let θN ≥ 0 be the exponent in the best known bound towards GRC, that is,

|αi| ≤ qθN

for all i. We have (see [BB11]) θ1 = 0, θ2 ≤ 7/64, θ3 ≤ 5/14, θ4 ≤ 9/22, and more generally
θN ≤ 1/2 for all N .

We can now compute eigenvalues of Hecke operators on the representations occurring in the
spectral decomposition (10), as in [CU04, Sec. 4.1]. Let p be a prime of K and let q = N(p). A
representation Speh(σ,m) is unramified at p if an only if the cuspidal representation σ is. In this
case, its Satake parameters at p are

αiq
m+1

2 −j , i = 1, . . . , s, j = 1, . . . ,m,

where α1, . . . , αs are the Satake parameters of σ at p.
If I(⊗iπi, λ) contains nonzero GLr(Op)-invariant vectors, then all πi are unramified at p and

the Satake parameters of the irreducible sub-quotients of I(⊗iπi, λ) unramified at p are the

αi,kζi

where the αi,k are the Satake parameters of the πi and |ζi| = 1 (because λ ∈ ℑ(aM ) is imag-
inary). Therefore, the eigenvalue of Tp acting on the GLr(Op)-fixed points of the representa-
tion I(⊗i Speh(σi, ri/si), λ) is bounded in absolute value by

∑
i

ri/si∑
j=1

si∑
k=1

qθsi + ri/si+1
2 −j− r−1

2 .
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We bound this crudely by
rqmax(θsi +ri/2si−r/2).

We now estimate the exponent in various cases. First, note the exceptional case when i = 1,
r1 = r, and s1 = 1, which occurs when considering representations in L2

det(Xr). In that case our
bound is simply r, which does not give any saving. Excluding this case, we can have for some i that

• si = 1 and ri < r: the exponent θ1 + ri/2− r/2 is at most −1/2;

• si = 2 (so that r ≥ ri ≥ 2): the exponent θ2 + ri/4 − r/2 ≤ 7/64 − r/4 is bounded by
−25/64 ≤ −3/8;6

• si ≥ 3 (so that r ≥ ri ≥ 3): using the general bound θsi ≤ 1/2, the exponent is at most
1
2 + r/6− r/2 ≤ 1/2− r/3 ≤ −1/2.

This finishes the proof. Note that the first of these cases shows that, even assuming GRC, the best
exponent we could hope for in general is −1/2.

In the following, we consider averages of Hecke operators. If P is a finite subset of the prime
ideals of K, we write

TP = 1
|P|

∑
p∈P

Tp. (12)

For B ≥ 0, we can define P(B) as the set of prime ideals with norm at most B. The Extended
Riemann Hypothesis implies that

|P(B)| ≥ B

2 logB
for B ≥ max((12 log|∆K | + 8d + 28)4, 3 · 1011), where we recall that d is the degree of K and ∆K

is its discriminant. This was shown in Lemma A.3 of [BDP+20]. We also have the trivial upper
bound |P(B)| ≤ dB that follows from unique factorization.

Corollary 2.39. Let B ≥ max((12 log|∆K |+8d+28)4, 3 ·1011). The operator norm of TP(B) acting
on the orthogonal complement of L2

det(Xr) ⊂ L2(Xr) is bounded by 20 · rd ·B−3/8 log(B).

Proof. This follows from the standard technique of splitting the average into dyadic intervals. With
α = −3/8, we write ∑

N(p)≤B

N(p)α ≤
log2(B)−1∑

k=1

∑
2k≤N(p)≤2k+1

N(p)α.

The inner sum is at most d2k+12kα by the trivial upper bound on P(B). Removing constant factors,
the outer sum now becomes a geometric series, namely

log2(B)−1∑
k=1

2k(1+α) ≤ 10B1+α,

where 10 is large enough considering the size of α.
Plugging in the lower bound for P(B), the previous lemma implies the upper bound

20rd · log(B)
B

·B1+α = 20rd ·Bα log(B)

on the operator norm of TP(B).
6We take −3/8 here only to make expressions in the rest of the paper cleaner. Any non-trivial bound gives the

same qualitative result in this paper.
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3 Rounding module lattices

3.1 Introduction

In the worst-case to average-case reduction of the present paper, the average-case stems from a Haar-
uniform distribution over the space of module lattices (see Section 2.3.2). Due to the continuity
of this latter space, such a uniform distribution cannot be adequately represented by a computer;
indeed, computers (or, more formally, Turing machines) can only process module lattices that are
represented by rational numbers (bounded in size). We tackle this issue by using a probabilistic
algorithm that, for an input module lattice M , outputs a random sample from a specific distribution
D(M) := RoundPerf

Lat (M) over rational module lattices. This algorithm (Algorithm 2) can be seen as
a probabilistic way of rounding the input module lattice M to a geometrically close rational module
lattice. The average-case distribution considered in this paper can be described by RoundPerf

Lat (M),
where M is sampled Haar-uniform over the space of module lattices.

This rounding algorithm is a generalization of [BDP+20, Algorithm 1] to module lattices. It
also closely resembles [FPS22, Algorithm 3.1], with the difference that our version of the rounding
algorithm forces the output module to be full-rank and is proven to be Hölder continuous; properties
indispensable for the purposes of the current paper.

This specific distribution RoundPerf
Lat (M) over rational module lattices has special properties in

order to indeed resolve the issues coming from the continuity of the module-lattice space. Specifically
the distribution RoundPerf

Lat satisfies

(i) Discreteness, efficiency and rationality: For each M , we have that RoundPerf
Lat (M) is a random

module lattice supported on discrete set S of rational module lattices, each of which can be
represented by a tuple of rational entries. Additionally, for any module lattice M , almost all
of the weight of RoundPerf

Lat (M) is on a finite set S′ ⊆ S. Moreover, the algorithm computing
a sample from RoundPerf

Lat (M) is efficient.

(ii) Independence of module representation: The distribution RoundPerf
Lat (M) does not depend on

the choice of pseudo-basis of the module M . This makes RoundPerf
Lat a map from Xr(K) to the

distribution space L1(S) over the set S of rational modules.

(iii) Preservation of geometry: With high probability, a rational module lattice sample R ←
RoundPerf

Lat (M) has almost the same geometry as M , meaning that solving respectively SVP,
SIVP, etc., on R allows for solving SVP, SIVP, etc., on M (and vice versa).

(iv) Continuity: If M and M ′ are almost isomorphic, their associated distributions RoundPerf
Lat (M)

and RoundPerf
Lat (M ′) are close in total variation distance.

The discreteness, efficiency and rationality makes that any module lattice M can be efficiently
“represented” by a computer via the distribution RoundPerf

Lat (M), even if M itself cannot be. The
independence of module representation makes that RoundPerf

Lat (−) a map truly on modules (and
not a pseudo-basis representation thereof). The geometry preservation makes this distribution rep-
resentation useful for the particular context of this paper: SVP-like problems are not (too much)
distorted by the distribution representation. Lastly, continuity of RoundPerf

Lat allows quantifying the
effects of discretization of the input of RoundPerf

Lat , which will be treated in detail in Section 9.
An intuitive way of thinking about a sample of RoundPerf

Lat (M) (which is the output distribution
of Algorithm 2) is by seeing it as a randomized rounding of the module M to a close, rational
module M ′. This probabilistic rounding is then done in such a way that the continuity in the module
lattice space is transferred to a continuous change of the probability weights on the rational output
modules.
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The pseudo-algorithm computing the “perfect” rounding distribution RoundPerf
Lat (M) (Algo-

rithm 2) involves real arithmetic and continuous distributions, and can therefore not be computed
by a Turing machine. Instead, we resort to a discrete variant of RoundPerf

Lat (M), an actual algo-
rithm called RoundLat(M), which approximates RoundPerf

Lat (M) within arbitrarily small statistical
distance. The precise description of this discretization can be found in the proof of Lemma 3.3.

The precise main result of this section is the following proposition, in which the properties
(i)-(iv) precisely match those just explained.

Proposition 3.1. There exists an algorithm RoundLat with balancedness parameter α ∈ R>1 and
error parameter ε0 ∈ (0, 1/2) that takes α-balanced rank r module lattices (BM , I = (ai)i∈[r]) over
K as input, whose output distribution satisfies, for any M ,

∥RoundLat(M)− RoundPerf
Lat (M)∥ < ε0,

for a certain perfect distribution RoundPerf
Lat (M), and where RoundLat and RoundPerf

Lat satisfy the
following properties.

(i) The output (HR, (hi)i∈[r]) of RoundLat(M) is a rational module lattice that is bounded in
size by poly(size(BM , I), log(1/ε0)). Moreover, the algorithm runs in time poly(size(BM ),
maxi size(ai), log(1/ε0)).

(ii) If (BM , I) and (B′M , I′) represent the same module, we have that

RoundPerf
Lat (BM , I) = RoundPerf

Lat (B′M , I′),

meaning that their output distributions are identical.

(iii) For any N ← RoundLat(M) there exists a full-rank matrix Y ∈ Kr×r
R so that M = Y · N ,

which satisfies cd(Y ) := ∥Y ∥ · ∥Y −1∥ ≤ 1 + 1
2n ≤ 2 and hence preserves SVP-like problems.

For example, solving γ-SVP (resp. SIVP) in N allows for solving 2γ-SVP (resp. SIVP) in
M , with probability at least 1− εn4

0 .

(iv) We have, for any module lattices M,M ′ we have

∥RoundPerf
Lat (M)− RoundPerf

Lat (M ′)∥1 ≤ 92n3 4
√

log(12r/ε0)
√
d(M,M ′),

where d(M,M ′) := minϕ(∥ϕ− I∥2, ∥ϕ−1− I∥2) if there exists a module isomorphism ϕ : M →
M ′ between M and M ′ and d(M,M ′) =∞ otherwise.

Proof. Item (i) is proven in Lemma 3.3, item (ii) in Lemma 3.4, item (iii) in Lemma 3.2 and
Lemma 3.6 using (1 + 1

8n)(1 + 1
4n) ≤ (1 + 1

2n) (see also the proof of Lemma 8.3), and item (iv) in
Lemma 3.7.

3.2 The rounding algorithm and its properties

The rounding algorithm of this section is described in Algorithm 2. We now prove the properties
listed in the introduction.

The following lemma on the matrix 2-norm and the determinant of the basis BN will turn out
useful.
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Algorithm 2 Rounding a module lattice to a near rational module lattice
Require:

• A balancedness parameter α ∈ R≥1,
• A pseudo-basis (BM , (ai)i∈[r]) of an α-balanced rank r module lattice M with ai ⊆ OK .
• An error parameter ε0 ∈ (0, 1/2).

Ensure: A pseudo-basis (HR, (hi)i∈[r])) of a module lattice R of rank r where HR has coefficients
in K and hi ⊆ OK for all i ∈ [r].

1: Put ς = 3 · 2n · αr−1 · ΓK · n · det(M)1/n and T = 8n4 ·
√

log(12r/ε0) · ς.
2: for i = 1 to r do
3: Pick ĉ ∈ {x ∈ KR | ∥xσ∥ = T for all σ} uniformly. Sample a center
4: Put c = (0, . . . , 0︸ ︷︷ ︸

i−1

, ĉ, 0, . . . , 0︸ ︷︷ ︸
r−i

) ∈ Kr
R.

5: Sample vi ← GM,ς,c from the discrete Gaussian (see Definition 2.19) over M with center c.
Repeat until vi is KR-linearly independent of (v1, . . . , vi−1).

6: end for
7: Define the free r-module N = ⊕r

i=1OK · vi; construct its basis BN by stacking vi as columns.
8: return the Hermite normal form (HR, (hi)i∈[r])) of the module R generated by the pseudo-basis

(BR := B−1
N BM , (ai)i∈[r]).

Lemma 3.2. We have, except with probability (ε0)n4,

∥BN∥ ≤ (1 + 1
8n)T , ∥B−1

N ∥ ≤ (1 + 1
4n) 1

T

and
|det(B−1

N )|1/n ≤ (1 + 1
4)T−1

Proof. For conciseness, we write µ = log(2r/ε0). We start with computing the matrix 2-norm of
the matrices BN and B−1

N . By the very definition of BN , we can write BN = T · J − E, where
J is diagonal with on the diagonal entries elements of {x ∈ KR | |xσ| = 1 for all σ} and where
T ∈ R>0. Hence ∥BN∥2 = ∥T · J∥ + ∥E∥ = T + ∥E∥. By the fact that N is constructed by
stacking Gaussian samples (see lines 5 and 7), a single component eij of E ∈ Kr×r

R must satisfy
eij ∈ {x ∈ KR | |xσ| ≤ n2 · µ · ς for all σ} except with probability (by putting κ = n3/2µ),
4(n3/2µ

√
2πe)ne−πµn4 by Lemma 2.20

Hence all of these components satisfy this property except for probability 4n2·(n3/2µ
√

2πe)ne−πµn4 =
(41/nn2/n · n3/2µ

√
2πe · e−πµn3)n ≤ (24κe−πκ2)n ≤ (e−κ2)n = e−µn4 ≤ (ε0)n4 with κ = n3/2µ ≥ 1.3

(since µ =
√

log(12r/ε0) ≥
√

log(24) ≈ 1.78 as ε0 ∈ (0, 1/2)). The inequality 24κe−πκ2 ≤ e−κ2 for
κ ≥ 1.3 follows from graphical inspection.

For the remainder of this proof (where we account for the failure probability (ε0)n4) we assume
that indeed, for all (eij)ij , (eij) ∈ {x ∈ KR | |xσ| ≤ n2 · µ · ς for all σ}.

Hence, writing δ = n3 · µ · ς/T ≤ 1/(8n) < 1/2, we obtain

∥BN∥2 ≤ T + ∥E∥2 ≤ T +
√
∥E∥1∥E∥∞ ≤ T + n3 · µ · ς = T (1 + δ)
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Now for B−1
N , we use that T−1 · J−1BN = I − T−1E. Hence

T∥B−1
N ∥ = ∥TB−1

N · J∥ = ∥(I − T−1E)−1∥ = ∥
∞∑

j=0
(T−1E)j∥ ≤ 1 + n3 · µ · ς/T

1− n3 · µ · ς/T

≤ 1 + δ

1− δ ≤ 1 + 2δ

Therefore, ∥B−1
N ∥ ≤

1
T · (1 + 2δ).

The last computation is on the determinant of B−1
N . We have, by the fact that det(J) = 1,

det(BN ) = det(T · J − E) = Tn det(I − T−1J−1E),

for which we have the bound

|det(I − T−1J−1E)− 1| ≤ 2n∥T−1J−1E∥ = 2n∥E∥
T

≤ 2nδ

for ∥T−1J−1E∥ = 1
T ∥E∥ ≤ 1/n (see [IR08], together with (x + 1)n − 1 ≤ 2nx for nx ≤ 1). This

inequality 1
T ∥E∥ ≤ 1/n is clearly satisfied since we assumed that all components of E satisfy (eij)ij ,

(eij) ∈ {x ∈ KR | |xσ| ≤ n2 · µ · ς for all σ}.
Hence,

| det(B−1
N )| = T−n| det(I − T−1J−1E)| ≤ T−n(1− 2nδ)−1.

Since δ = n3µς/T = 1/(8n), we can easily deduce the claims, since 2nδ ≤ 1/4.

Lemma 3.3. The pseudo-algorithm described in Algorithm 2, of which we will call the output
distribution RoundPerf

Lat (M) on input M , is correct. Furthermore, there exists an algorithm, called
RoundLat, that, given ε0 ∈ (0, 1/2), and given any rational input (BM , I), approximates the output
distribution RoundPerf

Lat of Algorithm 2 (with the same input) within statistical distance ε0 within bit
complexity

poly(size(BM ),max
i

size(ai), log(1/ε0)).

Moreover, any output module R with pseudo-basis (HR, (hi)i∈[r]) of this latter algorithm (RoundLat)
satisfies size(HR),maxi size(hi) ≤ poly(size(BM , (ai)i∈[r]), log(1/ε0)).

Proof. Correctness. To prove correctness, we need to show that the output R is a rank r module
lattice with coefficients in K. The output R is a rank r module lattice by definition (as it has a
pseudo-basis (BR, (ai))). This is forced by the repeated sampling until linearly independence in line
5. Note that the choice of ς in combination with Lemma 2.14 and the α-balancedness of M implies

ς > 3 · 2n ·
√
n · λn(M). (13)

For the coefficients, we observe instead the matrix B−1
R = B−1

M BN ∈ Or×r
K . Since vi ∈ M , we

can write vi = BM · wi where wi ∈ a1 × · · · × ar ⊆ Or
K . Hence putting W = (w1, . . . , wr) (where

the wi are columns), we have BN = BMW and thus B−1
R = B−1

M BN = W . Hence, by the formula
for the inverse via the adjugate, we see that BR = 1

detKR (W )adj(W ) which must have coefficients
in 1

detKR (W )O
r×r
K . Hence, BR and thus HR can be represented by rational numbers (in the field K,

and hence, by picking any basis of K, by rational numbers in Q). By scaling, one can demand the
ideals to be integral, see also the text on Module-HNF in Section 2.3.3.

Approximation of Algorithm 2 with small statistical distance. Next, we prove that
the output distribution of Algorithm 2, RoundPerf

Lat , can be approximated by an efficient algorithm
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RoundLat using bit-operations and within statistical distance ε0. There are two lines in Algorithm 2
that cannot be computed with bit-operations due to their real or infinite nature: Line 3 and line
5. The former, because a computer cannot sample from a uniform ball, and the latter because a
computer cannot process arbitrarily large elements of the lattice M .

We resolve the first issue by discretizing the set C = {x ∈ KR | ∥xσ∥ = T for all σ}, into the
finite set C̈, in such a way that C = C̈+F with F some fundamental domain satisfying ∥f∥ ≤ ςε2

0
32r3d

for all f ∈ F (with r = rank(M) and d = deg(K)). I.e., every element c ∈ C can uniquely be
written as c = c̈+ f with c̈ ∈ C̈ and f ∈ F ; with vol(F ) = vol(C)

|C̈| . One can efficiently sample in C̈ by
sampling x ∈ KR per embedding separately.

Hence, the statistical distance of the two methods of sampling vi ← GM,ς,c, with c = (0, . . . , 0︸ ︷︷ ︸
i−1

, ĉ, 0, . . . , 0︸ ︷︷ ︸
r−i

),

where ĉ ← C or ĉ ← C̈ can then be computed by (where the statistical distance, or, equivalently,
the norm ∥ · ∥1, is over m ∈M)∥∥∥∥∥∥ 1

vol(C)

∫
ĉ∈C
GM,ς,cdĉ−

1
|C̈|
∑
ĉ∈C̈

GM,ς,c

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥ 1
vol(C)

∫
f∈F

∑
ĉ∈C̈

GM,ς,c+f − GM,ς,cdf

∥∥∥∥∥∥
1

≤ 1
vol(C)

∫
f∈F

∑
ĉ∈C̈

∥GM,ς,c − GM,ς,c+f∥1df ≤
1

vol(C)

∫
c∈C

4
√
n∥f∥
ς
≤ ε0/(2r)

where the last inequality follows from the result [PS21, Lemma 2.3] by Pellet-Mary and Stehlé. The
premise of this result, η1/2(M) ≤ ς/2, follows from [MR07, Lemma 3.3], as η1/2(M) ≤

√
log(2n(1+2))

π ·
λn(M) ≤ 2rdλn(M) ≤ ς/2 (see Equation (13), and where we use that

√
log(6x)/π ≤ 2x for all

x > 0).
We resolve the second issue by using an algorithm computing an approximation of the discrete

Gaussian as in [FPS+23a, Lemma A.7] (see also [GPV08, Theorem 4.1]) with error ε0/(12r). This
means that, instead of sampling vi ← GM,ς,c in line 5, we sample vi ← ĜM,ς,c for which

∥ĜM,ς,c − GM,ς,c∥1 < ε0/(12r),

for which it additionally holds that ∥vi − c∥ ≤ ς
√

log(12r/ε0) + 4n.
At the end each loop occurrence, at line 5, a vi is sampled that is a discrete Gaussian conditioned

on being independent to the earlier samples (v1, . . . , vi−1). By Lemma A.3, the success probability
of a single try of vi must be bounded from below by 1/3 (by the fact that ς > 3 ·

√
n · λn(M),

see Equation (13)). Hence, by Lemma 2.23, the statistical distance between the two conditioned
samples (meaning, repetition until success), must be upper bounded by

2 · (1/3)−1 · ∥ĜM,ς,c − GM,ς,c∥1 ≤ ε0/(2r).

For fixed input M , write RoundPerf
Lat (M) for the output distribution of Algorithm 2 over rank r

modules represented by (HR, (hi)i∈[r])). And, for the same fixed input, write RoundLat(M) for the
same output distribution of Algorithm 2 except that ĉ is sampled according to a discrete circle and
vi ← ĜM,ς,c is sampled from an approximate discrete Gaussian. Then we have, by the fact that the
loop in line 2 consists of r repetitions,

∥RoundPerf
Lat (M)− RoundLat(M)∥ ≤ r · (ε0/(2r) + ε0/(2r)) = ε0

Hence, indeed, the output distribution RoundPerf
Lat (M) of Algorithm 2 can be approximated within

statistical distance ε0. The bound on the run time is shown at the very end of this proof.
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Bound on size of HR and hi. Due to the polynomial time algorithm for the Module-HNF by
Biasse and Fieker [BF12], it is sufficient to find a polynomial size bound on BR in order to bound
the sizes of HR and hi, since

size(HR, (hi)i∈[r]) ≤ poly(BR, (ai)i∈[r]).

We bound the size of BR ∈ 1
detKR (W )O

r×r
K ⊆ Kr×r

R (with W = B−1
R , see the beginning of this proof)

by proving an upper bound on the length of the vectors it consists of, as well as an upper bound
on the (norm of the) denominators of its coefficients.

We have, by a similar computation as in Lemma 3.2 (with δ = n3 · ς · √µ/T ≤ 1/(8n), writing
µ =

√
log(12r/ε0) ), using that the approximate discrete Gaussian samples indeed always satisfy

eij ≤ n2 ·
√

log(12r/ε0) · ς = n2µς, (contrarily to the perfect discrete Gaussian samples, for which
this happens with high probability)

∥BR∥ = ∥B−1
N BM∥ ≤ ∥B−1

N ∥∥BM∥ ≤
1
T

(1 + 2δ)∥BM∥.

Additionally, again, by similar determinant computations as in Lemma 3.2,

|det(W )| = |det(B−1
M BN )| = | det(M)−1| · | det(BN )| ≤ det(M)−1 · T (1 + 2nδ)

≤ 2 · det(M)−1 · T.

Since W ∈ Or×r
K , we have det(W ) ∈ Z and hence we see that | det(W )| = |N(detKR(W ))| ≤

2 det(M)−1 · T .
Hence, the size of BR is bounded by poly(size(BM ), log(T )) = poly(size(BM ), log(1/ε0)), which

proves the claim.
Run-time. We finish the proof that the approximated algorithm is efficient. For lines 1-6,

the efficiency follows from the efficiency of sampling the discrete circle and the efficiency of the
approximate discrete Gaussian algorithm as in [FPS+23b, Lemma A.7]. The fact that the sample
from the discrete Gaussian is required to be conditioned on being linearly independent of earlier
samples, does not give a significant overhead, by Lemma A.3. We can conclude that these lines run
in time poly(size(BM ),maxi size(ai), log(1/ε0)).

An additional note on computing this (approximate) discrete Gaussian, is that before sampling
vi ← ĜM,ς,c, the basis ofM is first LLL-reduced (for this purpose only), in order to have smaller basis
elements. This LLL reduction does not need to be module-compatible, and an efficient algorithm
to find such an LLL reduced basis for approximate bases is described in [BP89; BK96]. This allows
for computing a Z-basis (m1, . . . ,mn) of the lattice M satisfying ∥mi∥ ≤ 2nλi(M) for all i ∈ [n]
[BK96, Corollary 4.1].

Line 7 is just stacking columns and causes no real overhead. The last line, line 8, involves
the computation of a Hermite normal form, which can be computed in polynomial time [BF12].
Hence the overall bit-wise approximation algorithm (of Algorithm 2) runs within polynomial time
in size(BM ), size(ai).

Lemma 3.4 (The output distribution RoundPerf
Lat of Algorithm 2 does not depend on the pseudo-ba-

sis representation of M). Let α ∈ R≥1 and let RoundPerf
Lat (BM , (ai)i∈[r]) be the output distribution

of Algorithm 2 on input (BM , (ai)i∈[r]). Let (BM , (ai)i∈[r]) and (B′M , (a′i)i∈[r]) be two pseudo-basis
representations of an α-balanced module lattice M . Then

RoundPerf
Lat (BM , (ai)i∈[r]) = RoundPerf

Lat (B′M , (a′i)i∈[r])
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Proof. Since the sample of vi ← GM,ς,c in line 5 is independent on the choice of pseudo-basis of
M , the distribution of the free module N in line 7 is also independent on this pseudo-basis choice.
Therefore, the module-lattice R is independent of this pseudo-basis choice (but its representation
(BR := B−1

N BM , (ai)i∈[r]) generally not). As the output is the Hermite normal form basis of R
(which is unique for each module lattice), the output is indeed independent of the pseudo-basis
choice of the module M .

Lemma 3.5 (RoundPerf
Lat preserves short-vector problems). Let R be a module lattice produced as

the output of Algorithm 2 with input M . Then, given a vector v ∈ R satisfying ∥v∥ ≤ γλ1(R)
(respectively ∥v∥ ≤ γ′ det(R)1/(dr)), the vector m = BNv ∈M satisfies

∥m∥ ≤ 2γλ1(M) (respectively ∥m∥ ≤ 2γ′ det(M)1/(dr)),

with probability at least 1− (ε0)n4.

Proof. By Lemma 3.2, we have ∥BN∥2 ≤ (1 + 1
8n)T , ∥B−1

N ∥2 ≤ (1 + 1
4n) 1

T and | det(B−1
N )|1/n ≤

(1 + 1
4)T−1, with probability at least 1− (ε0)n4 .

Since BN is a module isomorphism from R to M (and thus B−1
N from M to R), we obtain that

for any v ∈ R\{0} attaining λ1(R), we have BNv ∈M\{0} and hence

λ1(M) ≤ ∥BNv∥ ≤ T (1 + 1/(8n))∥v∥ = T

(
1 + 1

8n

)
λ1(R),

and similarly, for m ∈M\{0} attaining λ1(M),

λ1(R) ≤ ∥B−1
N m∥ ≤ ∥B−1

N ∥∥m∥ ≤
1
T
·
(

1 + 1
4n

)
· λ1(M).

After these computations, we turn back to the original task at hand: showing that a short
vector in R gives means of computing a short vector of M . Suppose v satisfies ∥v∥ ≤ γλ1(R), i.e.,
v = BRw with w ∈ a1 × . . . × ar. Let now m = BNv = BN B−1

N BMw = BMw ∈ M . Then by the
computations on the norms on the matrix, we obtain

∥m∥ = ∥BNv∥ ≤ T (1 + 1
8n)∥v∥ ≤ γ · T (1 + 1

8n) · λ1(R) ≤ γ · (1 + 1
8n)(1 + 1

4n)λ1(M).

For the determinant variant, the same type of sequence of inequalities occurs:

∥m∥ = ∥BNv∥ ≤ T (1 + 1
8n)∥v∥ ≤ γ · T (1 + 1

8n) · det(R)1/n

≤ γ · (1 + 1
8n)(1 + 1

4) · det(M)1/n.

Here we use that det(R) = det(B−1
N BM ) = |det(BN )−1||det(BM )| ≤ T−1(1 + 1

4) det(M). Now we
use that (1 + 1/(8n))(1 + 1/(4n)) ≤ (1 + 1/(8n))(1 + 1/4) ≤ 2 to obtain the final claim.

Lemma 3.6 (RoundLat preserves short-vector problems). Let R be the module lattice represented
by the output of the approximation RoundLat of Algorithm 2 with input M . Then, if v ∈ R satisfying
∥v∥ ≤ γλ1(R) respectively ∥v∥ ≤ γ′ det(R)1/(dr) allows for finding m ∈M satisfying

∥m∥ ≤ 2γλ1(M) respectively ∥m∥ ≤ 2γ′ det(M)1/(dr),

with probability 1.
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Proof. This follows from the proof of Lemma 3.5 and the fact that (as can be seen in Lemma 3.3) the
tails of the discrete Gaussians are cut in RoundLat, which takes away the probability that arbitrarily
large samples from these Gaussians can cause the short-vector problems not to be preserved.

Lemma 3.7 (RoundPerf
Lat is 1/2-Hölder continuous). Let α ∈ R≥1, ε0 ∈ (0, 1/2) and let M,M ′ be

α-balanced module lattices of rank r. Denote D(M) for the output distribution of Algorithm 2 on
input (BM , (ai)i∈[r]), a pseudo-basis of M .

Then we have
∥D(M)−D(M ′)∥1 ≤ 92n3 · 4

√
log(12r/ε0)

√
d(M,M ′),

where d(M,M ′) := min(∥ϕ − I∥2, ∥ϕ−1 − I∥2) if there exists a module isomorphism ϕ : M → M ′

between M and M ′ and d(M,M ′) =∞ otherwise.

Proof. Assume that M ′ = ϕM , where ϕ ∈ Kr×r
R serves as a module isomorphism (and is thus invert-

ible); otherwise the lemma is trivially true. We may without loss of generality assume that det(ϕ) =
1 (and hence det(M ′) = det(M)), by replacing M ′ by det(ϕ)−1/(rd)M ′ and ϕ by ϕ · det(ϕ−1/(rd)).
This holds because Algorithm 2 is scaling-independent, i.e., it does not matter whether M or qM
is the input for q ∈ R>0.

We use that d(M,M ′) = min(∥ϕ − I∥2, ∥ϕ−1 − I∥2) (where M ′ is scaled so that det(M) =
det(M ′)). Then, for the same c, the samples (vi)i∈[r] from GM,ς,c (for Algorithm 2 on input M)
and (ϕvi)i∈[r] from GϕM,ς,c (for Algorithm 2 on input M ′ = ϕM) lead to the same output module.
Indeed, a pseudo-basis of the output module R in the first case can be described by (BR :=
B−1

N BM , (ai)i∈[r]) with BN is constructed by stacking vi; whereas in the second case it can be
described by ((ϕBN )−1(ϕBM ), (ai)i∈[r]), which is equal to the pseudo-basis in the first case since
(ϕBN )−1(ϕBM ) = B−1

N BM .
Hence, by the data processing inequality, the total variation distance in the output distribution

of Algorithm 2 on input M and M ′ can be bounded above by the total variation distance between
GM,ς,c and ϕ−1GϕM,ς,c, which are both distributions over M (where we mean with ϕ−1GϕM,ς,c the
distribution obtained by multiplying the output of GϕM,ς,c by ϕ−1).

By rewriting, one obtains that ϕ−1GϕM,ς,c is equal to the distribution GM,ϕ−1ς,ϕ−1c, where ϕ−1ς
serves as a sort of variance matrix. The probability of sampling v from GM,ϕ−1ς,ϕ−1c is proportional
to exp(−∥ϕ/ς · (v − ϕ−1c)∥2). We use a result from Stehlé and Pellet-Mary [PS21, Lemma 2.4],
where we instantiate S1 = ς,S2 = ϕ−1ς, c1 = c and c2 = ϕ−1c in [PS21, Lemma 2.4]; we use here
that, by the definition of ς we have η1/2(M) ≤

√
log(6n)

π λn(M) ≤ ς (see [MR07, Lemma 3.3]) and
similarly for M ′ (see also [PS21, Equation (2.1)]). This yields the following bound:

∥GM,ϕ−1ς,ϕ−1c −GM,ς,c∥ ≤ 4
√
n

(√
S−1

2 S1 − In∥+
√

S−1
2 (c1 − c2)

)
(14)

≤4
√
n

(√
∥ϕ− I∥+

√
∥ς−1(ϕc− c)∥

)
(15)

≤ 4
√
n
√
∥ϕ− I∥(1 +

√
nT/ς) (16)

Note, though, that in line 5, instead the samples are conditional on being linearly independent
of the former samples. By Lemma A.3, the success probability of sampling such vi being linearly
independent to the former samples is at least 1/3. Hence, by Lemma 2.23 the statistical distance
between the conditioned Gaussian samples must be upper bounded by

2 · (1/3)−1 · ∥GM,ϕ−1ς,ϕ−1c −GM,ς,c∥ ≤ 24
√
n
√
∥ϕ− I∥(1 +

√
nT/ς). (17)
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Hence, for r ≤ rd = n of such samples, the total variation distance can be bounded by, using
that nT/ς = 8n5 · µ (with µ =

√
log(12r/ε0)) and 24

√
n(1 +

√
8n5 · µ) ≤ 16n3 · √µ for n ≥ 1, we

obtain a total variation distance of

∥D(M)−D(M ′)∥1 = ∥D(M)−D(ϕM)∥1 ≤ 92n3√µ
√
∥ϕ− I∥.

By analogously comparing the Gaussians over M ′ and ϕ−1M ′ = M , one arrives at the exact same
bound, except that ∥ϕ− I∥ is replaced by ∥ϕ−1− I∥. Hence, replacing µ =

√
log(12r/ε0) the claim

of the lemma follows.

4 Self-reducibility in the bulk: analytic tools
The goal of this section is to prove an explicit, quantitative Hecke equidistribution theorem for test
functions concentrated at arbitrary lattices. It is one of the main drivers of our reduction, but the
result is of independent interest.

First, take a module lattice Lz,a for z ∈ GLr(KR) and a in the class group, as in Section 2.3.2.
We define a probability measure on Xr,a, extended trivially to Xr, that is concentrated around Lz,a.
It is given by an “initial distribution” function φz.

Applying Hecke operators Tp to φz corresponds to randomizing Lz,a or a geometrically close
lattice by taking certain sublattices with index N(p). As p grows large, the measures we obtain
spread out to the whole of Xr and start to converge to the uniform probability measure µ. In other
words, the sublattices of Lz,a of large index equidistribute.

For our purposes, it is essential to understand the rate of convergence to the uniform measure.
We do so by applying the bounds on Hecke eigenvalues given in Section 2.7, importing the quanti-
tative equidistribution results of [BDP+20], and bounding the L2-norm of the initial distribution
concentrated around Lz,a. The latter depends heavily on the balancedness of the lattice (recall
Definition 2.8).

Theorem 3. Assume ERH for the L-function of every Hecke character of K of trivial modulus.
Let φz be the function defined in Definition 4.3, with defining parameters σ ≤ 1/

√
d and t = 1. Let

B, κ be positive parameters such that κ ≥ σ−1√ru/4π and B ≫ log|∆K | + d, with large enough
implied constant. Recall that P(B) is the set of prime ideals of K with norm up to B. Assume that
the associated lattice Lz,a is α-balanced. Then∥∥∥TP(B)φz − µRiem(Xr)−1 · 1Xr

∥∥∥2

Xr

≪ max(ru(log ru)3, 1/σ)ru · (C2
1 + e−2(κ/

√
d)2)

+ (rd)2 ·B−3/4 log(B)2 · C2
2 ,

where
C1 = O

(
log(B) log[Bd · |∆K | · (4 + 2πκ/

√
d)d]√

B

)
and

C2 ≤ exp
(
r3d

6 logα+ r2 log |∆K |+
d

2 log d+O(r2d log r + log log |∆K |)
)
.

Remark 4.1. For our purposes, Theorem 3 is strong enough when the starting lattice is α-balanced
with α at most polynomial in d (see Section 10 for details). In fact, as explained in Section 1.3, we
should not expect it to apply to very imbalanced lattices.
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4.1 Initial distribution

Define the natural projection
πa : Yr → Xr,a. (18)

The initial distribution will be the push-forward under πa of a distribution on Yr, which we define
from its density with respect to µRiem. The latter is informally constructed by splitting GLr into SLr

and GL1 and taking characteristic functions or bump functions on neighborhoods of the identity
on each part. For this, we recall the functions ρ and τ from Section 2.6.3, measuring distance on
the SLr and GL1-parts, respectively.

Let t > 0 and σ > 0. We define f̃ ∈ L2(Yr) by

f̃(x) = 1[0,t](ρ(x)) exp(− π

σ2 τ(x)), (19)

and let If =
∫

Yr
f̃dµRiem. Notice that the first factor is the characteristic function of the ball B(t),

as defined in 2.6.3. Moreover, f̃ has rapid decay, which implies that all integral manipulations
appearing below are valid and there are no convergence issues.

Lemma 4.2. We have that

If =
∫

Yr

f̃dµRiem = µRiem(B(t))
µRiem(SUr(KR))

( σ√
r

)ru

. (20)

Proof. Let
S : K×R → K×R Ur(KR)

be a section of the determinant GLr(KR) → K×R that takes values in K×R Ur(KR). This latter
condition is useful for employing the invariance properties of ρ. Using the integration formula (5),
we compute that ∫

Yr

f̃(x) dµRiem(x)

=
∫

x∈Yr

1[0,t](ρ(x)) exp(− π

σ2 τ(x)) dx

= r
−ru

2

∫
δ∈Y1

(∫
x∈∆−1(δ)

1[0,t](ρ(x)) exp(− π

σ2 τ(x))dx
)
dδ.

Plugging in definitions and using the isometry between Y1 and H given in section 2.6.1, the expres-
sion above equals

r
−ru

2

∫
δ∈Y1

(∫
x∈∆−1(δ)

1[0,t](ρ(x)) dx
)

exp(− π

σ2 ∥ log|δ|∥2H) dδ

= r
−ru

2

∫
δ∈Y1

µRiem(B(t)S(δ)/SUr(KR)) exp(− π

σ2 ∥ log|δ|∥2) dδ

= r
−ru

2

∫
δ∈Y1

µRiem(B(t))
µRiem(S(δ) SUr(KR)S(δ)−1) exp(− π

σ2 ∥ log|δ|∥2) dδ

= r
−ru

2

∫
x∈H

µRiem(B(t))
µRiem(SUr(KR)) exp(− π

σ2 ∥x∥
2)dx

The claim follows from a standard formula for the integral of a Gaussian.
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For z ∈ Yr, notice that
∫

Yr
f̃(z−1x) = If by invariance of the measure. Thus, writing

fz(x) = I−1
f f̃(z−1x), (21)

we have that fz · µRiem defines a probability measure on Yr, concentrated around the point z.

Definition 4.3. Let the initial distribution around a point z ∈ Xr,a be φz = (πa)∗fz. Explicitly,

φz(w) =
∑

γ∈GLr(OK ,a)
fz(γw), (22)

and we note the dependence on a and on the two parameters, σ and t, which we leave out of notation
for simplicity. It extends trivially to Xr by setting its value to be 0 on all other components.

Lemma 4.4. The measure φz · µRiem is a probability measure on Xr.

Proof. Indeed, we can compute that∫
Xr

φz(w) dµRiem =
∫

Xr,a

φz(w) dµRiem =
∫

Yr

fz(w) dµRiem = 1

using the formal integration rule ∫
Γ\X

∑
γ∈Γ

f(γx) dx =
∫

X
f(x) dx.

The latter is often called the unfolding method and is valid in all cases we consider.

4.1.1 Determinant projection of the initial distribution

We now compute the projection of φz onto the space L2
det(Xr,a) by applying the results in Section

2.6. For this, let φz,1 = µRiem(∆−1
a (1))−1∆′aφz, so that, by (7),

πdetφz = ∆∗aφz,1. (23)

Lemma 4.5. For the initial distribution defined in (22), we have

∆′aφz(δ) =
∑

ξ∈O×
K

σ−ru exp(− π

σ2 ∥ log|δ|+ log|ξ| − log|det(z)|∥2H). (24)

The measure ∆′aφz · µRiem is a probability measure on X1,a.

Proof. Recall the description (6) of ∆−1(δ) and that

∆−1
a (δ) = Γa\Γa∆−1(δ).

For each ξ ∈ O×K , choose an element γ(ξ) ∈ Γa such that det(γ(ξ)) = ξ. Using this, we parametrize

Γa∆−1
a (δ) =

⋃
ξ∈O×

K

γ(ξ)∆−1
a (δ).

The unfolding method with respect to the measure µRiem now implies that

∆′aφz(δ) =
∫

x∈∆−1
a (δ)

φz(x) dx =
∫

Γa∆−1
a (δ)

fz(x) dx

= r−
ru
2 I−1

f

∑
ξ∈O×

K

∫
∆−1

a (δ)
f̃(z−1γ(ξ)x) dx.
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The same computation as for If and the fact that

µRiem(zγ(ξ)B(t)) = µRiem(B(t))

now imply that∫
∆−1(δ)

f̃(z−1γ(ξ)x) dx = µRiemB(t)
µRiem(SUr(KR)) exp(− π

σ2 ∥ log|δ| + log|ξ| − log|det(z)|∥2H)

Plugging in our formula for If , we obtain the formula in the claim. The fact that ∆′aφz · µRiem
defines a probability measure can be checked by standard properties of the Gaussian function.

4.2 Bound on the norm of the initial distribution

It is essential in our method to have uniform bounds on the norm ∥φz∥. We obtain them by first
reducing to a problem of counting matrices in Γa with certain size constraints that depend on z. We
then use techniques based on counting lattice points in balls, where the dependence on the lattice
manifests through the appearance of successive minima.

4.2.1 Reduction to a counting problem

We first use generic notation in this section and we specialize later. Let Y be a space equipped
with a measure ν. Let Γ be a discrete group acting on Y properly discontinuously. This induces an
action of Γ on the space of functions on Y , defined by

(γf)(y) = f(γ−1y)

for f : Y → R, y ∈ Y and γ ∈ Γ.
Let π : Y → Γ\Y be the canonical projection. For a function f on Y we let π∗f be the push-

forward function on Γ\Y , i.e. π∗f(x) = ∑
y∈π−1(x) f(y) for x ∈ Γ\Y . Assume here that f is mea-

surable and has rapid decay so that all the sums and integrals we consider converge.

Lemma 4.6. We have ∥π∗f∥2 = ∑
γ∈Γ⟨f, γ−1f⟩Y .

Proof. We compute that

∥π∗f∥2 =
∫

Γ\Y
(π∗f(x))2dν(x) =

∫
Γ\Y

( ∑
y∈π−1(x)

f(y)
)2
dν(x)

=
∫

Γ\Y

∑
y∈π−1(x)

f(y)
∑

y′∈π−1(x)
f(y′)dν(x)

=
∫

Γ\Y

∑
y∈π−1(x)

f(y)
∑
γ∈Γ

f(γy)dν(x)

=
∫

Y
f(y)

∑
γ∈Γ

f(γy)dν(y) =
∑
γ∈Γ
⟨f, γ−1f⟩Y .

Suppose we have a function τ : Γ → R≥0 (measure of size) such that the sets Bf (t) = {γ ∈ Γ |
τ(γ) ≤ t and ⟨f, γ−1f⟩Y ̸= 0} are finite. Define Cf (t) = |Bf (t)|. In addition, assume that we have
a bound of the form

|⟨f, γ−1f⟩Y | ≤ F (τ(γ))
for some smooth function F : R≥0 → R≥0.
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Corollary 4.7. In the notation above, we have

∥π∗f∥2 ≤ (F · Cf )(∞) +
∫ ∞

0
Cf (t)(−F ′(t)) dt. (25)

Proof. Since Cf (t) is clearly monotone, we may use the Riemann–Stieltjes integral to state the
inequality ∣∣∣ ∑

γ∈Γ
τ(γ)≤T

⟨f, γ−1f⟩Y
∣∣∣ ≤ ∑

γ∈Bf (T )
F (τ(γ)) =

∫ T

0
F (t) dCf (t),

for any T > 0. Integration by parts gives∫ T

0
F (t) dCf (t) = F (T+)Cf (T+)− F (0−)Cf (0−)−

∫ T

0
Cf (t)F ′(t) dt.

Finally, assuming the quantities below converge, letting T →∞, we obtain the claim.

We now specialize the discussion to Y = Yr with the measure ν = µRiem, the function f = fz,
the discrete subgroup Γ = GLr(OK , a), and τ as in Definition 2.29. We first compute the function
F that gives a bound on the inner products.

Lemma 4.8. We have that ⟨fz, γ
−1fz⟩Y ≤ F (τ(γ)), where

F (τ) = µRiem(Xr)2µRiem(SUr(KR))
µRiem(B(t))

( √
r

σ
√

2

)ru

exp
(
− π

2σ2 τ

)
. (26)

Proof. We begin with writing explicitly

⟨fz, γ
−1fz⟩Y

= 1
I2

f

∫
x∈Yr

f̃(z−1x)f̃(z−1γx) dµRiem(x)

= 1
I2

f

∫
x∈Yr

1[0,t](ρ(z−1x))1[0,t](ρ(z−1γx)) exp
(
− π

σ2 (τ(z−1x) + τ(z−1γx))
)

Let zH = πH log |det z| and γH = log |det γ| ∈ H. We now estimate the intersection of the balls
zB(t) and γ−1zB(t) trivially to obtain, using the same techniques as when calculating If and ∆′aφz,
that

µRiem(Xr) · ⟨fz, γ
−1fz⟩Y

≤ 1
I2

f

∫
x∈Yr

1[0,t](ρ(z−1x)) exp
(
− π

σ2 (τ(z−1x) + τ(z−1γx))
)
dx

= 1
I2

f r
ru
2

∫
δ∈Y1

∫
x∈∆−1(δ)

1[0,t](ρ(z−1x)) exp
(
− π

σ2 (τ(z−1x) + τ(z−1γx))
)
dx dδ

= 1
I2

f r
ru
2

∫
h∈H

µRiem(B(t))
µRiem(SUr(KR)) exp

(
− π

σ2 (∥h− zH∥2 + ∥h+ γH − zH∥2)
)
dδ.
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Focusing in on the integral, we have∫
h∈H

exp
(
− π

σ2 (∥h− zH∥2 + ∥h+ γH − zH∥2)
)
dδ

=
∫

h∈H
exp

(
− π

σ2 (2∥h− zH + γH
2 ∥

2 + 1
2∥γH∥2)

)
dδ

= exp
(
− π

2σ2 τ(γ)
)∫

h∈H
exp

(
− π

σ2 (2∥h∥2)
)
dδ

=
(
σ√
2

)ru

exp
(
− π

2σ2 τ(γ)
)
.

We finish by plugging in our formula (20) for If .

To apply our formalism above and obtain a bound for ∥φz∥, we are thus left with estimat-
ing Cfz (τ). For this, observe that if ⟨fz, γ

−1fz⟩Y ̸= 0, then there exists a point x ∈ Yr such
that ρ(z−1x) ≤ t and ρ(z−1γx) ≤ t. By the properties of ρ, we deduce that

ρ(z−1γz) = ρ(z−1γxx−1z) ≤ 2t. (27)

We use this in the next section to count the elements γ that contribute to the L2-norm.

4.2.2 The counting problem

Counting elements of Γa lying in Bfz (τ) can be reduced to counting lattice points in balls. The
following lemma is well-known, and we cite a version that features explicit constants.

Lemma 4.9. If L is a lattice of rank n and R ∈ R>0, we have

|{v ∈ L | ∥v∥ ≤ R}| ≤ 2n−1
n∏

i=1

( 2R
λi(L) + 1

)
.

Proof. This is Theorem 1.5 in [Hen02].

Lemma 4.10. Let L = Lz,a and let τ > 0. Then

Cfz (τ) ≤ 2r2d−r
r∏

k=1

rd∏
i=1

(
2 exp(1

r

√
τ + 2t)λ

K
k (L)
λi(L) + 1

)
.

Proof. Recall that for all γ ∈ Γ = GLr(OK , a),

τ(γ) = ∥ log|det γ|∥2H = ∥ log|det γ|∥2,

and Cf (τ) = |Bf (τ)|, where

Bf (τ) = {γ ∈ Γ | τ(γ) ≤ τ and ⟨f, γ−1f⟩Y ̸= 0}.

Let γ ∈ Bf (τ). Then the non-vanishing of the inner product condition implies that ρ(z−1γz) ≤
2t, as in (27). Writing z = (zv)v, γ = (γv)v by viewing GLr(KR) as ∏v GLr(Kv), we have that
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∥z−1γz∥op = maxv ∥z−1
v γvzv∥op since for w ∈ Kr

R we have ∥w∥2 = ∑
v[Kv : R] ∥wv∥2. We obtain,

∥z−1γz∥op = max
v
∥z−1

v γvzv∥op = max
v

∥z−1
v γvzv∥op

|det γv|
1
r

|det γv|
1
r

≤ exp
(

1
r log max

v
| det γv|

)
max

v

∥z−1
v γvzv∥op

|det γv|
1
r

= exp
(

1
r∥ log | det γ|∥∞

)
exp(ρ(γ))

≤ exp
(

1
r

√
τ(γ) + ρ(γ)

)
≤ exp(1

r

√
τ + 2t),

using that the L∞-norm is at most the L2-norm in finite dimensional spaces. In other words, the
operator norm of γ acting on L is at most exp(1

r

√
τ + 2t).

Now let v1, . . . , vr ∈ L be K-independent with ∥vk∥ ≤ λK
k (L). Each γ ∈ Γ is uniquely determined

by the images of the vk. In addition, for every γ ∈ Bf (τ), we have

∥γvk∥ ≤ exp(1
r

√
τ + 2t)λK

k (L).

By Lemma 4.9 the number of vectors in L satisfying this bound is at most

2rd−1
rd∏

i=1

(
2 exp(1

r

√
τ + 2t)λK

k (L)
λi(L) + 1

)
.

Using this bound for every k leads to the claim.

Corollary 4.11. Under the same hypothesis, assuming that t ≥ 1
4 and that L is α-balanced (recall

Definition 2.8), we have

Cfz (τ) ≤
(
8αr/6

)r2d
exp(rd

√
τ + 2r2dt).

Proof. Rewrite the bound of the lemma as

Cfz (τ) ≤ 2r2d−r
r∏

k=1

r∏
k′=1

d∏
i=1

(
2 exp(1

r

√
τ + 2t) λK

k (L)
λd(k′−1)+i(L) + 1

)
.

Applying Lemma 2.13, we get

Cfz (τ) ≤ 2r2d−r
r∏

k=1

r∏
k′=1

d∏
i=1

(
2 exp(1

r

√
τ + 2t)λ

K
k (L)
λK

k′ (L)
+ 1

)

≤ 2r2d(4 exp(1
r

√
τ + 2t))dr(r+1)/2

r∏
k=1

k−1∏
k′=1

(
4 exp(1

r

√
τ + 2t)λ

K
k (L)
λK

k′ (L)

)d

≤ 8r2d exp(rd
√
τ + 2r2dt)

r∏
k=1

r∏
k′=1

αd(k−k′)

≤ 8r2d exp(rd
√
τ + 2r2dt)αdr(r2−1)/6,

which implies the claim.
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4.2.3 The norm bound

Before proving our bound for ∥φz∥, we state a technical lemma that aids computation.

Lemma 4.12. Let a, b > 0. Then∫ ∞
0

exp(−ax+ b
√
x)dx ≤ 2

a

(
2 exp(2b2/a) + 1

)
.

Proof. Let x ≥ (2b/a)2. Then −ax+ b
√
x ≤ −a

2x, so∫ ∞
(2b/a)2

exp(−ax+ b
√
x)dx ≤

∫ ∞
(2b/a)2

exp(−a2x)dx = 2
a

exp(−2b2/a) ≤ 2
a
.

On the other hand we have∫ (2b/a)2

0
exp(−ax+ b

√
x)dx ≤

∫ (2b/a)2

0
exp(b

√
x)dx = 2

∫ 2b/a

0
y exp(by)dy

≤ (4b/a)
∫ 2b/a

−∞
exp(by)dy = (4/a) exp(2b2/a).

We now sum up all the previous sections, recalling our construction for convenience, and con-
clude with one of the main estimates in our argument. Namely, we define the function φz (see
Definition 4.3) starting with data consisting of a matrix z ∈ Yr, a class group representative a, the
parameter t, which controls how much φz localizes in the SL(r)-part, and the parameter σ, which
controls how much it localizes in the GL(1)-part. The first two data also define a lattice L = Lz,a.
We have the following bound on the L2-norm of the starting distribution, defined in terms of µRiem.

Proposition 4.13. Suppose Lz,a is α-balanced, and let 1 ≤ t ≤ O(1) and σ = O(1/
√
d). We have

log ∥φz∥XR
≤ r3d

6 logα+ r2 log |∆K |+
d

2 log d+O(r2d log r + log log |∆K |).

Proof. We first prove the more precise bound

∥φz∥2 ≤
µRiem(Xr)2

µRiem(B(t))σru

(
r

2

) ru
2 (

8e2tαr/6
)r2d

(
4 exp

((2σrd)2

π

)
+ 2

)
.

For this, recall from (26) that we have ⟨fz, γ
−1fz⟩Y ≤ F (τ), where

F (τ) = µRiem(Xr)2µRiem(SUr(KR))
µRiem(B(t))

( √
r

σ
√

2

)ru

exp
(
− π

2σ2 τ

)
.

For applying the formal bound (25), we first note that, by Corollary 4.11, the function Cf (τ) grows
like exp(

√
τ), whilst F (τ) decays like exp(−τ). This implies that F (τ)Cf (τ) vanishes as τ goes

to infinity. The same observation shows that F ′(τ)Cf (τ) exhibits rapid decay and is integrable.
Therefore, we obtain that

∥φz∥2 ≤
∫ ∞

0
Cf (τ)(−F ′(τ))dτ.

Ignoring the τ -independent factors in the formula for F ′(τ), we have∫ ∞
0

Cf (τ) exp
(
− π

2σ2 τ

)
dτ ≤

(
8e2tαr/6

)r2d
∫ ∞

0
exp(− π

2σ2 τ + rd
√
τ) dτ.

47



Lemma 4.12 with a = π
2σ2 and b = rd now gives∫ ∞

0
exp(− π

2σ2 τ + rd
√
τ) dτ ≤ 4σ2

π

(
2 exp

((2σrd)2

π

)
+ 1

)
.

To finally arrive at the claimed bound, note simply that the factor 4σ2

π in the previous display and
the π

2σ2 from differentiating F cancel to give a factor of 2.
By the assumption on σ we have

4 exp
((2σrd)2

π

)
+ 2 = 2O(r2d).

Introducing the volume computations of Section 2.6.3 to the bound we proved above, we obtain

2 log ∥φz∥ ≤ 2 logµRiem(Xr)− logµRiem(B(t)) + ru

2 log d+ r3d

6 logα+O(r2d)

≤ dr2

2 log r + r2 log |∆K |+O(log log |∆K |) + 9
4dr

2 log r

+ ru

2 log d+ r3d

6 logα+O(r2d) by Lemmas 2.32 and 2.37

= r2 log |∆K |+
d

2 log d+ r3d

6 logα+O(r2d log r + log log |∆K |)

as claimed, by simplifying the expression using that ru ≤ d.

4.3 Quantitative equidistribution

Recall that we are interested in showing that the measures on Xr, obtained by applying Hecke
operators Tp and averages thereof to the initial probability distribution given by φz ·µRiem, converge
to the uniform measure µ. To understand the rate of convergence, we need an upper bound on∥∥∥TP(B)(φz − µRiem(Xr)−11Xr )

∥∥∥
Xr

,

where B > 0 is some parameter to be chosen later. Here we are using the L2-norm with respect to
µRiem.

For this, we decompose the function into its projection onto L2
det and its orthogonal complement.

Recall that Tp preserves such decompositions and notice also that the constant function is equal to
its projection onto L2

det. We therefore focus first on bounding∥∥∥TP(B)(πdetφz − µRiem(Xr)−1 · 1Xr )
∥∥∥

Xr

.

We now import the results of [BDP+20], which essentially treat Hecke operators on the space
L2

det(Xr). For that, we denote by T 1
p the Hecke operator on L2(X1), which is adelically given by

T 1
p f(x) = f(xπ−1

p ),

where πp is a uniformizer at p. This corresponds to the definition of a Hecke operator in [BDP+20,
Sec. 3], upon identifying X1 with the additive Arakelov class group Pic0

K .
Next, we recall that L2(X1) = ∏

a L
2(X1,a) and that X1,a = X1,1 for all representatives a of the

class group. The definition of Hecke operators (see (11)) directly implies that

Tp∆∗a = ∆∗aT 1
p . (28)
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To be precise, we view L2(XN,a) embedded in L2(XN ), for N = 1, r, by extending functions by the
constant zero function on all other components. Note also that Tp sends L2(XN,a) to L2(XN,p·a) in
this interpretation.

Next, we recall that πdetφz = ∆∗aφz,1 (see (23)) and 1Xr = ∆∗a1X1 . Recall from the computation
(24) that

⟨φz,1,1X1⟩X1 = µRiem(∆−1
a (1))−1.

From Section (2.6.3), we gather that

µRiem(Xr) = r−
ru
2 · µRiem(∆−1

a (1)) · µRiem(X1).

The formula for how norms behave under ∆∗a, given in Section 2.6.2, and the Hecke operator
compatibility relation 28 now imply that∥∥∥Tp(πdetφz − µRiem(Xr)−1 · 1Xr )

∥∥∥
Xr

=

√√√√r−
ru
2 · µRiem(∆−1

a (1))µRiem(X1)
µRiem(Xr)

∥∥∥T 1
p (ρσ − µRiem(X1)−11X1)

∥∥∥
X1

=
∥∥∥T 1

p (ρσ − µRiem(X1)−11X1)
∥∥∥

X1
(29)

where we write

ρσ(δ) =
∑

ξ∈Z×
K

σ−ru exp(− π

σ2 ∥ log|δ|+ log|ξ| − log|det(z)|∥2H).

The function ρσ is defined on X1,a and extended, as usual, to all of X1 by zero.
We now observe that ρσ is the same test function as σruρσ |T in Section 3.5 of [BDP+20], up to

the shift δ 7→ δ · det(z). Since the right regular representation is unitary, leaves constant functions
invariant, and commutes with Hecke operators, we may ignore this shift.

For the next result, we introduce the natural notation

T 1
P(B) = 1

|P(B)|
∑

N(p)≤B

T 1
p .

Proposition 4.14. Assume ERH for the L-function of every Hecke character of K of trivial
modulus. For positive parameters B, κ, σ such that κσ >

√
ru/4π, we have∥∥∥T 1

P(B)(ρσ)− µRiem(X1)−11X1

∥∥∥2

X1
≪ max(ru(log ru)3, 1/σ)ru · (c2 + e−2(κσ)2),

where
c = O

(
log(B) log[Bd · |∆K | · (4 + 2πκ/

√
d)d]√

B

)
.

Proof. This is Theorem 3.16 of [BDP+20] with N = 1 and a few mild, additional constraints. For
convenience, we note here that in loc. cit., n is our d, l is our ru, s is our σ, r is our κ. Observe
also the typo in (6) of loc. cit., where n should be replaced by l.

We use (9) of loc. cit. together with the bounds in the beginning of the proof of Corollary 3.4 in
Appendix B of loc. cit. to obtain the bound ru(log ru)3 for η1(Λ∗K), the smoothing number in the
notation of that paper. We finish by applying the bound β(ru)√

2κσ
≤ e−2(κσ)2 from just before Lemma

2.10 in loc. cit., which is valid under our assumption.
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We continue with the orthogonal complement of L2
det(Xr). On this space, we use the spectral

gap afforded by Corollary 2.39. Putting everything together we prove Theorem 3.

Proof of Theorem 3. As indicated at the beginning of this section, we prove this bound by decom-
posing the expression in the norm into its projection to L2

det and its orthogonal complement. For
the L2

det-part, we recall (29) and the previous result, Proposition 4.14.
Let us temporarily denote φ⊥z = φz − πdetφz. We are left with bounding

∥∥∥TN
P(B)φ

⊥
z

∥∥∥. For this
we apply the spectral gap as in Corollary 2.39 to get∥∥∥TP(B)φ

⊥
z

∥∥∥2
≪ (rd)2 ·B−3/4 log(B)2 ·

∥∥∥φ⊥z ∥∥∥2
.

We then trivially bound
∥∥∥φ⊥z ∥∥∥ by ∥φz∥ and apply Proposition 4.13, the conditions of which are

satisfied.

5 Balancedness of random module lattices
In this section, we prove that µ-random module lattices are balanced (in a weak sense) with high
probability: the main result is Theorem 4. We will use the Grayson–Stuhler theory of stability
of lattices, from which we recall some definitions (cf. [Gra84; Bos20]). The role of this notion is
that it is relatively easy to compute the probability of a random lattice being unstable, and that
stable lattices are balanced. We compute this probability using work of Thunder [Thu98], with
inspiration from an article of Shapira and Weiss [SW14], whose result we generalize and sharpen.
Note that in recent work [GSV+25b; GSV+25a], Gargava, Serban, Viazovska and Viglino prove
strong bounds on the shortest vectors of random module lattices; our bounds are weaker but more
widely applicable.

Definition 5.1. Let L be a module lattice. The slope of L is

slope(L) = log det(L)
rank(L) .

Let t ≥ 1. A sub-module lattice L′ ⊂ L (of arbitrary rank) is t-destabilising if

slope(L′) ≤ slope(L)− log(t)
rank(L′) ,

i.e. if (
t · det(L′)

) 1
rank(L′) ≤ det(L)

1
rank(L) .

A lattice is semistable if it does not contain any t-destabilising sub-module lattices for any t > 1,
i.e. if

slope(L′) ≥ slope(L)

for every sub-module lattice L′ ⊂ L.

Remark 5.2. The notion of stability we use is with respect to the class of module lattices over
a fixed field K. Throughout this section, keeping this remark in mind, we abbreviate the term
sub-module lattice to simply sublattice.

Remark 5.3. Note that if there exists a t-destabilising sublattice L′ in L, then there also exists a
primitive one of the same rank as L′, namely L′′ = W ∩ L′ ⊃ L′ where W = K · L′.
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Theorem 4. In the set of (K, r) such that

• r ≥ 4, or

• r ≥ 3 and |∆K | ≥ 57.5d, or

• |∆K | ≥ 845d,

a µ-random module lattice L is semistable with probability at least 1− 2−Ω(n log r).
Now assume r ≤ 3, and let δ = |∆K |

1
d . If r = 2, let

t = max
(

1.01πe2
log δ
δ

1
2
, 1
) d

2
;

if r = 3, let

t = max
(

1.01π
3e

6
log δ
δ

, 1
) d

3

;

Then a µ-random module lattice L has no t-destabilising sublattice with probability at least 1−2−Ω(d).
In all cases, a µ-random module lattice L satisfies

λ1(L) ≥ Ω(|∆K |−
1

2d ) · det(L)
1
n and λn(L) ≤ O(n|∆K |

1
2d ) · det(L)

1
n

with probability at least 1− 2−Ω(n log r).

Remark 5.4.

1. It would be interesting to know whether there exists families of number fields in which the
proportion of semistable lattices of rank 2 (or 3) is not 1− 2−Ω(d). Such a family should have
bounded root discriminant, and, as is visible from our proof, this proportion is directly related
to the size of the residue of the Dedekind zeta function of these fields.

2. Our methods meets its limits when the rank r is small and the fields have small root dis-
criminant. Interestingly, the methods of [GSV+25b; GSV+25a] also have limitations in small
rank and for families of fields that admits elements of small height. It would be interesting to
investigate relations between these limitations.

We break up the proof into several intermediate results. We will use computations by Thun-
der [Thu98] and we first explain how to relate his adélic computations to our case of interest. For
the reader’s convenience, we provide the correspondence between notations: Thunder’s KA is our
AK , his n is our r, his d is our k, he writes [K : Q] for our d = deg(K), and his χt is our 1[0,t].
Recall from Section 2.3.2 that to each A ∈ GLr(AK) we can attach a module lattice embedded
in Kr

R, which we will write LA. Let k ≥ 1 be an integer. Thunder defines a function

fr,k : GLr(AK)→ R>0.

Translated in module lattice language, fr,k(A) is the determinant of the sub-module-lattice L′ ⊂ LA

generated by the first k columns of the basis of LA determined by A.
Define Gr = {A ∈ GLr(AK) : ∏v |det(Av)|v = 1} (corresponding to lattices of determinant 1)

and
Gr,k =

{(
A B
0 D

)
: A ∈ Gk, D ∈ Gr−k, B ∈Mk,r−k(AK)

}
.
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Then the quotient GLr(K)/GLr(K) ∩ Gr,k is in bijection with the set Grr,k(K) of k-dimensional
subspaces of Kr via γ 7→ γ(Kk × {0}r−k). Thunder defines

c(r, k) =
∫

Gr/Gr,k

1[0,1](fr,k(A))dµ(A).

Lemma 5.5. Let t ∈ R≥1 and k ∈ Z≥1. The measure of the set of module lattices that admit a
t-destabilising sublattice of rank k is at most c(r, k)t−r.

Proof. We have

µ({L ∈ Xr(K) : L admits a t-destabilising sublattice of rank k})

≤
∫

Gr/ GLr(K)

 ∑
W∈Grr,k(K)

1W∩LA is t-destabilising in LA
(A)

 dµ(A)

=
∫

Gr/ GLr(K)

 ∑
γ∈GLr(K)/ GLr(K)∩Gr,k

1[0, 1
t
](fr,k(Aγ))

 dµ(A)

=
∫

Gr/Gr,k

1[0, 1
t
](fr,k(A))dµ(A) by [Wei82, Lemma 2.4.2]

= c(r, k)t−r by [Thu98, Lemma 5],

proving the claim.

For every dimension n, let Vn be the volume of the Euclidean n-ball of radius 1, i.e. Vn =
π

n
2

Γ( n
2 +1) . For every integer m ≥ 1, let ζ∗K(m) denote the leading coefficient of ζK(s) at s = m, i.e.

ζ∗K(m) = ζK(m) for m ≥ 2 and ζ∗K(1) = 2r1 (2π)r2 RKhK

|∆K |1/2wK
by the analytic class number formula (recall

Section 2.2 for notation) and define

R(m) = mru+12mr2V r1
m V r2

2m

ζ∗K(m)|∆K |m/2 , so that R(1) = wK

hKRK
.

Lemma 5.6. For every 0 < k < r we have

c(r, k) = 1
r
·

∏r
j=1R(j)∏k

j=1R(j)∏r−k
j=1 R(j)

.

Proof. First note that for r > 1,

1
r
· R(r)
R(1) = rru2rr2V r1

r V r2
2r hKRK

ζK(r)|∆K |r/2wK
,

which is indeed the value of c(r, 1) by [Thu98, Lemma 7]. In addition, the RHS of the claimed
equality clearly satisfies Thunder’s recurrence relation [Thu98, Theorem 3], so the equality holds
for every r and k.

Lemma 5.7. For every m ≥ 1 we have
m∏

j=2
ζK(j) ≤ (2.3)d.
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Proof. Since there are at most d prime ideals in OK over a rational prime, we have ζK(j) ≤ ζ(j)d for
all j > 1. It is thus sufficient to prove the inequality for ζ. In addition, since the product increases
with m, it is enough to prove the inequality for m large enough. We have

ζ(j) ≤ 1 + 2−j +
∫ ∞

2
t−jdt ≤ 1 + 3 · 2−j .

Therefore, for all m ≥ m0, we have
m∑

j=m0

log ζ(j) ≤ 3
m∑

j=m0

2−j ≤ 6 · 2−m0 ,

and thus
m∏

j=2
ζ(j) ≤

m0−1∏
j=2

ζ(j) · exp(6 · 2−m0).

For m0 = 11, this gives the claimed inequality.

Lemma 5.8. For any function f : [1,+∞)→ R, write Sm(f) = ∑m
j=1 f(j) for m ≥ 1 and Sr,k(f) =

Sr(f)− Sk(f)− Sr−k(f) for r ≥ 2 and 1 ≤ k < r.

1. For f(x) = (x
2 + 1) log(x

2 + 1), we have

Sr,k(f) ≥ 1
2k(r − k) log( r

2 + 1)− 1
4k(r − k)− 13

8 log( r
2 + 1) + 13

8 log(3
2)− 5

8 .

2. For f(x) = log(x
2 + 1), we have Sr,k(f) ≤ (r + 2) log 2− 11

12 −
5
2 log(3

2).

3. For f(x) = 1
x
2 +1 , we have Sk(f) + Sr−k(f) ≤ 4 log( r

4 + 1).

4. For f(x) = log Γ(x
2 + 1), we have

Sr,k(f) ≥ 1
2k(r − k) log( r

2 + 1)− 3
4k(r − k)− r log 2

2 −
47
24 log(r + 4) + 1.89.

5. For f(x) = (x+ 1) log(x+ 1), we have

Sr,k(f) ≥ k(r − k) log(r + 1)− 1
2k(r − k)− 5

4 log(r + 1) + 5
4 log 2− 3

4 .

6. For f(x) = log(x+ 1), we have Sr,k(f) ≤ (r + 1) log 2 + 3
2 log 2− 7

8 .

7. For f(x) = 1
x+1 , we have Sk(f) + Sr−k(f) ≤ 2 log( r

2 + 1).

8. For f(x) = log Γ(x+ 1), we have

Sr,k(f) ≥ k(r − k) log(r + 1)− 3
2k(r − k)− r log 2− 17

12 log(r + 2)− 0.626.

Proof. We will repeatedly use Euler–Maclaurin summation in the following form [Coh07, Corol-
lary 9.2.3 and Proposition 9.2.5]: if f is C4 and both f (2) and f (4) do not change sign on [1,+∞),
then

Sm(f) =
∫ m

1
f(x)dx+ f(1) + f(m)

2 +R where |R| ≤ |f
′(m)− f ′(1)|

12 .
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1. We have

Sm(f)
= (m

2 + 1)2(log(m
2 + 1)− 1

2
)
− 9

4
(
log(3

2)− 1
2
)

+ 1
2
(
(m

2 + 1) log(m
2 + 1) + 3

2 log(3
2)
)

+R

= 1
4(m+ 2)2(log(m

2 + 1)− 1
2
)
− 9

4
(
log(3

2)− 1
2
)

+ 1
4
(
(m+ 2) log(m

2 + 1) + 3 log(3
2)
)

+R

where
|R| ≤ 1

24
(
log(m

2 + 1)− log(3
2)
)
.

We bound

(r + 2)2 log( r
2 + 1)− (k + 2)2 log(k

2 + 1)− (r − k + 2)2 log( r−k
2 + 1)

≥ (r + 2)2 log( r
2 + 1)− (k + 2)2 log( r

2 + 1)− (r − k + 2)2 log( r
2 + 1)

= 2(k(r − k)− 2) log( r
2 + 1)

and

(r + 2) log( r
2 + 1)− (k + 2) log(k

2 + 1)− (r − k + 2) log( r−k
2 + 1)

≥ (r + 2) log( r
2 + 1)− (k + 2) log( r

2 + 1)− (r − k + 2) log( r
2 + 1)

= −2 log( r
2 + 1)

to obtain

Sr,k(f) ≥ 1
2(k(r − k)− 2) log( r

2 + 1)− 1
4(k(r − k)− 2)− 1

2 log( r
2 + 1)

+9
4(log(3

2)− 1
2)− 3

4 log(3
2)− 1

8(log( r
2 + 1)− log(3

2))
= 1

2k(r − k) log( r
2 + 1)− 1

4k(r − k)− 13
8 log( r

2 + 1) + 13
8 log(3

2)− 5
8 .

2. We have

Sm(f) = (m+ 2)
(
log(m

2 + 1)− 1
)
− 3(log(3

2)− 1) + 1
2 log(m

2 + 1) + 1
2 log(3

2) +R

where
|R| ≤ 1

12(1
3 −

1
m+2) ≤ 1

36 .

We bound

(r + 2) log( r
2 + 1)− (k + 2) log(k

2 + 1)− (r − k + 2) log( r−k
2 + 1)

≤ (r + 2) log( r
2 + 1)− 2( r

2 + 2) log( r
4 + 1)

≤ (r + 2) log(2r+4
r+4 )

≤ (r + 2) log 2

and
1
2 log( r

2 + 1)− 1
2 log(k

2 + 1)− 1
2 log( r−k

2 + 1) ≤ 0.

We get

Sr,k(f) ≤ (r + 2) log 2 + 2 + 3(log(3
2)− 1)− 1

2 log(3
2) + 1

12 = (r + 2) log 2− 11
12 −

5
2 log(3

2).
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3. We have
Sm(f) ≤

∫ m

0

dt
t
2 + 1

= 2 log(m
2 + 1),

and therefore

Sk(f) + Sr−k(f) ≤ 2 log(k
2 + 1) + 2 log( r−k

2 + 1) ≤ 4 log( r
4 + 1).

4. We use the following bound [Alz97, Theorem 8]: for all y > 0 we have

(y − 1
2) log(y)− y + log(2π)

2 < log Γ(y) < (y − 1
2) log(y)− y + log(2π)

2 + 1
12y .

Summing the various contributions, we get

Sr,k(f)
≥ 1

2k(r − k) log( r
2 + 1)− 1

4k(r − k)− 13
8 log( r

2 + 1) + 13
8 log(3

2)− 5
8 − (r + 2) log 2

2
+11

24 + 5
4 log(3

2)− 1
2k(r − k)− 1

3 log( r
4 + 1)

≥ 1
2k(r − k) log( r

2 + 1)− 3
4k(r − k)− r log 2

2 −
47
24 log(r + 4) + 1.89.

5. We have

Sm(f) = 1
2(m+ 1)2(log(m+ 1)− 1

2
)
− 2(log 2− 1

2) + 1
2(m+ 1) log(m+ 1) + log 2 +R

where
|R| ≤ 1

12
(
log(m+ 1)− log 2

)
.

We bound

(r + 1)2 log(r + 1)− (k + 1)2 log(k + 1)− (r − k + 1)2 log(r − k + 1)
≥ (r + 1)2 log(r + 1)− (k + 1)2 log(r + 1)− (r − k + 1)2 log(r + 1)
= (2k(r − k)− 1) log(r + 1)

and

(r + 1) log(r + 1)− (k + 1) log(k + 1)− (r − k + 1) log(r − k + 1)
≥ (r + 1) log(r + 1)− (k + 1) log(r + 1)− (r − k + 1) log(r + 1)
= − log(r + 1)

to obtain

Sr,k(f) ≥ (k(r − k)− 1
2) log(r + 1)− 1

4(2k(r − k)− 1) + 2(log 2− 1
2)− 1

2 log(r + 1)
− log 2− 1

4
(
log(r + 1)− log 2

)
= k(r − k) log(r + 1)− 1

2k(r − k)− 5
4 log(r + 1) + 5

4 log 2− 3
4 .
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6. We have

Sm(f) = (m+ 1)
(
log(m+ 1)− 1

)
− 2(log 2− 1) + 1

2 log(m+ 1) + 1
2 log 2 +R

where
|R| ≤ 1

12(1
2 −

1
m+1) ≤ 1

24 .

We bound

(r + 1) log(r + 1)− (k + 1) log(k + 1)− (r − k + 1) log(r − k + 1)
≤ (r + 1) log(r + 1)− 2( r

2 + 1) log( r
2 + 1)

≤ (r + 1) log(2r+2
r+2 )

≤ (r + 1) log 2

and

log(r + 1)− log(k + 1)− log(r − k + 1) ≤ 0.

We get
Sr,k(f) ≤ (r + 1) log 2 + 3

2 log 2− 1 + 1
8 = (r + 1) log 2 + 3

2 log 2− 7
8 .

7. We have
Sm(f) ≤

∫ m

0

dt

t+ 1 = log(m+ 1),

and therefore

Sk(f) + Sr−k(f) ≤ log(k + 1) + log(r − k + 1) ≤ 2 log( r
2 + 1).

8. Summing the various contributions, we get

Sr,k(f)
≥ k(r − k) log(r + 1)− 1

2k(r − k)− 5
4 log(r + 1) + 5

4 log 2− 3
4 − (r + 1) log 2

−3
2 log 2 + 7

8 − k(r − k)− 1
6 log( r

2 + 1)
≥ k(r − k) log(r + 1)− 3

2k(r − k)− r log 2− 17
12 log(r + 2)− 0.626.

Proposition 5.9. Let t ∈ R≥1 and k ∈ Z≥1. The measure Pr,k,t of the set of module lattices that
admit a t-destabilising sublattice of rank k satisfies

Pr,k,t ≤
ζ∗K(1)

r · |∆K |
k(r−k)

2

·
((

r

k

)∏k
j=2 ζ(j)

∏r−k
j=2 ζ(j)

∏r
j=1 Vj∏k

j=1 Vj
∏r−k

j=1 Vj

)r1

·
((

r

k

)
2k(r−k)

∏k
j=2 ζ(j)2∏r−k

j=2 ζ(j)2∏r
j=1 V2j∏k

j=1 V2j
∏r−k

j=1 V2j

)r2

· t−r

≤ ζ∗K(1)
|∆K |

k(r−k)
2

(
0.8 · (r + 4)2 · 2

3r
2 ·
( 28.2
r + 2

) k(r−k)
2

)r1

·
(

53 · (r + 2)2 · 4r ·
( 28.2
r + 1

)k(r−k))r2

· t−r.
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Proof. From Lemma 5.6, write

c(r, k) = ζ∗K(1)
r

(
r

k

)ru+1(
π

r1
2 (2π)r2

|∆K |
1
2

)k(r−k)

ZGr1
1 G

r2
2

where

Z =
∏k

j=2 ζK(j)∏r−k
j=2 ζK(j)∏r

j=2 ζK(j) ,

G1 =
∏k

j=1 Γ( j
2 + 1)∏r−k

j=1 Γ( j
2 + 1)∏r

j=1 Γ( j
2 + 1)

and

G2 =
∏k

j=1 Γ(j + 1)∏r−k
j=1 Γ(j + 1)∏r

j=1 Γ(j + 1) .

By Lemma 5.7 we have Z ≤ (2.3)2d = (2.3)2r1(2.3)4r2 . By Lemma 5.8, we have

G1 ≤ exp(−1
2k(r − k) log( r

2 + 1) + 3
4k(r − k) + r log 2

2 + 47
24 log(r + 4)− 1.89)

and
G2 ≤ exp(−k(r − k) log(r + 1) + 3

2k(r − k) + r log 2 + 17
12 log(r + 2) + 0.626).

Using the trivial bound
(r

k

)
≤ 2r and putting the terms together gives the result.

We now quantify the fact that semistable lattices are balanced. This bound is implicitly present
in the proof of [Gra84, Theorem 5.1].

Lemma 5.10. Let L be a module lattice of rank r and let t ≥ 1.

1. If L does not admit a t-destabilising sublattice of rank 1, then

λ1(L) > t−
1
d |∆K |−

1
2d det(L)

1
n .

2. If L does not admit a t-destabilising sublattice of rank n− 1, then

λn(L) < nt
1
d |∆K |

1
2d det(L)

1
n .

If L is semistable then λ1(L) ≥ |∆K |−
1

2d det(L) 1
n and λn(L) ≤ n|∆K |

1
2d det(L) 1

n .

Proof.

1. We prove the contrapositive. Suppose that the bound is not satisfied, and let x ∈ L be such
that

∥x∥ ≤ t−
1
d |∆K |−

1
2d det(L)

1
n .

Then the rank 1 sublattice L′ = OKx satisfies

det(OKx) = ∥x∥d|∆K |1/2 ≤ t−1 det(L)
1
r ,

so that L′ is t-destabilising.
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2. Assume L does not admit a t-destabilising sublattice of rank n− 1, then L∨ does not admit
a t-destabilising sublattice of rank 1. By the first part of the lemma, we have

λ1(L∨) > t−
1
d |∆K |−

1
2d det(L)−

1
n .

Finally, Banaszczyk’s theorem [Ban93, Theorem (2.1)] gives

λn(L) < nt
1
d |∆K |

1
2d det(L)

1
n .

If L is semistable, then both inequalities hold for every t > 1, yielding the result by letting t→ 1.

Piecing together the results above, we prove the main result of this section.

Proof of Theorem 4. We will use the notation of Proposition 5.9.
First suppose that r ≥ 225 and take t = 1. Applying Lemma 2.34, we can bound

ζ∗K(1)
|∆K |

k(r−k)
2

≤ 1
|∆K |

k(r−k)−1
2

≤ 1.

We also bound

0.8 · (r + 4)2 · 2
3r
2 ·
( 28.2
r + 2

) k(r−k)
2

≤ 0.8 · (r + 4)2 · 2
3r
2 ·
( 28.2
r + 2

) r−1
2 since r + 2 > 28.2

≤ O(r
5
2 ) ·

(23 · 28.2
r + 2

) r
2

≤ O(r
5
2 ) ·

(225.6
r + 2

) r
2

= 2−Ω(r log r),

and similarly

53 · (r + 2)2 · 4r ·
( 28.2
r + 1

)k(r−k)

≤ 53 · (r + 2)2 · 4r ·
( 28.2
r + 1

)r−1

≤ O(r3) ·
(4 · 28.2
r + 1

)r

= 2−Ω(r log r),

so that in those cases we indeed have Pr,k,1 ≤ 2−Ω(dr log r).
Now for 4 ≤ r ≤ 224, we apply the Odlyzko–Serre bound [Poi77]:

|∆K | ≥ (Ar1B2r2)1+o(1) as d→∞,

where A = 4π exp(1 + γ), B = 4π exp(γ) and γ is Euler’s constant. For each such r, each 0 <
k < r and t = 1, we evaluate the explicit formula for the first bound in Proposition 5.9, insert-
ing A−

k(r−k)−1
2 in the r1 term and B−k(r−k)+1 in the r2 term, and we check that both expressions

are strictly less than 1. This proves that for each such r and k, we have Pr,k,1 = 2−Ω(d).
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Now assume r = 2. The bound from Proposition 5.9 is

P2,1,t ≤
1
2 ·

ζ∗K(1)
|∆K |

1
2
πr1(2π)r2t−2.

Using Lemma 2.34 we bound

ζ∗K(1)|∆K |−
1
2 ≤

(
e log |∆K |
2(d− 1)

)d−1
|∆K |−

1
2 ≤

(
e

2
d

d− 1
log δ
δ

1
2

)d−1
.

We obtain
P2,1,t ≤

(
(1 + o(1))πe2

log δ
δ

1
2

)d−1
·O(t−2).

For the stated choice of t, this is 2−Ω(d). When δ ≥ 845, we have t = 1.
Finally, assume r = 3. The bound from Proposition 5.9 is

P3,k,t ≤
1
3 ·

ζ∗K(1)
|∆K |

(
π3

3

)r1 (
π6

18

)r2

t−3.

Using Lemma 2.34 again we bound

ζ∗K(1)|∆K |−1 ≤
(
e

2
d

d− 1
log δ
δ

)d−1
.

We obtain

P3,k,t ≤
(

(1 + o(1))π
3e

6
log δ
δ

)d−1

·O(t−3).

For the stated choice of t, this is 2−Ω(d). When δ ≥ 57.5, we have t = 1.
We obtain the last statement by applying Lemma 5.10 and noting that the values of t for r = 2

and r = 3 satisfy t 1
d = O(1).

6 Cutting cusps: reduction to the flare
The goal of this section is to prove Theorem 5 below, which reduces worst-case SIVP instances to
SIVP in lattices which are (mildly) balanced.

Theorem 5 (Reduction to the flare). Let L be an OK-module lattice of rank r, and γ ≥ 1. There
is a polynomial time reduction from γ · (1+ε)r−1-SIVP in L to γ-SIVP in at most r module lattices
L1, . . . , Lt, where each Li is of rank r and Γ2

K2 3
2 (rd−1)-balanced, and ε < d

2(rd+1)/2 .

We proceed in two steps. In Section 6.1, we prove that if the given lattice L is very imbalanced
(it is in the cusp), then a polynomial time lattice-basis reduction like LLL can detect gaps between
the successive minima, and exploit them to split L into lattices of smaller dimension with smaller
gaps. In order to preserve the dimension, we then show in Section 6.2 that SIVP in these lattices of
smaller dimension reduces to SIVP in lattices of the original dimension, but now with balancedness
guarantees: they are now in the flare.
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6.1 Splitting imbalanced lattices into smaller dimensions

To reduce to (mildly) balanced lattices, we start by showing in Lemma 6.1 that large gaps between
successive minima can be detected in polynomial time. Once we know where such a gap is, we show
in Lemma 6.2 how to find generators of the “denser” sublattice (reaching all first minima up to the
gap). Then, in Lemma 6.3, we show how SIVP in the original lattice reduces to SIVP in this denser
sublattice, and in a lattice of complementary dimension. Essentially, this splits the original lattice
around the gap, resulting in two lattices of smaller dimension and with one fewer (large) gap.

Finally, Lemma 6.5 applies this splitting recursively, resulting in a collection of lattices of smaller
dimension with no remaining (large) gap.

Lemma 6.1. There is a polynomial time algorithm such that the following holds. Let L be an
OK-module lattice of rank r, with successive K-minima λK

1 , . . . , λ
K
r . Given α > 0 and a basis of

L, the algorithm either asserts that λK
i+1/λ

K
i ≤ αΓK2rd−1 for all i, or returns an index k such that

λK
k+1/λ

K
k > α.

Proof. Let (ui)rd
i=1 be a family of linearly independent vectors in L with ∥ui∥ = λi = λi(L). One

can compute in polynomial time an LLL-reduced basis (bi)i of L. By [LLL82, Proposition 1.12] for
any i we have

∥bi∥ ≤ 2(rd−1)/2λi.

The algorithm searches for an index j such that ∥bj+d∥/∥bj∥ > αΓK2(rd−1)/2, and if it exists,
returns k = ⌈j/d⌉. If there is no such j, the algorithm asserts that λK

i+1/λ
K
i ≤ αΓK2rd−1 for all i.

We prove correctness in two parts:

• Assume a valid j is found. We have

λK
k+1
λK

k

≥ λj+d

ΓKλj
≥ ∥bj+d∥

2(rd−1)/2ΓK∥bj∥
> α,

as expected.

• Assume there exists an index k such that λK
k+1/λ

K
k > β2(rd−1)/2. Let j be the largest index

reaching λj = λK
k (in particular, ⌈j/d⌉ = k). Applying Lemma 2.13, we obtain

∥bj+d∥
∥bj∥

≥ λj+d

2(rd−1)/2λj
≥

λK
k+1

2(rd−1)/2λK
k

> β.

The contraposition, with β = αΓK2(rd−1)/2, states that if the algorithm finds no valid index
j, then λK

i+1/λ
K
i ≤ αΓK2rd−1 for all i.

This proves that the algorithm has the claimed property.

Lemma 6.2. There is a polynomial time algorithm such that the following holds. Let L be an OK-
module lattice of rank r, with successive K-minima λK

1 , . . . , λ
K
r . Given a basis of L and an index k

such that λK
k+1/λ

K
k > ΓK2(rd−1)/2, the algorithm returns a basis of the unique primitive sub-module

L′ ⊂ L of rank k with λK
i (L′) = λK

i for all i ≤ k.

Proof. One can compute in polynomial time an LLL-reduced basis (bi)i of L. Let j be the smallest
index such that spanK(b1, . . . , bj) has K-rank k (in particular, j ≤ (k− 1)d+ 1). For any i ≤ j, we
have

∥bi∥ ≤ 2(rd−1)/2λi ≤ 2(rd−1)/2λj ≤ ΓK2(rd−1)/2λK
⌈j/d⌉ ≤ ΓK2(rd−1)/2λK

k < λK
k+1.
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Let V = spanK(x ∈ L | ∥x∥ < λK
k+1). The vectors (b1, . . . , bj) are all in V . Therefore, spanK(b1, . . . , bj)

is a K-subspace of V of K-rank k. By definition of λK
k+1, the space V has K-rank at most k, and we

deduce that (b1, . . . , bj) generates V . From this generating set of V and the provided basis of L, we
can deduce a basis of the sub-module L′ = L∩V in polynomial time, which proves the lemma.

Lemma 6.3. Suppose L is an OK-module lattice of rank r, with successive K-minima λK
1 , . . . , λ

K
r .

Let k be an index such that β = λK
k+1/λ

K
k > ΓK2(rd−1)/2. Then, given k, there is a polynomial time

reduction from γ · (1 + ε)-SIVP in L to γ-SIVP in two module lattices of rank k and r − k, with
ε = dΓK

2β < d
2(rd+1)/2 .

Proof. From Lemma 6.2, one can compute in polynomial time a basis of the unique sub-module
L′ ⊂ L of rank k with λK

i (L′) = λK
i for all i ≤ k.

Let (ui)rd
i=1 be a family of linearly independent vectors in L with ∥ui∥ = λi. Let us start with

finding a good basis of L′. Applying the γ-SIVP oracle to L′ we can find wi ∈ L′ such that
∥wi∥ ≤ γλkd(L′). By Lemma 2.13, we have

λkd(L′) ≤ ΓKλ
K
k (L′) ≤ ΓKλ

K
k ≤ (ΓK/β)λK

k+1 ≤ (ΓK/β)λrd.

We deduce ∥wi∥ ≤ γ(ΓK/β)λrd. In particular, ∥wi∥ < γλrd.
Let us now complete (wi)kd

i=1 to a good basis of L. Let V = spanK(L) and W = spanK(L′),
and consider the orthogonal projection π : V → W⊥. Then, Lπ = π(L) is a module lattice of rank
r − k. We have ∥π(ui)∥ ≤ ∥ui∥ = λi. Applying the γ-SIVP oracle to Lπ we can find zi ∈ L such
that 0 < ∥π(zi)∥ ≤ γλ(r−k)d(Lπ) ≤ γλrd. We can assume each zi to be reduced with respect to the
basis (wi)i of W , so zi = π(zi) +∑

i µiwi with |µi| < 1/2. Recall that ∥wi∥ ≤ γ(ΓK/β)λrd, so

∥zi∥ ≤ ∥π(zi)∥+
∑

i

|µi|∥wi∥ ≤ γλrd + (d/2)γ(ΓK/β)λrd

= γ

(
1 + dΓK

2β

)
λrd.

Therefore, (w1, . . . , wkd, z1, . . . , z(r−k)d) is a solution of γ · (1 + ε)-SIVP for L.

Lemma 6.4. Suppose L is an OK-module lattice of rank r. There is a polynomial time algorithm
which either asserts that L is Γ2

K2 3
2 (rd−1)-balanced, or reduces γ ·(1+ε)-SIVP in L to γ-SIVP in two

module lattices L1 and L2 with rankK(L1) + rankK(L2) = r and rankK(Li) < r, with ε < d
2(rd+1)/2 .

Proof. This is a combination of Lemma 6.1 (detecting gaps) and Lemma 6.3 (exploiting gaps).

Lemma 6.5 (Reduction to balanced lattices of smaller dimension). Let L be an OK-module lattice
of rank r, and γ ≥ 1. There is a polynomial time reduction from γ · (1+ε)r−1-SIVP in L to γ-SIVP
in at most r module lattices L1, . . . , Lt, with

• ε < d
2(rd+1)/2 ,

• ∑t
i=1 rankK(Li) = r,

• each Li is Γ2
K2 3

2 (rankK(Li)d−1)-balanced.

Proof. This follows from a recursive application of Lemma 6.4, and the fact that a rank-1 lattice is
necessarily ΓK-balanced (hence Γ2

K2 3
2 (d−1)-balanced). The recursion has depth at most r − 1 since

the quantity ∑t
i=1 rankK(Li) = r is constant and t can only increase.
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6.2 Back to the original dimension

The previous section shows how to reduce SIVP in an imbalanced lattice into SIVP instances
in balanced lattices, but these lattices have smaller dimension. We would like the computational
reduction to preserve the dimension. Reducing the dimension sounds good in practice, but a priori,
there could exist r such that the average case in dimension r − 1 is harder than the average case
in dimension r. To resolve this concern, in this section, we prove that SIVP is lattices of smaller
dimension reduces to SIVP in lattices of the original dimension r.

Lemma 6.6 (Increasing the dimension). Suppose L is an α-balanced OK-module lattice of rank
k < r. There is a polynomial time reduction from γ-SIVP in L to γ-SIVP in a max(α,

√
k,
√
d·ΓK)-

balanced OK-module lattice of rank r.

Proof. Let O = Or−k
K be the orthogonal OK-lattice of rank r−k. Let x > 0 and M = L⊕xO. Let us

prove that with x = det(L) 1
kd , we have that M is max(α,

√
kd,ΓK)-balanced, and λrd(M) ≤ λkd(L).

We have
λK

1 (L) = λ1(L) ≤
√
kd det(L)

1
kd =

√
kd · x,

and

x = det(L)
1

kd ≤
(

kd∏
i=1

λi(L)
) 1

kd

≤ λkd(L) ≤ ΓKλ
K
k (L).

Since λ1(xOK) = x
√
d, we deduce that λK

1 (L)/
√
k ≤ λ1(xOK) ≤

√
d · ΓKλ

K
k (L). Since M is an

orthogonal sum of L and copies of xOK , we deduce that M is max(α,
√
k,
√
d ·ΓK)-balanced. From

x ≤ λkd(L), we deduce that λrd(M) ≤ λkd(L). Therefore, a solution of γ-SIVP for M , projected
orthogonally down to L, is a solution of γ-SIVP for L.

We now have all the ingredients to prove the main result of this section.

Proof of Theorem 5. This is the composition of Lemma 6.5 and Lemma 6.6, and the fact that

max
(

Γ2
K2

3
2 (rankK(Li)d−1),

√
rankK(Li),

√
d · ΓK

)
≤ Γ2

K2
3
2 (rd−1).

7 Reduction from the flare to the bulk
We will use Section 4 and Section 5 to show that we have an algorithm, based on Hecke equidis-
tribution, that can handle α-balanced module lattices L with logα ≪ log d. Section 6 shows that
we can reduce to module lattices that are α-balanced with α ≪ Γ2

K · 2O(d). There remains a gap
between these two regimes. Thus, we are left with further reducing from lattices not too high in the
cusp, with α exponential in d, to those in the bulk, where α is only polynomial in d. We informally
call this “intermediate” part of the space of module lattices the flare, see Figure 1.

The strategy is the following. Take an α-balanced lattice L with α at most 2d, for simplicity.
Thus, the range where the gaps λK

i+1(L)/λK
i (L) could lie is [1, 2d]. We split this range into dyadic

intervals, of which there are only d many, and guess in which of these the first gap λK
2 (L)/λK

1 (L)
lies. Assuming the correct guess, we apply a Hecke operator, that is, we randomly consider a certain
type of sublattice of index p, where p lies in the respective dyadic interval. With high probability,
because p≪ λK

2 (L)/λK
1 (L), taking such a sublattice only increases the length of the shortest vector
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and the result has a first gap λK
2 (L)/λK

1 (L) of size ≍ 1. Morally, the other successive minima are
not impacted, but in practice we prove that they are only potentially multiplied by a polynomial
in d.

Having reduced the first gap, we continue with the second, and so forth. However, one must use
different Hecke operators for this. For instance, if λK

1 ≍ λK
2 ≍ p−1λK

3 , then we wish to increase the
volume of a rank 2 dense sublattice, taking care not to reopen the first gap. This can be achieved
by considering another family of sublattices as above, with a different structure inside L. Following
all steps up to the last gap, with high probability, we can obtain a sublattice with gaps bounded
by a polynomial in d, depending on r.

At the level of Hecke operators, closing all gaps conceptually uses an entire set of generators
for the local Hecke algebra. We also note that this procedure is expensive in terms of the rank r,
but provides a good algorithm in terms of d.

7.1 Closing one gap

The following implements the idea that, given a gap in the successive minima, carefully choosing
a sublattice in terms of the size of that gap can effectively close or shrink it. It is the main tool of
this section.

Lemma 7.1. Let L be a module lattice of rank r with λK
1 , . . . , λ

K
r its K-minima. Assume that there

exists n ∈ Z, n ≥ 2, such that λK
k+1 ≥ nλK

k for some k < r. Let M be the primitive sub-module of
rank k containing the vectors of length at most λK

k . Assume that Ln ⊂ L is a sub-module of rank r
such that L/Ln is isomorphic to (OK/nOK)k and nM is primitive in Ln. Then

λK
i (Ln) = nλK

i , i = 1, . . . , k,

and
λK

i ≤ λK
i (Ln) ≤

(
1 + ΓK

√
kd

2

)
λK

i , i = k + 1, . . . , r.

Proof. We start by noting that M is well-defined. Indeed, since λK
k+1 > λK

k , the vectors of length
up to λK

k have a K-span of dimension k. We can now define M to be the maximal sub-module of
rank k containing these vectors and we recall Definition 2.4.

Since nM is primitive in Ln, we can find a sub-module M ′ ⊂ Ln such that Ln = nM ⊕M ′. We
have Ln ⊂M ⊕M ′ ⊂ L and, computing indices, we find that L = M ⊕M ′.

For any i ∈ {1, . . . k}, we clearly have the inequality λK
i (Ln) ≤ nλK

i (L). To prove the inverse
inequality, assume that there exist K-independent vectors w1, . . . , wi ∈ Ln with lengths strictly
smaller than nλK

i (L). The lengths of w1, . . . , wi are also strictly smaller than λK
k+1(L), by assump-

tion. Therefore, by definition of the successive minima, the K-span of these vectors is included in
the K-span of M . We can therefore deduce that

spanK(w1, . . . wi) ⊂ K ·M = K · nM.

Next, because nM is primitive in Ln, we have

K · nM ∩ Ln = nM.

It follows that the vectors w1, . . . , wi lie in nM . Dividing by n, we obtain i K-linearly indepen-
dent vectors w1/n, . . . , wi/n in M ⊂ L. Since n is a rational number, their lengths are simply
∥w1∥ /n, . . . , ∥wi∥ /n. These are strictly smaller than λK

i (L) by assumption, so we reach a contra-
diction.
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We now consider the other successive minima. Let (ui)i≤r be a K-linearly independent family
of vectors in L with ui = vi + wi, where vi ∈ M , wi ∈ M ′, and ∥ui∥ = λK

i for each i ∈ {1, . . . , r}.
In particular, ui ∈M if i ≤ k.

For each i > k, let v′i ∈ nM be the closest vector to vi, so that

∥v′i − vi∥ ≤ cov(nM) ≤
√
kd

2 λkd(nM) ≤ ΓK

√
kd

2 nλK
k ≤ ΓK

√
kd

2 λK
i ,

where M is the covering radius of a lattice M and we use the inequality given in [MG02, Thm. 7.9].
Let u′i = v′i + wi ∈ Ln. By construction, (u1, . . . , uk, u

′
k+1, . . . , u

′
r) are K-linearly independent.

Furthermore,

∥u′i∥ = ∥v′i + w′i∥ ≤ ∥v′i − v′i∥+ ∥vi + w′i∥ ≤ ΓK

√
kd

2 λK
i + λK

i ,

which proves the result.

In the previous lemma, we consider specific sublattices Ln of L, formed by scaling a fixed sub-
module M , containing short vectors, by n. Conversely, we now consider how many sublattices with
the same structure can be formed this way. We first start with n replaced by a prime ideal.

Lemma 7.2. The number of sublattices L′ ⊂ L such that L/L′ ∼= (OK/pOK)k is given by

(1− qr) · · · (1− qr−k+1)
(1− q) · · · (1− qk) ,

where q = |F | = N(p). Out of these, given a fixed primitive sub-module M ⊂ L of rank k, the
number of sublattices L′ such that pM is primitive in L′ is

qk(r−k).

Proof. Any sublattice L′ as in the statement satisfies pL ⊂ L′ ⊂ L. As such, they correspond
bijectively to subspaces of dimension r − k of the vector space L/pL ∼= F r over the field F :=
OK/pOK . It is well-known that the number of such subspaces is given by the Gaussian binomial
coefficient, by definition given by the formula in the first part of the lemma.

For the second part of the lemma, recall that pM is primitive in L′ if and only if L′∩span(pM) =
pM , as in Definition 2.4. Since M is also primitive in L, we have

L′ ∩ span(pM) = L′ ∩ L ∩ span(M) = L′ ∩M.

Thus, we are counting L′ as above such that L′ ∩M = pM .
If L′∩M = pM , then L′∩ (M +pL) = (L′∩M)+pL (since pL ⊂ L′), so L′∩ (M +pL) = pL. In

other words, the images of L′ and M inside the vector space L/pL should have trivial intersection.
Conversely, if L′∩(M+pL) = pL, then L′∩M ⊂ pL. Since pL = pM+pM ′ for some sub-module

M ′ by primitivity, we can also deduce that pL ∩M = pM , since pM is primitive in L. Therefore,
L′ ∩M ⊂ pL ∩M ⊂ pM and the reverse inclusion is obvious.

Let V = L/pL and U be the image of M inside V , a subspace of dimension k = rankM . The
previous paragraphs show that the sublattices L′ as in the statement are in bijection with (r− k)-
dimensional subspaces W ⊂ V that intersect trivially with U . We can study these using the action
of GLr(F ) on (r − k)-dimensional subspaces (the Grassmannian). Indeed, we can choose a basis
e1, . . . , er, such that (er−k+1, . . . , er) forms a basis for U . Then any (r − k)-dimensional subspace
of V can be given as span(ge1, . . . , ger−k) for some g ∈ GLr(F ).
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The stabilizer of W0 := span(e1, . . . , er−k) under this action is given by the subgroup

H =
{
g =

(
A B
0 D

)
| A ∈ GLr−k(F ), D ∈ GLk(F ), B ∈Mr−k,k(F )

}
.

Let now W = g ·W0 be some (r − k)-dimensional subspace. Write

g =
(
S T
U V

)

as a block matrix, analogously to the description of H, and suppose we multiply g from the right
by an element (

A 0
0 id

)
∈ H.

This would replace S by S · A and we can therefore assume that S is in column echelon form (by
Gauss elimination), that is, in lower triangular shape.

Assume now that W ∩ U = 0. This implies that, if S = (sij)1≤i,j≤r−k, then sr−k,r−k ̸= 0.
Otherwise, since S is lower triangular, we would have the vector g · er−k in the intersection W ∩U .
Multiplying by another matrix in H, we can assume that sr−k,r−k = 1 (we are working over a field)
and that the rest of the last row of S is zero. The same argument now reiterates to show that
sr−k−1,r−k−1 ̸= 0, and so on, allowing us to assume that S = idr−k.

In this form, we can multiply g from the right by(
id −T
0 id

)
∈ H

and reduce to T = 0. This now implies that V must be invertible and another multiplication by an
element of H allows us to assume that V = idk.

We have thus found representatives

g =
(

id 0
U id

)

for all (r − k)-dimensional subspaces W such that W ∩ U = 0. It is easy to see that these form a
system of representatives (one for each coset of H). Since U ∈ Mk,r−k(F ) is free, we have qk(r−k)

such representatives.

Lemma 7.3. Let p ∈ Z be a prime and suppose we have the decomposition pOK = ∏g
i=1 pi (where

we allow ramification). Let L be a module lattice of rank r over K with a given primitive sub-module
M of rank k. For every i ∈ {0, . . . , g}, compute Li inductively and probabilistically as follows:

• define L0 = L;

• given Li, define Li+1 as a random sub-module of Li such that Li/Li+1 ∼= (OK/piOK)k.

The lattice Lg contains pM as a primitive sub-module with probability at least 1− d/(p− 1).

Proof. We use Lemma 7.2 at each stage, with M equal to M , p1M , p1p2M , . . ., pM , successively.
Let qi = N(pi). At step i, the probability of the required outcome is

q
k(r−k)
i (qi − 1) · · · (qk

i − 1)
(qr

i − 1) · · · (qr−k+1
i − 1)

≥ (qi − 1) · · · (qk
i − 1)

qi · · · qk
i
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where we estimated qj
i − 1 ≤ qj

i in the denominator. It is now easy to see (e.g. inductively) that

(qi − 1) · · · (qk
i − 1)

qi · · · qk
i

=
k∏

i=1

(
1− 1

qi

)
≥ 1−

k∑
i=1

1
qi
≥ 1− 1

q − 1 .

Writing qi = pαi , multiplying these bounds together and applying the same reasoning as above, we
obtain the bound

g∏
i=1

(
1− 1

pαi − 1

)
≥ 1−

∑
i

1
pαi − 1 ≥ 1− d

p− 1 ,

using that αi ≥ 1 and that g ≤ d.

Putting everything together, we obtain the gap-decreasing algorithm.

Proposition 7.4. Let L be a rank r module lattice over a degree d number field K, with K-minima
λK

1 , . . . , λ
K
r . Suppose that λK

k+1 ≥ pλK
k for some prime p and k < r. The algorithm described in

Lemma 7.3 then produces, with probability at least 1− d/(p− 1), a full-rank sub-module L′ ⊂ L of
covolume pdk, such that, if µK

i are its K-minima, then

µK
i = pλK

i , i = 1, . . . , k,

and
λK

i ≤ µK
i ≤

(
1 + ΓK

√
kd

2

)
λK

i , i = k + 1, . . . , r.

7.2 Reduction to balanced lattices

We now describe and analyze an algorithm for closing all gaps of a lattice. It is adequate for reducing
SIVP for lattices with gaps of size 2d to SIVP for lattices with gaps of polynomial size in d.

Algorithm 3 Finding a balanced sublattice
Require: A module lattice M of rank r, and a parameter t ∈ N>1.
Ensure: A sub-module N ⊂M .

1: Put N0 = M .
2: for i = 1 to r − 1 do
3: Pick gi ∈ {21, 22, 23, . . . , 2t} uniformly random. ‘Guess the gap’
4: if gi ≤ 4d then
5: Put pi = 1 and Ni = Ni−1.
6: else
7: Pick a prime pi satisfying gi/2 ≤ pi ≤ gi.
8: Decompose pi = ∏g

j=1 pj over K (with possible ramification).
9: Put Pi := Ni−1.

10: for j = 1 to g do
11: Take a random sub-module Pj ⊂ Pj−1 satisfying Pj−1/Pj ≃ (ZK/pj)i.
12: end for
13: Put Ni = Pg.
14: end if
15: end for
16: return N := Nr−1.
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Theorem 6. Let M be a ZK-module of rank r > 1; and let t ∈ N>2 be a parameter that satisfies
2t ≥

(
1 + ΓK

√
r·d

2

)r−1
·maxj

λK
j+1(M)
λK

j (M) . Then, with probability at least (2t)−(r−1), Algorithm 3 outputs
a sub-module N ⊂M such that, for some primes p1, . . . , pr−1 at most 2t,

• det(N) = det(M) ·∏r−1
i=1 p

di
i .

• λK
i+1(N)

λK
i (N) ≤ 4d ·

(
1 + ΓK

√
i·d

2

)
for all 1 ≤ i ≤ r − 1.

• λK
i (N) ≤ ∏i−1

j=1

(
1 + ΓK

√
j·d

2

)
·
(∏r−1

s=i ps

)
· λK

i (M). for all 1 ≤ i ≤ r.

Moreover, this algorithm runs in polynomial time in the size of its input.

Proof. In this section, we use the notation

γK
i (L) =

λK
i+1(L)
λK

i (L)

for a module lattice L and i = 1, . . . , r−1. These signify the gaps between the K-successive minima.
For the first item, note that in the i-th step of the algorithm, |Pj−1/Pj | = N(pj)i. Hence,

|Ni−1/Ni| = ∏g
j=1N(pj)i = pdi (with d = [K : Q]). Therefore, taking the product over i yields

|N/M | = |Nr/N0| =
∏r−1

i=1 p
di
i , which gives the claim.

For the second item, recall the notation γK
i (N ′) = λK

i+1(N ′)/λK
i (N ′) for any module N ′. We

follow the algorithm through steps i = 1 to r − 1. We say that the ‘gap guessing’ in step 3 (of the
i-th loop) is successful whenever either gi/2 ≤ γK

i (Ni−1) ≤ 2 · gi. This happens with probability at
least 1/t. After choosing a prime pi, as in step 5 and step 7, note that 1 ≤ γK

i (Ni−1)/pi ≤ 4d in
this successful case.

Assume now that we are in the non-trivial case of gi > 4d and, thus, pi ≥ gi/2. According to
Corollary 7.4, with probability at least 1 − d/(pi − 1) ≥ 1/2, the module Ni satisfies λK

t (Ni) =
piλ

K
t (Ni−1) for t ≤ i and λK

t (Ni) ≤ κiλ
K
t (Ni−1) for t > i, where we write κi = 1 + ΓK

√
i·d

2 for
brevity. This is also true in the trivial case of gi ≤ 4d, where pi = 1, with probability 1.

We assume for the rest of the proof that we are indeed in such a successful ‘gap guessing’ case,
for all i. The probability computation follows at the end of this proof.

For all ℓ < i, we have

γK
ℓ (Ni) =

λK
ℓ+1(Ni)
λK

ℓ (Ni)
=
λK

ℓ+1(Ni−1)
λK

ℓ (Ni−1)
= γK

ℓ (Ni−1)

whereas for ℓ = i, we have

γK
i (Ni) =

λK
i+1(Ni)
λK

i (Ni)
≤
κiλ

K
i+1(Ni−1)

piλK
i (Ni−1)

= κi

pi
· γK

i (Ni−1).

By induction, one can then conclude that

γK
i (N) = γK

ℓ (Ni−1) = κi

pi
· γK

i (Ni−1) ≤ 4d · κi = 4d ·
(

1 + ΓK

√
i · d

2

)

since we assumed that γK
i (Ni−1)/pi ≤ 4d.
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For the bound on λK
i (N), we use Corollary 7.4 again: λK

j (Ni) = piλ
K
j (Ni−1) for j ≤ i and

λK
j (Ni) ≤ κiλ

K
j (Ni−1) for j > i. Therefore,

λK
i (N) = λK

i (Nr−1) =
(

r−1∏
s=i

ps

)
· λK

i (Ni−1) ≤
(

r−1∏
s=i

ps

)
·

i−1∏
j=1

κj

λK
i (N0),

which proves the third item.
As promised, we finish with the probability claim. For the entire algorithm to be successful, both

the ‘gap guessing’ and the ‘gap closing’ should be successful in each of the i-steps. These success
probabilities are 1/t and at least 1/2, respectively. Since these are independent events, taking the
product takes the overall success probability, yielding (2t)−(r−1).

Corollary 7.5. Let M be an OK-module lattice of rank r > 1, and γ ≥ 1. Suppose M is α-balanced.
Let cK = 1+ ΓK

√
r·d

2 . There is a polynomial time reduction which, given M and α, reduces (cr−1
K ·γ)-

SIVP in M to γ-SIVP in a rank-r module lattice N , where N is (4d · cK)-balanced with probability

p = (2(r − 1) log2(cK) + 2 log2(α))−(r−1).

Proof. Let t = (r − 1) log2(cK) + log2(α). Algorithm 3 finds a sub-module N ⊆ M satisfying the
properties of Theorem 6 with probability

p = (2t)−(r−1) = (2(r − 1) log2(cK) + 2 log2(α))−(r−1).

In that event, the module N is (4d · cK)-balanced. Furthermore, we have

λK
r (N) ≤

r−1∏
j=1

(
1 + ΓK

√
j · d

2

)
· λK

r (M) ≤ cr−1
K λK

r (M),

so a solution of γ-SIVP for N provides a solution of (cr−1
K · γ)-SIVP for M .

Theorem 7 (Reduction to the bulk). Let cK = 1 + ΓK

√
r·d

2 , and ε = d
2(rd+1)/2 . Let O be an oracle

which solves γ-SIVP for (4d ·cK)-balanced rank-r module lattices. There is a randomized polynomial
time algorithm which given access to O, solves (cr−1

K · (1 + ε)r−1 · γ)-SIVP with probability at least
1/2. The expected number of oracle calls is polyr(log |∆K |).
Proof. Consider a rank-r module lattices or which we wish to solve (cr−1

K · (1 + ε)r−1 · γ)-SIVP.
By Theorem 5, the problem reduces to t ≤ r instances of (cr−1

K · γ)-SIVP in α-balanced module
lattices, with α = Γ2

K2 3
2 (rd−1). Let k ∈ Z>0 be a parameter to be tuned later. To each of these t

instances, apply the reduction of Corollary 7.5 independently k times (and solve them using the
oracle O), and keep the smallest response. For each of the t instances, the probability that the
best-of-k solutions is small enough is 1− (1− p0)k with

p0 = (2(r − 1) log2(cK) + 2 log2(α))−(r−1)

is the success probability from Corollary 7.5. The probability that all t instances are solved suc-
cessfully is (1 − (1 − p0)k)t. We have (1 − (1 − p0)k)t > 1/2 if and only if k > log2(1−2−1/t)

log2(1−p0) . For
0 < x < 1, we have 0 < x/2 < − log(1−x), and for any t ≥ 1, we have − log(1−2−1/t) < 1+log(t),
so

log2(1− 2−1/t)
log2(1− p0) = log(1− 2−1/t)

log(1− p0) <
−2 log(1− 2−1/t)

p0
≤ 2 + 2 log(t)

p0
.

In particular, choosing k > 2+2 log(t)
p0

= polyr(log(ΓK), d) = polyr(log |∆K |), we obtain a probability
of success of at least 1/2.
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8 Sampling

8.1 Road map

In the following two sections we tackle two challenges. The first one regards how to sample an
element in GLr(KR) with respect to the distribution fz as in Section 4.1, assuming real arithmetic
and uniform samples from [0, 1]. In other words, how can the distribution fz be “built” from known
distributions. This is the subject of section Section 8.

On actual computers (or Turing machines), though, no real arithmetic and uniform samples
are possible, so the natural second challenge then consists of showing that discretization does not
impact much the final distribution of this paper’s algorithm. This is the subject of Section 9. We
now elaborate more on the first of these two challenges.

We note that Section 8 is more of an expository section, making clear the building blocks of the
initial distribution fz, whereas Section 9 contains the precise procedure of sampling from a finite
discretized version Dz of fz; and the proof that these two are close in some precise sense. In both
Section 8 and Section 9 we use column notation for matrices and vectors.

Sampling in GLr(KR) according to fz.

We will crucially rely on the fact that we can decompose

SLr(KR) = SUr(KR) · diag0(KR) · SUr(KR)

where diag0(KR) are the determinant 1 diagonal matrices with coefficients in KR, and that the
Haar-measure of a function g on SLr(KR) is dictated by the restriction of g on the completions Kν

in KR = ∏
ν Kν ; which is given by the rule [MP21, Proposition 10]

c

∫
(k1,k2)∈SUr(Kν)2

∫
a∈∆∗

∏
1≤i<j≤r

sinh(ai − aj)[Kν :R]g(k1 exp(a)k2)dk1dadk2

where we mean with exp(a) the r×r diagonal matrix diag(ea1 , . . . , ear ) and where ∆∗ = {(a1, . . . , ar−1) ∈
Rr−1 | a1 > . . . > ar−1 > −

∑r−1
i=1 ai} and ar = −∑r−1

i=1 ai; and where c ∈ R>0 is a normalization
constant only depending on r and [Kν : R].

By Equations (19) and (21) and Definition 2.29, the matrix norm part (ρ) and the determinant
part (τ) are independent; and both ρ and τ are invariant under SUr(KR). Hence, we proceed as in
Algorithm 4.

Remark 8.1. As explained in Section 4.1, the initial distribution will be defined as a push-forward
of a distribution on Yr (see Equation (4) and Equation (18)) under the projection πa. The choice of
the left quotient GLr(OK , a) = Aut(Or−1

K ⊕ a) in the definition of Xr,a in Equation (3) is arbitrary
and done there for conciseness.

In the present section we let this quotient instead depend on the pseudo-basis (B, I) of the input
module lattice M , where I = (a1, . . . , ar) and B ∈ GLr(KR). In other words, we rather define

Xr,I = Aut(a1 ⊕ . . .⊕ ar)\GLr(KR)/(Ur(KR) · R>0),

and send (the coset of) z := B ∈ Yr to (the coset of) z = B in Xr,I, which then corresponds to the
module lattice M .

Note that the other class group components of Xr(K) as in Equation (2) may be chosen arbi-
trarily as long as the full class group is covered.
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In the present section, we will also see the distribution fz on Yr (see Equation (4)) as a distri-
bution on GLr(KR) and vice versa. This will not lead to confusion, since the support of fz consists
of modules that all have the same absolute determinant, and since for any m in the support of fz,
the entirety of m · Ur(KR) has equal density.

Algorithm 4 Computing a sample from fz in GLr(KR)
Require:

• A pseudo-basis (B, I) of a rank r module lattice M ,
• σ > 0, a Gaussian parameter,
• t ∈ R>0 a width parameter for the diagonal.

Ensure: A pseudo-basis of a module lattice R of rank r.
1: Sample h ∈ H ≃ {h′ ∈ ∏ν R |

∑
ν [Kν : R] · h′ν = 0} according to a Gaussian distribution with

parameter σ (as in Equation (19)), where H is the hyper plane where the logarithmic units live
in.

2: Put Mh = diag(eh/r, . . . , eh/r) ∈ GLr(KR). Note that log | det(Mh)| = h and thus τ(Mh) =
∥h∥2. We denote M

(ν)
h for the ν-th component of Mh in the decomposition GLr(KR) =∏

ν GLr(Kν).
3: For each place ν separately, sample a(ν) = (a1, . . . , ar−1, ar) with (a1, . . . , ar−1) ∈ ∆∗ from the

distribution
c′
∫

a∈∆∗

∏
1≤i<j≤r

sinh(ai − aj)[Kν :R]1[0,t](ρ(exp(a))da. (30)

Also sample k(ν)
1 , k

(ν)
2 ∈ SUr(Kν) uniformly (which is possible because it is a compact group)

and put (for each ν separately) g(ν) := k
(ν)
1 exp(a(ν))M (ν)

h k
(ν)
2 , where exp(a) is the r×r diagonal

matrix diag(ea1 , . . . , ear ).
4: Assemble the g := (g(ν))ν ∈

∏
ν GLr(Kν) component-wise.

5: return (g ·B, I);

That Algorithm 4 indeed yields the desired distribution fz for z := B, is the object of Lemma 8.2.
Note that, computationally, there are three distributions for which a sampling procedure is required.
One, the Gaussian distribution on h ∈ H, which is already treated in an earlier work [BDP+20]
and will therefore only come up in this work in the section about discretization (Section 9.5). Two,
the uniform distribution on SUr(Kν), which can be computed by assembling uniform distributions
on spheres in the shape of Householder transformations. This is treated in Section 8.3. Three, the
distribution on ∆∗ as in Equation (30), which can be seen as a distribution on a polytope ∆∗t . We
will sample from this distribution by a rejection sampling procedure where the proposal distribution
is the uniform distribution on some polytope ∆∗t . This is treated in Section 8.4.

8.2 Sampling according to the density fz in SLr(KR)
Lemma 8.2. For any input pseudo-basis (B, I), the pseudo-algorithm described in Algorithm 4
indeed samples g ← GLr(KR) according to the distribution fz as in Section 4.1, with z = B.

Proof. By the definition of fz in Equation (21), it enough to show that g ∈ GLr(KR) as in line 4
of Algorithm 4 is distributed with density I−1

f f̃ . The definition of f̃ Equation (19) reads

f̃(x) = 1[0,t](ρ(x)) exp(− π

σ2 τ(x)),
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where ρ and τ are defined in Definition 2.29. By the very definition of f̃ , the determinant-part
and the SLr-part are independent (due to the product in the density function) and can hence be
sampled independently.

We focus for now on sampling the SLr-part, i.e., elements g ∈ SLr(KR) for which det(g) = 1 ∈
KR (i.e. 1 at each local component). We decompose g = (gν)ν via the isomorphism SLr(KR) ≃∏

ν SLr(Kν) from which we can directly see that deg(gν) = 1 ∈ Kν for all ν. Hence, for g ∈ SLr(KR),

f̃(g) = 1⇐⇒ (∥gν∥op ≤ t and ∥g−1
ν ∥op ≤ t for all ν)

For each gν , we have a unique decomposition gν = uνdνvν with uν , vν ∈ SUr(Kν) and dν ∈ Dr(R)
of ordered diagonal matrices (i.e., diag(d1, . . . , dr) with d1 > . . . > dr) of determinant 1.

The Haar measure of a function h on SLr(Kν) is given by [MP21, Proposition 10]

c

∫
(k1,k2)∈SUr(Kν)2

∫
a∈∆∗

∏
1≤i<j≤r

sinh(ai − aj)[Kν :R]h(k1 exp(a)k2) dk1 da dk2

for some constant c; here exp(a) is the r-dimensional diagonal matrix diag(eai) with ar = −∑r−1
i=1 .

Substituting f̃ for h, using that ρ(gν) = ρ(uνdνvν) = ρ(dν) and hence f̃(k1 exp(a)k2) = 1[0,t](maxr
i=1 |ai|),

we can deduce the following.
Sampling, for all ν, k(1)

ν , k
(2)
ν ∈ SUr(Kν) independently and uniformly, and sampling aν ∈ ∆∗t :=

{aν ∈ Rr−1 | t > a1 > . . . > ar−1 > ar > −t} with ar = −∑r−1
i=1 ai according to the distribution

c′
∏

1≤i<j≤r

sinh(ai − aj)[Kν :R]d

yields a gν := k
(1)
ν exp(aν)k(2)

ν ∈ SLr(Kν) such that the combination g = (gν)ν (via SLr(KR) ≃∏
ν SLr(Kν)) is (Haar) distributed according to f̃ given a unit determinant. Here, c′ is defined such

that c′
∫

a∈∆∗
t

∏
1≤i<j≤r sinh(ai − aj)[Kν :R]da integrates to 1.

By sampling h← H according to a Gaussian Gσ,H , defining

Mh = diag(eh/r, . . . , eh/r) ∈ GLr(KR)

and denoting M (ν)
h for the ν-th component of Mh in the decomposition GLr(KR) = ∏

ν GLr(Kν),
subsequently putting gν := k

(1)
ν exp(aν)M (ν)

h k
(2)
ν and combining g = (tν)ν ∈ GLr(KR) we see that

g is distributed according to f̃ (with varying determinant).

Lemma 8.3. Let t, σ > 0 be parameters of Algorithm 4, and let ε1 ∈ (0, 1) an error parameter. Let
(B, I) be a pseudo-basis of an α-balanced module lattice M . Then, with probability at least 1 − ε1,
the output (g ·B, I) of Algorithm 4 is (e2t+2σ·

√
2d log(2d/ε1) · α)-balanced.

Proof. We have that g is of the shape g = k1 · δ ·Mh · k2 with k1, k2 ∈ SUr(KR) and Mh and δ
diagonal matrices (over K) as in Algorithm 4. Hence, by replacing (B, I) by (k−1

2 B, I) (which does
not change the balancedness of B, as k2 is unitary), we may assume k2 is the identity. With the
same argument, as we only consider the balancedness properties of (g · B, I), which are the same
as those of (k−1

1 · g ·B, I), we may assume k1 is the identity as well.
Let now write t = δ ·Mh. Our aim is to relate the successive minima of M and of tM . We can

deduce, by taking {m1, . . . ,mj} the first j successive minima of M , that

λK
j (tM) ≤ max

i
∥tmi∥ ≤ ∥t∥ · ∥mj∥ ≤ ∥t∥ · λK

j (M).
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In a similar fashion, by taking {tm′1, . . . , tm′j} the first j successive minima of tM , with m′i ∈M ,

λK
j (M) ≤ max

i
∥t−1tm′i∥ ≤ ∥t−1∥ · ∥tm′j∥ ≤ ∥t−1∥λK

j (tM).

Hence, for all j,

∥t−1∥−1 ≤
λK

j (tM)
λK

j (M)
≤ ∥t∥,

and so
λK

j+1(tM)
λK

j (tM)
≤
∥t∥λK

j+1(M)
∥t−1∥−1λK

j (M)
≤ ∥t∥∥t−1∥ ·

λK
j+1(M)
λK

j (M)
.

In other words, if M is α-balanced, tM must be (cd(t) ·α)-balanced, where cd(t) = ∥t∥∥t−1∥ is the
conditioning number of t.

Since t = δ ·Mh, we can use the exact same computations as in the proof of Proposition 9.1,
except for the fact that h, in the specific continuous distribution of line 1 of Algorithm 4, is
bounded by σ ·

√
2d log(2d/ε1) with probability ε1 for any ε1 ∈ (0, 1), by Lemma A.8. Therefore,

cd(t) = cd(δ)·cd(Mh) ≤ e2t ·e2σ·
√

2d log(2d/ε1), except with probability ε1. This finishes the proof.

8.3 Uniform sampling over SUr(KR)
In the following lemma, we explain how we can sample uniformly in SUr(KR) if we are allowed to
use samples from U([0, 1]), the uniform distribution over [0, 1].

We do this by first decomposing SUr(KR) = ∏
ν SUr(Kν) where Kν is the completion of K at the

place ν, i.e., Kν = R if ν is real and C otherwise. Hence sampling a uniformly distributed element
from SUr(KR) reduces to sampling uniformly distributed elements from SUr(C) and SUr(R). As
uniformly sampling in these two special orthogonal groups can be tackled similarly, we focus on the
R-variant: SUr(R).

For sampling in SUr(R), we note that (roughly speaking, via fibrations) SUr(R) ≃ ∏r
j=2 S

j−1(R),
where Sr−1 is the unit sphere in Rr. Indeed, by applying a linear transformation T that sends the
first column (an element of Sr−1(R)) of a U ∈ SUr(R) to the unit vector e1, we immediately deduce
that the bottom-right block of TU lies in SUr−1(R). The decomposition of SUr(R) then follows by
induction. So, we can conclude that uniform sampling in SUr(R) reduces to uniform samples in
spheres.

To uniformly sample in Sr(R), we apply inverse transform sampling by writing the coordinates
of Sr(R) in angular coordinates (θ1, . . . , θr). By an adequate sampling of these (θ1, . . . , θr) one then
obtains a uniform distribution on Sr(R).

Lemma 8.4. Let r ≥ 1. Then there is a procedure that allows to compute a uniform sample in
Sr(R) given r uniform samples (u1, . . . , ur) from U([0, 1]).

Proof. We start by defining a map, which described the sphere in spherical coordinates [Blu60],

[0, 2π]× [0, π]r−1 7→ Sr(R), (θ1, . . . , θr) 7→ x := f(θ1, . . . , θr)

by the rule

xj = fj(θ) :=

 r∏
k=j

sin(θj)

 cos(θj−1)
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where we put θ0 := 0. We seek a distribution D on [0, 2π] × [0, π]r−1 such that f(θ) is uniformly
distributed on Sr(R) for θ ← D. We put

ρj(θ) :=


1√
π

Γ( j+1
2 )

Γ( j
2 )

sinj−1(θ) if j > 1
1

2π if j = 1
.

And define the distribution ρ(θ) := ∏r
j=1 ρj(θj). This is indeed a distribution, since by the reduction

formulae for definite integrals over powers of sines, we have7, for j > 1,

∫ π

0
sinj−1(θ)dθ =


2(j−2)!!
(j−1)!! if j is even
(j−2)!!
(j−1)!! · π if j is odd

By the fact that Γ(k + 1/2) = (2k−1)!!
2k

√
π and Γ(k) = (k − 1)!, we see that,

Γ( j+1
2 )

Γ( j
2)

=


(2k−1)!!

√
π

2k·(k−1)! = (2k−1)!!
√

π
2·(2k−2)!! = (j−1)!!

√
π

(j−2)!!·2 for j = 2k is even
(k−1)!2k−1
√

π(2k−3)!! = (2k−2)!!
(2k−3)!!

√
π

= (j−1)!!
(j−2)!!

√
π

for j = 2k − 1 is odd.

Hence, indeed, ρj(θ) is a distribution, and so is ρ(θ).
Under the function f : [0, 2π] × [0, π]r−2 this distribution changes into a distribution τ over

Sr(R). Our aim is to prove that this latter distribution τ is uniform.
For A ⊆ Sr(R), we have, by the substitution formula for integrals and the inverse function

theorem, ∫
θ∈f−1(A)

ρ(θ)dθ =
∫

a∈A
ρ(f−1(a))|D(f−1)(a)|da (31)

=
∫

a∈A
ρ(f−1(a))|D(f)(f−1(a))|−1da (32)

hence τ(a) = ρ(f−1(a))|D(f)(f−1(a))|−1 is the density function on a ∈ Sr(R). It is a fact [Blu60,
p. 66] that the Jacobian of the spherical coordinates defined by f is equal to

D(f)(θ) :=
r∏

j=1
sinj−1(θj),

and hence, for all a ∈ Sr(R), we have ρ(f−1(a)) = c|D(f)(f−1(a))| for some constant c ∈ R>0.
This means that τ(a) = ρ(f−1(a))|D(f)(f−1(a))|−1 is constant, and hence is equal to the uniform
distribution.

One now obtains a uniform sample a ∈ Sr(R) by the following procedure:

1. Sample (u1, . . . , ur) ∈ [0, 1]r uniformly.

2. Compute Fj(x) =
∫ x

0 ρj(θ)dθ either symbolically or numerically.

3. Compute θj = F−1
j (uj) for all j. Note that, by the inverse transform sampling principle, θj

is now distributed with density function ρj .

4. Compute x := f(θ1, . . . , θr) ∈ Sr(R).
7Here, !! denotes the double factorial, which equals n!! :=

∏⌊n/2⌋
j=0 (n − 2j).
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5. Then x ∈ Sr(R) is uniformly distributed.

Lemma 8.5 (Uniform sampling in SUr). There is a procedure that transforms the (r− 1)-tuple of
uniform samples (u2, . . . , ur) ∈ ∏r

j=2 S
j−1(R) into a uniform sample from SUr(R).

Likewise, there is a procedure that transforms that r-tuple of uniform samples (u1, . . . , ur) ∈∏r
j=1 S

2j−1(R) into a uniform sample from SUr(C)

Proof. We start with the proof of the first statement, which we prove by induction (where we use
SU1(R) = {1}). So, we assume we have a sample of SUr−1(R), using uniform samples (u2, . . . , ur−1) ∈∏r−1

j=2 S
j−1(R).

Since the (oriented) sphere Sr−1(R) is a homogeneous space for SUr(R), and we have the
following fiber bundle [Ste99, p. I.7.6]

SUr−1(R)→ SUr(R)→ Sr−1(R),

we can assemble a uniform sample in SUr(R) by combining a uniform sample in Sr−1(R) and
SUr−1(R) as follows.

We construct such A ∈ SUr(R) by the following procedure. First, sample a ∈ Sr−1(R) uniformly.
This a ∈ Rr satisfies ∥a∥ = 1. Create a Householder transformation Ha = I − 2vv⊤ ∈ Ur(R) that
sends a to en; that is, put v = a−en

∥a−en∥ .
Sample B ∈ SUr−1(R) uniformly and put

A′ :=
[
B 0
0 −1

]
.

That is, the last row and the last column of A′ consists of zeroes, except for A′11 = −1. Then,
output A := HaA

′.
By construction, det(A) = det(Ha) det(A′) = −det(Ha) det(B) = 1 since Householder trans-

formations have determinant −1. Hence A ∈ SUr(R).
For the second statement, about SUr(C), can be proven similarly, but instead with the spheres

S2j−1, via the fiber bundle (for r ≥ 2) [Ste99, p. I.7.10]

SUr−1(C)→ SUr(C)→ S2r−1(R).

Note that SU1(C) ≃ S1(R). The uniform sample from SUr(C) is then constructed by sampling
a ∈ S2r−1(R) uniformly, and seeing it as a vector in Cr of norm 1. Subsequently, compute the
Householder transformation Ha = I − 2vv∗ with v = a−e1

∥a−en∥ (note the difference between v∗ and
v⊤ between the complex and the real case). We sample B ∈ SUr−1(C) uniformly and put

A′ :=
[
B 0
0 −1

]
,

and define A := HaA
′. By similar computations, we deduce that A is a uniform sample in SUr(C).

Definition 8.6. For θ ∈ ∏r
j=2 S

j−1(R) we denote by Uθ ∈ SUr(R) the real unitary matrix associ-
ated with θ defined by the procedure in Lemma 8.5. Abusing notation, for θ ∈ ∏r

j=1 S
2j−1(R) we

also denote by Uθ ∈ SUr(C) the complex unitary matrix associated with θ defined by the procedure
in Lemma 8.5.

74



8.4 Sampling from 1[0,t](ρ(exp(a))) over the diagonal

8.4.1 The target distribution

The goal in the following text is to derive a procedure to sample determinant one diagonal matrices
over Kν with operator norm (from ρ) bounded by some number t ∈ R>0, according to the marginal
distribution inherited from the Haar measure on SLr(Kν), as in Equation (30).

This precisely coincides with sampling (a1, . . . , ar) ∈ R with a1 > . . . > ar−1 > ar and ar =
−
∑r−1

i=1 ai, satisfying maxj |aj | < t, according to the Haar measure on the diagonal in SLr(K) with
K = R or C. This distribution can be shown ([MP21, Proposition 10] where we locally instantiate
d := r and e := 1, see [MP21, Section 4]) to have density

g(a1, . . . , ar−1) =
{
c ·
∏

1≤i<j≤r sinh(ai − aj)[K:R] for |ai| < t

0 elsewhere
(33)

where c ∈ R>0 is a constant such that g is indeed a density (with unit integral). We will write
ḡ = c−1g = ∏

1≤i<j≤r sinh(ai − aj)[K:R] (restricted to |ai| < t) for the unnormalized function.

8.4.2 Rejection sampling

In rejection sampling (e.g., [Dev86, Section II.3]), there are two distributions: a target distribu-
tion, from which we actually would like a sample, and a proposal distribution, for which we are
already able to find samples. By adequately, with a certain probability depending on the sampled
value, reject samples from the proposal distribution, we arrive at a sample procedure for the target
distribution.

In the case at hand, the target distribution has density function g as in Equation (33), whereas
we choose as the proposal distribution the uniform distribution on the simplex defined by (a1, . . . , ar).
Such a rejection sampling procedure then reads as follows.

1. Compute an upper bound M ≥ max|ai|<t ḡ(a1, . . . , ar−1) on ḡ = c−1g.

2. Sample a = (a1, . . . , ar−1) ∈ ∆∗t uniformly from the set

∆∗t = {(a1, . . . , ar−1) ∈ R | t > a1 > . . . > ar−1 > ar := −
r−1∑
i=1

ai > −t}.

and reject with probability 1− ḡ(a1,...,ar−1)
M .

3. If a is rejected, re-sample (go to line 2); if not, output a.

In line 2 the algorithm is expected to reject a with probability 1
vol(∆∗

t )
∫

a∈∆∗
t

(
1− c−1g(a)

M

)
da = 1− 1

cM

and hence accepts a with probability (cM)−1. So one can deduce that the expected number of
uniform samples from ∆∗t this algorithm needs, provided that t ≤ 1, is

O(cM) = O(max
a

g(a)) = O

(16r2)
r(r−1)[K:R]

2 ·
(

4r2

t

)r−1
 = eO(r2 log r) · t−(r−1),

by the later Lemma 8.7 in Section 8.4.4.

75



8.4.3 Uniform sampling on the polytope ∆∗t
Our aim is to uniformly sample in the polytope

∆∗t = {(a1, . . . , ar−1) ∈ R | t > a1 > . . . > ar−1 > ar := −
r−1∑
i=1

ai > −t}.

We apply the change of variables yi = t−ai
2t for i ∈ {1, . . . , r − 1} that bijectively and linearly

transforms ∆∗t in the set

S = {(y1, . . . , yr−1) ∈ R | 0 < y1 < . . . < yr−1 ≤ 1,
r−1∑
i=1

yi >
r − 2

2 and yr−1 +
r−1∑
i=1

yi <
r

2}. (34)

Indeed, ∑r−1
i=1 yi = ∑r−1

i=1
t−ai

2t = r−1
2 −

1
2t

∑r
i=1 ai >

r−1
2 −

t
2t = r−2

2 and

yr−1 +
r−1∑
i=1

yi = t− ar−1
2t +

r−1∑
i=1

t− ai

2t = r

2 −
1
2t

(
ar−1 +

r−1∑
i=1

ai

)
︸ ︷︷ ︸

>0

<
r

2 .

This set S satisfies S ⊆ ∆0 = {(y1, . . . , yr−1) ∈ R | 0 < y1 < . . . < yr−1 ≤ 1}, a filled simplex. A
procedure for sampling in ∆0 exists [Dev86, §I.4.3, p. 17] by sampling r − 1 uniform distributions
U1, . . . , Ur−1 and sorting them U(1) ≤ U(2) ≤ . . . ≤ U(r−1).

We now sample y from ∆0 in this way, and reject if y /∈ S. We aim to compute a lower bound
on the success probability of this rejection sampling procedure. Surely, if y1 > (r−2)

2(r−1) we have∑r−1
i=1 yi >

(r−2)
2 . Also, if yr−1 < 1/2, we must have yr−1 +∑r−1

i=1 yi <
r
2 . Hence,

vol(S)
vol(∆0) ≥ P

y←U(∆0)

[
y1 >

(r − 2)
2(r − 1) and yr−1 < 1/2

]
= P

[
min

i=1,...,r−1
Ui >

(r − 2)
2(r − 1) and max

i=1,...,r−1
Ui < 1/2

]
= P

[
max

i=1,...,r−1
Ui < 1/2

∣∣∣ min
i=1,...,r−1

Ui >
(r − 2)
2(r − 1)

]
· P
[

min
i=1,...,r−1

Ui >
(r − 2)
2(r − 1)

]
where Ui are iid uniform distributions over [0, 1]. We have

P
[

min
i=1,...,r−1

Ui >
(r − 2)
2(r − 1)

]
=
(

1− (r − 2)
2(r − 1)

)r−1
=
(1

2 + 1
2(r − 1)

)r−1

whereas we can compute the conditional probability by defining U ′i being uniform in [ (r−2)
2(r−1) , 1]:

P
[

max
i=1,...,r−1

Ui < 1/2
∣∣∣ min

i=1,...,r−1
Ui >

(r − 2)
2(r − 1)

]
= P[ max

i=1,...,r−1
U ′i < 1/2] =

 1
2 −

(r−2)
2(r−1)

1− (r−2)
2(r−1)

r−1

=

 1
2(r−1)

1
2 + 1

2(r−1)

r−1

Hence,
vol(S)

vol(∆0) ≥ (2(r − 1))−(r−1). (35)

So, the expected number of uniform samples from [0, 1] required to compute a uniform sample in
∆∗t via this rejection procedure, is

O((2(r − 1))(r−1)) = eO(r log r).

76



8.4.4 Bound on the maximum of g

Lemma 8.7. For t ≤ 1, we have

∥ḡ∥∞ ≤ (4t)r(r−1), ∥g∥∞ ≤ (16r2)
r(r−1)[K:R]

2 ·
(

4r2

t

)r−1

and

Lip(g) ≤ r2

t
· (16r2)

r(r−1)[K:R]
2 ·

(
4r2

t

)r−1

Proof. For the first bound we compute, using |ai − aj | ≤ 2t < 2.

ḡ =
∏
i<j

sinh(ai − aj)[K:R] ≤ 2r(r−1)/2 ·
∏
i<j

(ai − aj)[K:R] ≤ (4t)r(r−1)[K:R]/2 ≤ (4t)r(r−1)

For the second bound we use the lower bound on the integral I in Lemma 2.31. Hence, we can
bound g by (since |ai − aj | < 2t < 2)

g = I−1 ∏
i<j

sinh(ai − aj)[K:R] ≤ I−1 · (4t)r(r−1)[K:R]/2

≤ (16r2)
r(r−1)[K:R]

2 ·
(

4r2

t

)r−1

.

For the bound on the Lipschitz constant, we bound the derivative of g on ∆∗t .
∂g

∂ak
= I−1 ∂

∂ak

∏
1≤i<j≤r

sinh(ai − aj)[K:R]

= I−1 ∏
1≤i<j≤r
k ̸=i,k ̸=j

sinh(ai − aj)[K:R] ∂

∂ak

∏
1≤i<j≤r

i=k or j=k

sinh(ai − aj)[K:R]

We proceed with the right-hand side of above expression, which equals

= ∂

∂ak

k−1∏
i=1

sinh(ai − ak)[K:R]
r∏

j=k+1
sinh(ak − aj)[K:R]

=

− k−1∑
i=1

[K : R] cosh(ai − ak)
sinh(ai − ak) +

r∑
j=k+1

[K : R] cosh(ai − ak)
sinh(ai − ak)

 k−1∏
i=1

sinh(ai−ak)[K:R]
r∏

j=k+1
sinh(ak−aj)[K:R]

Hence
∂g

∂ak
=

− k−1∑
i=1

[K : R] cosh(ai − ak)
sinh(ai − ak) +

r∑
j=k+1

[K : R] cosh(ai − ak)
sinh(ai − ak)

 g
Since ai − aj < 2t < 2, we see that sinh(ai − aj) ≤ 4t and cosh(ai − aj) < 2, for all i < j. Hence,
we can bound

∥ ∂g
∂ak
∥∞ ≤ 2I−1(r − 1)[K : R](4t)[K:R] (r−1)r

2 −1 ≤ 4r · 1
4t · I

−1 · (4t)[K:R] (r−1)r
2

≤ r

t
· (16r2)

r(r−1)[K:R]
2 ·

(
4r2

t

)r−1

Now, Lip(g) ≤ rmaxk ∥ ∂g
∂ak
∥∞ ≤ r2

t · (16r2)
r(r−1)[K:R]

2 ·
(

4r2

t

)r−1
, which is what we wanted to prove.
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9 Discretization

9.1 Introduction

In Section 8 we described how to sample from the continuous distributions that occur in the random
walk procedure of the current work. On an actual computer (or Turing machine), none of these
continuous distributions can be computed. Instead, we will compute discretized versions of these,
which, in the end, will lead to a distribution D on a finite subset S ⊆ GLr(KR) instead of the
distribution f̃ .

The discreteness of the distribution D on S and the continuity of the distribution f̃ on GLr(KR)
cause them to be incomparable at first glance. However, the full random walk procedure of this paper
comes with a randomization framework and at the end the rounding algorithm (see Section 3). The
output of the rounding algorithm (and thus of the entire random walk procedure) is a distribution
in L1(X) over some discrete set of module lattices X.

For g ∈ GLr(KR) (where g is sampled, for example, from D or from f̃), we can write the output
of the entire random walk procedure of this paper on input g as ψ(g) ∈ L1(X).

In order to show that the output distribution of the entire random walk procedure on input
g ← f̃ differs not much from if we instead had taken the input g ← D (on the finite set S), it is
sufficient to show that

E
g

f̃←−GLr(KR)

[ψg] =
∫

g
ψgf̃(g)dg ≈

∑
g∈S

ψgD(g) = E
g

D←−S

[ψg]

where both on the right side and the left side is a distribution over X, i.e., a function in L1(X),
which is “averaged” over all possible g. Here the “≈” sign means that we want the two distributions
to be close in statistical distance.

We will show that indeed these average end distributions are close in statistical distance. We
show this by changing the continuous distributions into discretized analogues one by one. So,
writing D0 = f̃ , and D1 for the distribution in which in f̃ the left-multiplied uniform distribution on
SUr(Kν) (for all ν) is discretized, D2 for which additionally the a ∈ ∆∗ are discretized, D3 for which
additionally h ∈ H is discretized, and D4 = D for which additionally the right-multiplied uniform
distribution on SUr(Kν) are discretized; this latter is equal to D because then all is discretized. We
will show that

E
g

f̃←−GLr(KR)

[ψg] ≈ E
g←D1

[ψg] ≈ E
g←D2

[ψg] ≈ E
g←D3

[ψg] ≈ E
g←D4

[ψg].

For each of the continuous distributions we will show how to discretize them appropriately and
how it impacts this final distribution. The discretization of the uniform distribution on the “left-
multiplied” SUr(Kν) is treated in Section 9.7, the discretization of a ∈ ∆∗ in Section 9.6, the
discretization of h ∈ H in Section 9.5 and, as it is very similar, the discretization of the “right-
multiplied” SUr(Kν) also in Section 9.7.

9.2 Result

The self-reduction of this paper on an input module lattice consists of two ingredients. The first
one is a random walk procedure that both changes the input module lattice slightly geometrically
and takes random prime power index sub-module lattices of it. The second ingredient is a rounding
procedure, called RoundLat, that allows for efficiently computing a rational module lattice close
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to the input module lattice, with the virtue that the specific input pseudo-basis representation is
hidden: only its module-lattice structure is known.

The random walk procedure on the space of module lattices involves random processes that can
be divided into a discrete random process and a continuous random process. The discrete random
process consists of choosing a random prime ideal and taking a random sub-module with quotient
group isomorphic to the corresponding residue field, whereas the continuous one involve sampling
from the continuous distribution fz for z ∈ Yr.

Recall that random process of taking submodules as above corresponds to the Hecke operator
TP , defined in (12). Although TP is defined on the space of lattices Xr, we also use TP to denote
the same process at the level of pseudo-bases, as in Algorithm 1, by choosing coset representatives
to average over. This should not lead to confusion, as it commutes with the push-forward through
the projection Yr → Xr,a. Recall also the rounding algorithm RoundLat, defined in Algorithm 2,
taking in parameters ε0 and a balancedness parameter α.

Let z = (B, I) be the input corresponding to a module lattice L. We define fz and φz by slight
abuse of notation, as in Remark 8.1, and in all that follows we interpret fz and φz as distributions
by meaning literally fzµRiem and φzµRiem, respectively.

The output distribution of the random walk procedure on input z is given by TPfz, which a
priori depends on the choice of pseudo-basis. If we additionally also apply the rounding algorithm,
we get the output distribution RoundLat(TPfz). Since the the output of RoundLat is independent
of pseudo-bases with high probability (see Proposition 3.1), we can identify this distribution with
RoundLat(TPφz).

Similarly, for any other distribution Dz on Yr, we denote by RoundLat(TPDz) for the distribution
that results if we took a sample from Dz instead of fz and then subsequently applied taking random
sub-module and the rounding representation algorithm.

The goal of this section is to show that for all reasonably balanced module lattices z, there
exists an efficiently computable finite distribution Dz such that RoundLat(TPDz) is statistically
close to RoundLat(TPφz). This means that sampling from the continuous distribution fz (which is
impossible on an actual computer) is not required per se for our reduction to work: indeed, the
efficiently computable finite surrogate distribution Dz will do, too, and causes only a tiny deviation
of the end distribution.

Proposition 9.1. Let α > 1, 0 < ε < 1, B ≫ 1, and let (B, I) be a pseudo-basis for a module
lattice z be that is α-balanced. Denote by P the set of all prime ideals of norm up to B. Then there
exists a finite distribution Dz such that

∥RoundLat(TPDz)− RoundLat(TPφz)∥1 ≤ ε+ ε0

that is sampleable in time exp(8r2 log(r)) · poly(n, log(1/ε), log(1/ε0), logB, size(B)), where ε0 > 0
is an input parameter to RoundLat, Algorithm 2, and φz,Dz are defined through parameters t ≤ 1
and σ ≤ 1.

Proof. Definition of Dz. We define Dz to be the distribution from Algorithm 4, where each
continuous distribution is replaced by a finite substitute. So, the Gaussian distribution in line 1
is replaced by a discrete and windowed Gaussian distribution as in Definition 2.19; the uniform
distributions over SUr(Kν) in line 3 are replaced by a finite counterpart defined in Definition 9.22
(for each place ν); and the “diagonal distribution” in line 3 is replaced by a finite distribution as
in Definition 9.11.

Efficiency of Dz. The efficiency of Dz follows from the efficiency of all distributions involved,
for which the efficiency is shown in the discussion in Section 9.5.1, Lemmas 9.17 and 9.28. Note
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that that the running time is polynomial time in r, d, logN , except for the diagonal distribution,
for which it is O(d exp(8r2 log(r)) logN).

Closeness of distributions. By the description in Algorithm 4 we know that a sample from
the distribution fz can be described as z · k1 · Mh · a · k2 where k1, k2 ← U(SUr(KR)), where
Mh = diag(eh/r, . . . , eh/r) with h sampled from a Gaussian over H with parameter σ, and where a
is some diagonal matrix in GLr(KR) sampled from a specific diagonal distribution.

Similarly, a sample from the discretized distribution Dz can be described by z · k̈1 ·Mḧ · ä · k̈2,
where k̈1, k̈2 are from the distribution described in Definition 9.22, ḧ is sampled from a discrete
Gaussian over H (Definition 2.19) and where ä is from a discrete analogue of the specific diagonal
distribution.

The distributions RoundLat(TP(Dz)) and RoundLat(TP(fz)) can be alternatively described by
respectively

E
k̈1,ḧ,ä,k̈2

[RoundLat(TP(z · k̈1 ·Mḧ · ä · k̈2))] and E
k1,h,a,k2

[RoundLat(TP(z · k1 ·Mh · a · k2))].

By Algorithm 1, and since TP changes the ideal part of the pseudo-basis only by multiplying one
ideal by a random p ∈ P, (see also Remark 8.1) we may, by the law of total probability, instead
replace the operation TP by a multiplication from the left by a matrix T .

Writing z̄ = T · z, we can measure the closeness of these distributions, we apply the triangle
inequality and discretize one-by-one (starting from the right):

∥RoundLat(TP(Dz))− RoundLat(TP(fz))∥1 (36)

≤
∥∥∥ E

k̈1,ḧ,ä,k̈2
[RoundLat(z̄ · k̈1 ·Mḧ · ä · k̈2)]− E

k̈1,ḧ,ä,k2
[RoundLat(z̄ · k̈1 ·Mḧ · ä · k2)]

∥∥∥
1

(37)

+
∥∥∥ E

k̈1,ḧ,ä,k2
[RoundLat(z̄ · k̈1 ·Mḧ · ä · k2)]− E

k̈1,ḧ,a,k2
[RoundLat(z̄ · k̈1 ·Mḧ · a · k2)]

∥∥∥
1

(38)

+
∥∥∥ E

k̈1,ḧ,a,k2
[RoundLat(z̄ · k̈1 ·Mḧ · a · k2)]− E

k̈1,h,a,k2
[RoundLat(z̄ · k̈1 ·Mh · a · k2)]

∥∥∥
1

(39)

+
∥∥∥ E

k̈1,h,a,k2
[RoundLat(z̄ · k̈1 ·Mh · a · k2)]− E

k1,h,a,k2
[RoundLat(z̄ · k1 ·Mh · a · k2)]

∥∥∥
1

(40)

We now bound each of the components in above sum. By Lemma 9.29, we can bound Equation (37)
by

O(N−1/4 · cd(z̄ · k̈1 ·Mḧ · ä)1/2 · n5 4
√

log(1/ε0)). (41)

By Lemma 9.18, we may deduce that Equation (38) is bounded by

N−1/2O(d exp(8r2 log(r)) + n5 cd(z̄ · k̈1 ·Mḧ)1/2 · 4
√

log(1/ε0)) (42)

By Lemma 9.7 and the fact that Mh and a are both diagonal matrices (and thus commute), we
deduce that Equation (39) is bounded by

N−1/2O(n4 cd(z̄ · k̈1)1/2 · 4
√

log(1/ε0) + nσ). (43)

By Lemma 9.29, we can bound Equation (40) by

O(N−1/4 · cd(z̄)1/2 · n5 4
√

log(1/ε0)). (44)
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Combining the bounds of Equations (41) to (44), and simplifying, we obtain

∥RoundLat(TP(Dz))− RoundLat(TP(fz))∥1

≤ cd(z̄ · k̈1 ·Mḧ · ä)1/2 ·N−1/4 · 4
√

log(1/ε0) · n5 · (d exp(8r2 log(r)) + nσ) (45)

We will now bound the conditioning number. We have, by submultiplicativity of the conditioning
number, and the fact that conditioning numbers of unitary matrices equal one,

cd(z̄ · k̈1 ·Mḧ · ä) ≤ cd(z̄) · cd(k̈1) · cd(Mḧ) · cd(ä) = cd(z̄) · cd(Mḧ) · cd(ä) (46)
≤ cd(z̄) · e2n2σ · e2t (47)

≤ 28(rd)2 · |∆K |r+2 · 2(2rd+3)·size(B)+size(p) · e2n2σ · e2t (48)
≤ exp(O(n2 + n2σ + n · size(B) + size(p) + n log |∆K |)). (49)

Indeed, since ä is diagonal, where the entries at each ν-component are bounded by [e−t, et], so
the total conditioning number must be bounded above by e2t. For the bound on the (discrete and
windowed) Gaussian distributed Mḧ, note that Mḧ = diag(eḧ/r, . . . , eḧ/r) and ḧ is bounded by n2σ

in absolute value, and hence cd(Mḧ) ≤ e2n2σ.
For the bound on the conditioning number of z̄ = T · z, we use Lemma 9.2 and Lemma 9.3 to

see that (using t ≤ 1)

cd(z̄) ≤ (rd)4 · 22d · |∆K |1/d · 2size(B)+size(p) · cd(z) (50)
≤ (rd)4 · 22d · |∆K |1/d · 2size(B)+size(p) · 24(rd)2 · |∆K |r+1 · 2(2rd+2)S (51)

≤ 28(rd)2 · |∆K |r+2 · 2(2rd+3) size(B)+size(p). (52)

Combining the bounds Equations (45) and (46), using σ ≤ 1, t ≤ 1, d ≤ n = rd, we obtain

∥RoundLat(TP(Dz))− RoundLat(TP(fz))∥1

≤ N−1/4 · exp(O(n2 logn+ n · size(B) + max
p∈P

size(p) + n log |∆K |)) · 4
√

log(1/ε0). (53)

Hence by choosing

log(N) = O(n2 logn+ n · size(B) + n2 · log(B) + n log |∆K |+ log(1/ε0) + 4 log(1/ε)) (54)

(where we use that maxp∈P size(p) ≤ n2 logB, by Lemma 2.3) we obtain an error

∥RoundLat(TP(Dz))− RoundLat(TP(fz))∥1 ≤ ε.

By the property (ii) in Proposition 3.1, we have that RoundPerf
Lat (TP(fz)) = RoundPerf

Lat (TP(φz)). The
same proposition shows that∥∥∥RoundPerf

Lat (TP(fz))− RoundLat(TP(fz))
∥∥∥

1
≤ ε0

and we are done by the triangle inequality.

81



9.3 Preliminaries on sizes and conditioning numbers

Lemma 9.2. Let (B, I) be a pseudo-basis of a module lattice M and put S = size(B, I) (as in
Section 2.3.3). Then cd(B) ≤ 24(rd)2 · |∆K |r+1 · 2(2rd+2)S.

Proof. By definition, cd(B) = ∥B∥∥B−1∥, where we interpret the induced norm ∥ · ∥ from the
Euclidean norm on Kr

R. It suffices to bound both ∥B∥ and ∥B−1∥ in terms of the bound on the size
S.

We have ∥B∥ ≤ (rd)2 ·maxij ∥Bij∥ ≤ (rd)2 · 2d · |∆K |1/d · 2S , since the coefficient Bij = ∑
i aiβi,

with (β1, . . . , βd) an LLL-reduced integral basis of OK , satisfies

∥Bij∥ ≤ max
i
|ai| ·max

j
∥βj∥ ≤ 2d · |∆K |1/d · 2S .

Using Lemma A.1, seeing B as a basis of a free OK-module, using that λ1(B · Or
K) ≥ 2−S (since

the least common multiple of the denominators occurring in B can be at most 2S), and using the
previous result on the bound on (columns of) B, we obtain

∥B−1∥ ≤ (rd)rd/2+1 · 2S ·
(

(rd)2 · 2d · |∆K |1/d · 2S

2−S

)rd

≤ (rd)rd/2+1 · 2(2rd+1)S · (rd)2rd · 2rd2 · |∆K |r

Combining the two results, we obtain

cd(B) ≤ (rd)rd/2+1 · 2(2rd+1)S · (rd)2rd · 2rd2 · |∆K |r · (rd)2 · 2d · |∆K |1/d · 2S

≤ 24(rd)2 · |∆K |r+1 · 2(2rd+2)S .

Here, the last simplification in terms of rd can be obtained graphically.

Lemma 9.3. Let (B, I) with B ∈ Kr×r
R and I = (a1, . . . , ar) be a pseudo-basis of a module lattice

M with S = size(B, I). Let M ′ ⊆ M be a sub-module lattice satisfying M/M ′ ≃ OK/p for some
prime ideal p, constructed by multiplying one of the ideals ai by p and by multiplying B from the
right by id +∑

j>i αj · eij with αj ∈ ai/(pai) (here eij is the matrix that has 1 on the ij-th position
and zero elsewhere), see also Algorithm 1, resulting in the pseudo-basis (B′, I′) of M ′.

Then
cd(B′) ≤ (rd)4 · 22d · |∆K |1/d · 2S+size(p) · cd(B)

and
size(B′, I′) ≤ 3S + 4 size(p) · d · log |∆K |.

Proof. Writing A = id + ∑
j>i αj · eij we have that, by submultiplicativity of the conditioning

number,
cd(B′) = cd(BA) ≤ cd(B) · cd(A).

Since A has a very simple and similar inverse, namely A−1 = id−∑j>i αj · eij , we can bound

cd(A) = ∥A∥∥A−1∥ ≤ (rd)4 max
j
∥αj∥ ≤ (rd)4 · 2d · |∆K |1/d · 2maxj size(αj),

by similar arguments as in Lemma 9.2. Since αj ∈ ai/(pai), we can deduce that (by clearing
denominators of ai by k and observing that the Hermite normal form of the ideal kpai has coefficients
at most N(kpai)) we must have size(αj) ≤ size(p) + size(ai) + d, and hence

cd(A) ≤ (rd)4 · 22d · |∆K |1/d · 2S+size(p),
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which finishes the bound on cd(B′). For the bound on size(B′, I′) note that size(I′) = ∑r
j=1,j ̸=i size(aj)+

size(pai) ≤ size(I) + size(p) + d ≤ S + size(p) + d. For the size of B′, note that B′ = BA, with
A = id +∑

j>i αj · eij , which means that for each j > i, the j-th column of B is increased by αj

times the i-th column. Hence, the size of B′ can be maximally

S + size(p) · 2d · log |∆K |+ size(B) ≤ 2S + size(p) · 2d · log |∆K |.

Combining the results then yields a bound of size(B′, I′) ≤ 3S + 4 size(p) · d · log |∆K |.

9.4 Discretization in general

Lemma 9.4. Let X be a probability space and let Y be any set. Let h ∈ L1(X) be a distribution
and let ḧ ∈ L1(X) a distribution with finite support Ẍ. Let {Cẍ} be a collection of finite measure
subsets of X with ẍ ∈ Cẍ and let T ⊂ X, so that T ∪

⋃
ẍ∈Ẍ Cẍ = X is a disjoint union. Let

Ax : X → L1(Y ) be a map sending x ∈ X to a distribution on Y .
Then

∥ E
x←h

[Ax]− E
ẍ←ḧ

[Aẍ]∥ =

∥∥∥∥∥∥
∫

x∈X
Ax · h(x)dx−

∑
ẍ∈Ẍ

Aẍ · ḧ(ẍ)

∥∥∥∥∥∥ (55)

≤ ∆(h, ḧ) + C(h, ḧ,A) + T (h), (56)

with discretization error
∆(h, ḧ) :=

∑
ẍ∈Ẍ

∫
x∈Cẍ

∣∣h(x)− ḧ(ẍ)
|Cẍ|

∣∣dx
continuity error

C(ḧ,A) :=
∑
ẍ∈Ẍ

ḧ(ẍ) 1
|Cẍ|

∫
x∈Cẍ

∥Ax −Aẍ∥1dx,

and tail error T (h) =
∫

x∈T h(x)dx.
Additionally, the continuity error satisfies the bounds

C(ḧ,A) ≤ max
ẍ∈Ẍ

1
|Cẍ|

∫
x∈Cẍ

∥Ax −Aẍ∥1dx ≤ max
ẍ∈Ẍ

max
x∈Cẍ

∥Ax −Aẍ∥1

Proof. Use

Ax · h(x)−Aẍ · ḧ(ẍ) = Ax · h(x)−Ax · ḧ(ẍ) +Ax · ḧ(ẍ)−Aẍ · ḧ(ẍ)

and the disjoint union X = T ∪
⋃

ẍ∈Ẍ Cẍ to obtain∫
x∈X
Axh(x)dx−

∑
ẍ∈Ẍ

Aẍḧ(ẍ)

=
∫

x∈T
Axh(x)dx+

∑
ẍ∈Ẍ

∫
x∈Cẍ

Ax
[
h(x)− ḧ(ẍ)

|Cẍ|−1
]
dx (57)

+
∑
ẍ∈Ẍ

ḧ(ẍ) 1
|Cẍ|

∫
x∈Cẍ

[Ax −Aẍ]dx. (58)
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Note that the expression in Equation (58) is a distribution in L1(Y ). So, by taking the 1-norm on
L1(Y ) and putting the norm within the integrals (a form of triangle inequality), one obtains the
following inequality, using that ∥Ax∥ = 1,∥∥∥∥∥∥

∫
x∈X
Ax · h(x)dx−

∑
ẍ∈Ẍ

Aẍ · ḧ(ẍ)

∥∥∥∥∥∥ (59)

≤
∫

x∈T
h(x)dx+

∑
ẍ∈Ẍ

∫
x∈Cẍ

∣∣h(x)− ḧ(ẍ)
|Cẍ|−1

∣∣dx+
∑
ẍ∈Ẍ

ḧ(ẍ) 1
|Cẍ|

∫
x∈Cẍ

∥Ax −Aẍ∥1dx (60)

= T (h) + ∆(h, ḧ) + C(h, ḧ,A). (61)

Here, the last equality holds by definition. Additionally, by Hölder’s inequality, and the fact that
the ḧ(ẍ) sum to one (it is a distribution), one obtains the bound

C(ḧ,A) ≤ max
ẍ∈Ẍ

1
|Cẍ|

∫
x∈Cẍ

∥Ax −Aẍ∥1dx ≤ max
ẍ∈Ẍ

max
x∈Cẍ

∥Ax −Aẍ∥1.

9.5 Discretization of the Gaussian distribution over H

9.5.1 The continuous and the finite distribution

The continuous distribution We denote H = {(hν)ν ∈
∏

ν R |
∑

ν hν = 0} for the logarithmic
unit hyper plane, with standard Euclidean metric8. The continuous distribution over H is the
Gaussian distribution GH,σ defined as in Definition 2.18.

The finite distribution Choosing an ordering {ν1, . . . , νℓ+1} (with ℓ = dim(H)) of the places,
we define a basis BH of H consisting of the basis elements bj = eνj+1 − eνj for j = 1, . . . , ℓ.
Here, eνj is the element of H that is one at the place νj and zero elsewhere. Given a discretization
parameter N ∈ Z>0, this allows us to define the discrete Gaussian distribution, written GḦ,σ (see
Definition 2.19) with

Ḧ := 1
N
BHZℓ = {

ℓ∑
j=1

zjbνj | zj ∈
1
N

Z for all j}.

The finite distribution over Ḧ that we will use in this work is a finite approximation of this
discrete Gaussian distribution [Kle00; GPV08], which we denote G̈σ, that can be efficiently sampled
and that deviates only slightly from GḦ,σ. More precisely [FPS+23b, Lemma A.7] states that, for
any εG > 0, by paying time polynomial in the size of the input and in log(1/εG), we can manage
to have the approximation as good as ∥G̈σ − GḦ,σ∥1 ≤ εG ; and, additionally, any sample v from
G̈σ satisfies ∥v∥ ≤ σ ·

√
log(1/ε) + 4n. That is, G̈σ is supported on vectors in v ∈ Ḧ satisfying

∥v∥ ≤ σ ·
√

log(1/ε) + 4n (which is a finite set).
8The Euclidean length on H is not consistent with that in [BDP+20, Section 2.1], in which the Euclidean length

is defined over the embeddings and accounts to (
∑

ν
[Kν : R]h2

ν)1/2. This does not pose a real problem, since it merely
increases the hidden constant of the main result [BDP+20, Theorem 3.3] of that work by a small constant.
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9.5.2 The tail error and the discretization error

The tail error We fix N ∈ Z>0 and εG = 1
N and we write

Ḧfin = {ḧ ∈ Ḧ | ∥ḧ∥ ≤
√

2 · σ ·
√
n ·
√

log(n/εG) + 4}.

We write FH := {x ∈ H | xi ∈ [− 1
2N ,

1
2N ) for all i} and for each ḧ ∈ Ḧfin we put Cḧ := ḧ+FH . We

put T = H\(⋃ḧ∈Ḧ Cḧ), so that T ∪⋃ḧ∈Ḧ Cḧ is a disjoint union.
We can then reasonably bound

T (Gσ,H) =
∫

h∈T
Gσ,H(h)dh ≤

∫
∥h∥≥σ·

√
n(log(1/εG)+4)

Gσ,H(h)dh ≤ εG = N−1. (62)

This holds because writing h = ∑dim(H)
i=1 cihi in an orthonormal basis yields that maxi ci ≥

∥h∥2/
√

dim(H) ≥ ∥h∥2/
√
n ≥

√
2σ
√

log(n/εG) + 4. Since the coefficients ci are all indepen-
dently Gaussian distributed with the same parameter σ (but with a single variable), we have
that the probability that maxi ci ≥ t :=

√
2σ ·

√
log(n/εG) + 4 is at most n · exp(−t2/(2σ2)) ≤

n · exp(−(log(n/εG) + 4)) ≤ εG .

The discretization error To estimate the discretization error, we use that G̈σ is an εG-close
approximation of Gσ,Ḧ , and hence we can conclude that

∆(Gσ,H , G̈σ) ≤ ∆(Gσ,H ,Gσ,Ḧ) + εG . (63)

So it remains to bound ∆(Gσ,H ,Gσ,Ḧ). Before doing that, we need to apply a result on Gaussian
smoothing.

We can apply Lemma 2.17 to the Gaussian sum Gσ,H over the shifted ℓ-dimensional lattice
Ḧ + h, where Ḧ = 1

NBHZℓ and h ∈ H. Since λℓ(Ḧ) ≤ 2
N , we can deduce that for

σ ≥

√
log(2n(1 + 1/ε))

π
· 2
N

(64)

(for some ε > 0) holds that, for any h ∈ H, (see Definition 2.18)

Gσ,H(Ḧ + h) ∈ [1− ε, 1 + ε] 1
det(Ḧ)

Lemma 9.5. Let N ∈ Z>0 and let Ḧ = 1
NBHZℓ, and let FH = 1

NBH [−1/2, 1/2)ℓ be a fundamental
domain of Ḧ in H. Let σ ≥

√
log(2n(1+N))

π · 4
N (which is twice as large as Equation (64) with

ε = 1/N).
Then

∆(Gσ,H ,Gσ,Ḧ) ≤ (1 + 8ℓσ)N−1/2.

Proof. Writing out the definition of ∆(Gσ,H ,Gσ,Ḧ) and Gσ,Ḧ(ḧ) = Gσ,H(ḧ)/Gσ,H(Ḧ), we have

∆(Gσ,H ,Gσ,Ḧ) =
∫

h∈F

∑
ḧ∈Ḧ

∣∣Gσ,H(ḧ+ h)− |F |−1G̈σ,Ḧ(ḧ)
∣∣dh

=|F |−1
∫

h∈F

∑
ḧ∈Ḧ

∣∣ |F | · Gσ,H(Ḧ + h)Gσ,H(ḧ+ h)
Gσ,H(Ḧ + h)

− Gσ,H(ḧ)
Gσ,H(Ḧ)

∣∣dh (65)
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By Lemma 2.17 and the text immediately after that lemma (which applies it to Ḧ), we see that,
by Definition 2.19, by the fact that |F | = det(Ḧ),

|F | · Gσ(Ḧ + h) ∈ [1− 1
N
, 1 + 1

N
]

Hence, we obtain that Equation (65) is at most

1
N

+ |F |−1
∫

h∈F

∑
ḧ∈Ḧ

∣∣∣ Gσ(ḧ+ h)
Gσ(Ḧ + h)

− Gσ(ḧ)
Gσ(Ḧ)

∣∣∣dh (66)

≤ 1
N

+ max
h∈F

∑
ḧ∈Ḧ

∣∣∣ Gσ(ḧ+ h)
Gσ(Ḧ + h)

− Gσ(ḧ)
Gσ(Ḧ)

∣∣∣ (67)

where we used Hölder’s inequality. Now we use a result from Pellet-Mary and Stehlé [PS21, Lemma
2.3], by seeing Gσ(ḧ+h)

Gσ(Ḧ+h) and Gσ(ḧ)
Gσ(Ḧ) as distributions and the sum as the total variation distance. We

will postpone the check of the premise of [PS21, Lemma 2.3] (η1/2(σ−1Ḧ) ≤ 1/2) to the end of this
proof. We obtain that Equation (67) is bounded by

1
N

+ 4
√
ℓ · σ ·max

h∈F

√
∥h∥ ≤ 1

N
+ 8ℓ · σ ·N−1/2 ≤ (1 + 8ℓσ)N−1/2,

where the last inequality follows from the definition of F .
It remains to show that η1/2(σ−1Ḧ) ≤ 1/2, i.e., η1/2(Ḧ) ≤ σ/2. By [MR07, Lemma 3.3] we

have that η1/2(Ḧ) ≤ η1/N (Ḧ) ≤
√

log(2n(1+N))
π · λℓ(Ḧ) ≤

√
log(2n(1+N))

π · 2
N ≤ σ/2. This finishes the

proof.

We can conclude that the discretization error in case of the Gaussian (since εG := N−1) is
bounded as follows.

∆(Gσ,H , G̈σ) ≤ N−1 + (1 + 8ℓσ)N−1/2 (68)

whenever σ ≥
√

log(2n(1+N))
π · 4

N .

9.5.3 The continuity error

Lemma 9.6. Let Ah (for h ∈ H) be the output distribution of Algorithm 2 on input g ·Mh · g′ for
fixed g, g′ ∈ GLr(KR). Let N ∈ Z>0 be the discretization parameter.

Then
C(G̈σ,A) ≤ 92n7/2 4

√
log(12r/ε0) cd(g)1/2 ·N−1/2,

where ε0 is part of the input of Algorithm 2.

Proof. Using the bound on the continuity error of Lemma 9.4, we have

C(G̈σ,A) ≤ max
ḧ∈Ḧfin

max
h∈FH

∥Aḧ+h −Aḧ∥1.

The distribution A is the output distribution of Algorithm 2 on input g ·Mh · g′, where g, g′ ∈
GLr(KR). Writing R for the output distribution of Algorithm 2, we can show that, by Lemma 3.7,
writing L = 92n3 4

√
log(12r/ε0),
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∥Aḧ+h −Aḧ∥1 = ∥R(g ·Mḧ+h · g
′)−R(g ·Mḧ · g

′)∥1
≤ L∥gMḧ+hg

′(gMḧg
′)−1 − I∥1/2 ≤ L∥gMḧ+hM

−1
ḧ
g−1 − I∥1/2

≤ L∥gMhg
−1 − I∥1/2 ≤ L cd(g)1/2∥Mh − I∥1/2

≤ L cd(g)1/2√n ·N−1/2 ≤ 92n7/2 4
√

log(12r/ε0) cd(g)1/2 ·N−1/2,

where the last inequality follows from, instantiating L = 92n3 4
√

log(12r/ε0) and the fact that
Mh − I = diag(eh/r − 1) and hence ∥Mh − I∥ ≤ |eh/r − 1|KR ≤

√
n/N .

9.5.4 Concluding all errors

Lemma 9.7. Let Ah (for h ∈ H) be the output distribution of Algorithm 2 on input g ·Mh · g′ for
fixed g, g′ ∈ GLr(KR) and input ε0 > 0.

Let N ∈ Z>0 be a discretization parameter, and let σ ≥ Ω(N−1/2) ≥
√

log(2n(1+N))
π · 4

N . Let Gσ,H

respectively G̈σ be the continuous respectively finite distribution described in Section 9.5.1, where
the finite distribution is instantiated with discretization parameter N ∈ Z>0 (and εG = N−1).

Then,
∥ E

x←Gσ,H

[Ax]− E
ẍ←G̈σ

[Aẍ]∥ ≤ N−1/2 ·O(n4 cd(g)1/2 log(1/ε0)1/4 + nσ).

Proof. This is just an application of Lemmas 9.5 and 9.6 and Equation (62), where we simplified
N−1/2(92n7/2 4

√
log(12r/ε0) cd(g)1/2+2+8dσ) into the big-O expressionN−1/2O(n4 cd(g)1/2 log(1/ε0)1/4+

nσ).

9.6 Discretization of the distribution over ∆∗t
9.6.1 The continuous and the finite distribution

Continuous distribution
Definition 9.8 (Component-wise diagonal distribution). For a fixed place ν, the diagonal distri-
bution D(ν)

diag on the polytope ∆∗t for t ∈ R>0 (and rank r) is defined by the following procedure.
1. (Sample a uniform element from ∆∗t , see also Section 8.4.3)

2. Sample r − 1 independent uniform variables on [0, 1] and sort them, yielding
(x1, . . . , xr−1) ∈ ∆0

3. If (x1, . . . , xr−1) /∈ S as in Equation (34), goto line 1.

4. If (x1, . . . , xr−1) ∈ S, put ai = t− 2txi for all i.

5. (Rejection sampling with respect to the diagonal density g (see Equation (33)))

6. With probability 1− ḡ(a1,...,ar−1)
M̄

reject and goto line 1, where

ḡ =
∏

1≤i<j≤r

sinh(ai − aj)[Kν :R] and M̄ := (4t)r(r−1) ≥ ∥ḡ∥∞

7. Output (a1, . . . , ar−1).
Definition 9.9 (Diagonal distribution). We denote by Ddiag the compound distribution over rank
r diagonal matrices over KR where each ν-component is independently distributed with D(ν)

diag.
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Finite distribution

Definition 9.10 (Component-wise discretized diagonal distribution). For a fixed place ν, the dis-
cretized diagonal distribution D̈(ν)

diag on the polytope ∆∗t for t ∈ R>0 (and rank r) and discretization
parameter N ∈ Z>0 is defined by the following procedure.

1. (Sample a uniform element from ∆∗t , see also Section 8.4.3)

2. Sample r − 1 independent uniform variables in [0, 1) ∩ 1
N Z; sort them, yielding

(x1, . . . , xr−1) ∈ ∆0

3. If (x1, . . . , xr−1) /∈ S as in Equation (34), goto line 1.

4. If (x1, . . . , xr−1) ∈ S, put ai = t− 2tyi for all i.

5. (Rejection sampling with respect to the diagonal density g (see Equation (33)))

6. Compute τ̃ ∈ 1
N2Z with |τ̃ − ḡ(a1,...,ar−1)

M̄
| < 1

2N2 , where

ḡ =
∏

1≤i<j≤r

sinh(ai − aj)[Kν :R] and M̄ := (4t)r(r−1) ≥ ∥ḡ∥∞.

7. With probability 1− τ̃ reject and goto line 1.

8. Output (a1, . . . , ar−1).

Definition 9.11 (Discretized diagonal distribution). We denote by D̈diag the compound distribu-
tion over rank r diagonal matrices over KR where each ν-component is independently distributed
with D̈(ν)

diag.

Help lemmas

Lemma 9.12. We have, for N > 64r2,

|S ∩ 1
N

Zr−1| ∈ [e
−8(r−1)2r

N , e
8(r−1)2r

N ] ·N r−1 · vol(S),

|∆0 ∩ 1
N

Zr−1| ∈ [e
−8(r−1)2r

N , e
8(r−1)2r

N ] ·N r−1 · vol(∆0).

Furthermore,

∣∣∣{x ∈ S ∩ 1
N

Zr−1 | x+ ( 1
2N ,

1
2N ]r−1 ̸⊆ S

}∣∣∣ ≤ 64(r − 1)2r

N
·N r−1 · vol(S)

Proof. We use Lemma A.7 with Λ = 1
N Zr−1, X = S − t′, q = 1, t = 0 and c = 4r(r−1)

N to obtain

|S ∩ 1
N

Zr−1| ∈ [e
−8(r−1)2r

N , e
8(r−1)2r

N ] ·N r−1 · vol(S). (69)

Since V0 = (− 1
2N ,

1
2N ]r−1 ⊆ c(S− t′) and c = 4r(r−1)

N (and similarly for X ⊃ S). Note that in order
to have 1 = q > 2c, we require N > 8r2.
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For the last statement, put c′ = 4r(r−1)
N note that for x ∈ (1− c′)[X − t′] + t′, we have

x+ V0 ⊆ (1− c′)[X − t′] + t′ + c′[X − t′] = X

Now, using Lemma A.7 with Λ = 1
N Zr−1, X = (1 − c′)[S − t′], q = 1, t = 0 and c = 8r(r−1)

N we
obtain ∣∣∣∣ 1

N
Zr−1 ∩ [(1− c)(X − t′) + t′]

∣∣∣∣ ∈ [e
−16(r−1)2r

N , e
16(r−1)2r

N ] ·N r−1 · (1− c)r−1 vol(S)

So, by (1− c)r−1 ≥ e−c(r−1) = e−16(r−1)2r/N , we deduce that∣∣∣∣ 1
N

Zr−1 ∩ [(1− c)(X − t′) + t′]
∣∣∣∣ ≥ e−32(r−1)2r/N ·N r−1 vol(S).

Using Equation (69), we obtain∣∣∣{x ∈ S ∩ 1
N

Zr−1 | x+ ( 1
2N ,

1
2N ]r−1 ⊊ S

}∣∣∣
≤ |S ∩ 1

N
Zr−1| −

∣∣∣∣ 1
N

Zr−1 ∩ [(1− c)(X − t′) + t′]
∣∣∣∣

≤ [e
8(r−1)2r

N − e
−32(r−1)2r

N ] ·N r−1 vol(S)

≤ 64(r − 1)2r

N
·N r−1 vol(S)

whenever 32(r−1)2r
N < 1/2, since e8x−e−32x < 64x for x < 0.4, which can be verified graphically.

Lemma 9.13. We have vol(∆∗t ) ≤ (2t)r−1

(r−1)! . Similarly, vol(S) ≤ 1
(r−1)! .

Proof. Write

W = {(xi)i ∈ Rr | 1 ≥ x1 ≥ x2 ≥ . . . ≥ xr−1 ≥ −1 and xr = −
r−1∑
i=1

xi}

. Then ∆∗t ⊆ t ·W . But one can prove that, by permuting the first r − 1 indices of S, that

⋃
σ

σ(W ) = {(xi)i ∈ Rr | xi ∈ [−1, 1] for i ∈ {1, . . . , r − 1} and xr = −
r−1∑
i=1

xi} =: U,

where the σ are all permutations of the first r − 1 indices. This is (up to sets of measure zero) a
disjoint union. The volume of the latter set equals 2r−1... One can see this by applying the linear
transformation ϕ that keeps the first r − 1 indices intact and maps xr to xr 7→ xr −

∑r−1
i=1 xi to

the set U ; we have that ϕ(U) = {(xi)i ∈ Rr | xi ∈ [−1, 1], xr = 0} has volume 2r. Hence, U itself
has volume 2r, too, since det(ϕ) = 1 (by the substitution rule). Hence, vol(W ) = 2r−1

(r−1)! . As a
consequence, vol(∆∗t ) ≤ (2t)r−1

(r−1)! . For the bound on the volume on S, note that the map yi = t−ai
2t

for very i ∈ {1, . . . , r − 1} linearly transforms ∆∗t into the set S.

9.6.2 The tail error and the discretization error

The tail error Since the space ∆∗t is a compact space, we choose T = 0, which leads to a tail
error of zero.
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The discretization error

Lemma 9.14. Let N ∈ Z>0 satisfy N ≥ O(de8r2 log(r)) and let t ≥ 1. Then

∆(Ddiag, D̈diag) ≤ N−1 ·O(de8r2 log(r))

Proof. This follows from the fact that each of the components of the distributions of Ddiag and
D̈diag are independent of each other. Applying Lemma 9.15, together with the fact that there are
at most d places ν, we obtain the claim.

Lemma 9.15. Let r ≥ 2, let N ≥ O(e8r2 log(r)), let t ≤ 1 and let ν some fixed place of K.
Let w = D(ν)

diag : ∆∗t → R denote the density function of the distribution as in Definition 9.9
and denote ẅ = D̈(ν)

diag : X → R for the probability function defined by the sampling process in
Definition 9.11, where X = [t · 1− 2t

N · Z
r−1] ∩∆∗t (where 1 is the all-one vector). Write, for every

ä ∈ X, Fä =
(
ä+ [− t

N ,
t

N )r−1) ∩∆∗t .
Then

∆(D(ν)
diag, D̈

(ν)
diag) =

∑
ä∈X

∫
a∈Fä

∣∣w(a)− ẅ(ä)
|Fä|

∣∣da ≤ N−1 ·O(e8r2 log(r)).

Proof. Note that |X| = [t · 1− 2t
N · Z

r−1] ∩∆∗t = ψ( 1
N Zr−1 ∩ S) with the linear bijection ψ sending

yi 7→ t− 2tyi for each component. Hence, by Lemma 9.12,

|X| = | 1
N

Zr−1 ∩ S| ∈ [e
−8(r−1)2r

N , e
8(r−1)2r

N ] ·N r−1 · vol(S)

which implies, together with N ≥ 8r10r2 ≥ 8r3 and Lemma 9.13, that |X| ≤ N r−1 · e
(r−1)! .

We have w(a) = g(a) = cḡ(a) (for all a ∈ ∆∗t ), as in Equation (33). We also would like to write
ẅ(ä) in terms of g(ä). By the procedure described in Definition 9.11 we can deduce that

ẅ(ä) ∈ c1 · c0 ·
[ ḡ(ä)
M̄
− 1
N2 ,

ḡ(ä)
M̄

+ 1
N2

]
, (70)

for some constants c1, c0 ∈ R>0. By the fact that ẅ is a probability function, we also have∑
ä∈X ẅ(ä) = 1, which gives means of estimating c1 · c0. As an Ansatz, we put c0 = M̄ ·c

Nr−1
0

, where
N0 = N/(2t) and where c ∈ R>0 is the same c as in the identity g = cḡ; this choice is made in
order to make c1 close to one. This then yields (using g = cḡ), and writing δ0 := c0/N

2,

ẅ(ä) ∈ c1
[ g(ä)
N r−1

0
− δ0,

g(ä)
N r−1

0
+ δ0

]
, (71)

Our proof will now consist of a few technical parts.
Claim (a):

∑
ä∈X

∫
a∈Fä

∣∣g(a)− g(ä)
∣∣da ≤ δ1 := r · Lip(g) · vol(∆∗t )

N0
(72)

Proof of claim (a): We show that
∑
ä∈X

|Fä|g(ä) ≈︸︷︷︸
error δ1

∫
a∈∆∗

t

g(a)da = 1
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by the Lipschitz-continuity of g. By splitting up the space ∆∗t into pieces Fä, we obtain, by the fact
that |a− ä| ≤ r/N0,∑

ä∈X

|Fä|g(ä)−
∫

a∈∆∗
t

g(a)da ≤
∑
ä∈X

∫
a∈Fä

|g(ä)− g(a)|da ≤
∑
ä∈X

∫
a∈Fä

Lip(g) · r
N0

da

≤ r · Lip(g) · vol(∆∗t )
N0

= δ1

Claim (b):

∑
ä∈X

∣∣∣∣∣|Fä|g(ä)− g(ä)
N r−1

0

∣∣∣∣∣ ≤ δ2 := 64(r − 1)2r

N
· ∥g∥∞ · (2t)r−1 vol(S). (73)

Proof of claim (b): We will show that∣∣∣∣∣∑
ä∈X

g(ä)
N r−1

0
−
∑
ä∈X

|Fä|g(ä)
∣∣∣∣∣ ≤ ∑

ä∈X

∣∣∣∣∣ g(ä)
N r−1

0
− |Fä|g(ä)

∣∣∣∣∣ ≤ δ2.

This inequality stems from the fact that, for most ä ∈ X holds that |Fä| = N
−(r−1)
0 (all of them,

except those at the edge of ∆∗t ).
Our goal is to count those ä for which |Fä| < N

−(r−1)
0 . By the last statement of Lemma 9.12

(considering the linear map between S and ∆∗t ), there are at most 64(r−1)2r
N ·N r−1 · vol(S) of these.

Hence,∣∣∣∣∣N−(r−1)
0

∑
ä∈X

g(ä)−
∑
ä∈X

|Fä|g(ä)
∣∣∣∣∣ ≤ ∥g∥∞ ·N−(r−1)

0 · 64(r − 1)2r

N
· vol(S) ·N r−1

≤ 64(r − 1)2r

N
· ∥g∥∞ · (2t)r−1 vol(S) = δ2,

where we use that N0 = N/(2t).
Claim (c): ∑

ä∈X

g(ä)
N r−1

0
∈ [1− δ1 − δ2, 1 + δ1 + δ2]. (74)

in particular ∑ä∈X
g(ä)

Nr−1
0
≤ 2 if δ1 + δ2 ≤ 1.

Proof of claim (c): By using part (a) and (b) we can deduce that

N
−(r−1)
0

∑
ä∈X

g(ä) ≈︸︷︷︸
error δ2

∑
ä∈X

|Fä|g(ä) ≈︸︷︷︸
error δ1

∫
a∈∆∗

t

g(a)da = 1

Claim (d):

|c1 − 1| ≤ δ3 := 2δ1 + 2δ2 + 2 · |X| · δ0. (75)

if δ1 + δ2 + |X| · δ0 ≤ 1/4. In particular, |c1| ≤ 2 in that case. This requires the assumption of N
being sufficiently large in the lemma.
Proof of claim (d): Combining Equation (71) with the law of total probability, we deduce

1 =
∑
ä∈X

ẅ(ä) ∈ c1 ·
[∑ä∈X g(ä)

N r−1
0

− |X| · δ0,

∑
ä∈X g(ä)
N r−1

0
+ |X| · δ0

]
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Hence we can deduce that |c−1
1 −N

−(r−1)
0

∑
ä∈X g(ä)| ≤ |X| · δ0. So, using part (c),

|c−1
1 − 1| ≤ δ1 + δ2 + |X| · δ0

and, inverting, assuming the right-hand size being smaller than 1/4, we obtain

|c1 − 1| ≤ 2δ1 + 2δ2 + 2 · |X| · δ0.

Conclusion: Combining these results, we obtain the following sequence of inequalities, assuming
that δ1 + δ2 ≤ 1 and δ1 + δ2 + c1 · |X| · δ0 ≤ 1/4.

∑
ä∈X

∫
a∈Fä

∣∣w(a)− ẅ(ä)
|Fä|

∣∣da =
∑
ä∈X

∫
a∈Fä

∣∣g(a)− ẅ(ä)
|Fä|

∣∣da (since w(a) = g(a))

≤
∑
ä∈X

∫
a∈Fä

∣∣g(a)− c1g(ä)
|Fä|N r−1

0

∣∣da+
∑
ä∈X

c1δ0 (by Equation (71))

≤
∑
ä∈X

∫
a∈Fä

∣∣g(a)− g(ä)
|Fä|N r−1

0

∣∣da+ δ3
∑
ä∈X

g(ä)
N r−1

0
+ 2δ0|X| (by Equation (75))

≤
∑
ä∈X

∫
a∈Fä

∣∣g(a)− g(ä)
|Fä|N r−1

0

∣∣da+ 2δ3 + 2δ0|X| (by Equation (74))

≤
∑
ä∈X

∫
a∈Fä

∣∣g(a)− g(ä)
∣∣da+ δ2 + 2δ3 + 2δ0|X| (by Equation (73))

≤δ1 + δ2 + 2δ3 + 2δ0|X| (by Equation (72))
≤6|X|δ0 + 5δ1 + 5δ2 (76)

where the last inequality follows from writing out the definition δ3 = 2δ1 + 2δ2 + 2 · |X| · δ0 and
using that |c1| ≤ 2.

We have δ0 = M̄c
Nr−1

0 N2 = M̄c(2t)r−1

Nr−1N2 and |X| ≤ N r−1 · e
(r−1)! . Hence, using that M̄c ≤ (16r2)r(r−1) ·(

4r2

t

)r−1
by Lemma 8.7,

6|X|δ0 ≤
6eM̄c(2t)r−1

(r − 1)!N2 ≤
6e(16r2)r(r−1) (8r2)r−1

(r − 1)!N2 ≤ N−2 ·O(e8r2 log(r)). (77)

By the fact that vol(∆∗t ) = (2t)(r−1) vol(S), and N0 = N/(2t) and subsequently the bound Lip(g) ≤
r2

t · (16r2)r(r−1) ·
(

4r2

t

)r−1
by Lemma 8.7, we obtain

5δ1 = 5r · Lip(g)(2t)r vol(S)
N

≤ 5r · (16r2)r(r−1)(8r2)r

(r − 1)!N ≤ N−1 ·O(e8r2 log(r)). (78)

For the last error, δ2, note that, ∥g∥∞ ≤ M̄c ≤ (16r2)r(r−1) ·
(

4r2

t

)r−1
by Lemma 8.7, we see that

5δ2 ≤
64(r − 1)2r

(r − 1)! ·N (16r2)r(r−1) ·
(
8r2
)r−1

≤ N−1 ·O(e8r2 log(r)).

This finishes the proof.
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9.6.3 The continuity error

Lemma 9.16. Let Ax (for x ∈ GLr(KR)) be the output distribution of Algorithm 2 on input9

g · ex · g′ for fixed g, g′ ∈ GLr(KR). Let N ∈ Z>0 be the discretization parameter.
Then

C(D̈diag,A) ≤ N−1/2 ·O(n5 · cd(g)1/2 · 4
√

log(1/ε0))

Proof. By using again that the ν-components of D̈diag are independent and commute, we can deduce
that

C(D̈diag,A) ≤ d ·max
ν
C(D̈(ν)

diag,A).

Hence, writing out the continuity error, using the bound of Lemma 9.4, with X = 2t
N Zr−1 ∩∆∗t and

Fẍ = (ẍ+ [− t
N ,

t
N ]) ∩∆∗t ,

C(D̈(ν)
diag,A) ≤ max

ẍ∈X
max
x∈Fẍ

∥Ax −Aẍ∥1

Writing R for the output distribution of Algorithm 2, we see that (writing ex′ for the diagonal on
the not-ν-component), using Lemma 3.7,

∥Ax −Aẍ∥1 = ∥Rgexex′ g′ −Rgeẍex′ g′∥1 ≤ L · ∥gexex′
g′(geẍex′

g′)−1 − I∥1/2

≤ L · ∥gex−ẍg−1 − I∥1/2 ≤ cd(g)1/2 · L · ∥ex−ẍ − I∥1/2

≤ 2 · cd(g)1/2 · L ·
√
r

N1/2 .

The last inequality follows from the fact that ∥x−ẍ∥∞ ≤ 2/N whenever x ∈ Fẍ (since ẍ ∈ 2t
N Zr−1

and t ≤ 1); and the fact that ea − 1 ≤ 2a for a < 1. Instantiating L = 92n3 4
√

log(1/ε0) from
Lemma 3.7 yields the claim.

9.6.4 Run time

Lemma 9.17. Let N ≥ O(e8r2 log(r)) Then the discretized diagonal distribution D̈diag (Defini-
tion 9.11) can be sampled from using bit complexity O(d · e8r2 log(r) logN).

Proof. We show that the procedure described in Definition 9.10 can be run with bit complexity
O(e8r2 log(r) logN). Then repeating this for each place ν (which there are at most d) yields the
claim.

We now focus on the algorithm in Definition 9.10. The first (inner) loop is about sampling a
uniform element from ∆∗t and consists of lines 2 and 3; the acceptance probability is |S∩ 1

N
Zr−1|

|∆0∩ 1
N
Zr−1| .

By Lemma 9.12, we can estimate this acceptance probability by

|S ∩ 1
N Zr−1|

|∆0 ∩ 1
N Zr−1|

∈ [e
−16(r−1)2r

N , e
16(r−1)2r

N ] vol(S)
vol(∆0)

Hence, using the lower bound on vol(S)
e vol(∆0) from Equation (35) in Section 8.4.3, and assuming

N ≥ 16r3, we deduce

|S ∩ 1
N Zr−1|

|∆0 ∩ 1
N Zr−1|

≥ vol(S)
e vol(∆0) ≥ e

−1 · (2(r − 1))−(r−1).

9We denote by ex with a diagonal matrix x ∈ GLr(KR) the element of GLr(KR) with diagonal diag(exi )i, where
exi is also component-wise over all places of K.
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Hence, using that sampling a uniform element in [0, 1) ∩ 1
N Z costs time O(logN), we obtain that

this first loop takes about O((2(r − 1))−(r−1) log(N)) bit operations.
For the second (outer) loop, the acceptance probability is at least (using the notation ä and X

from Lemma 9.15)

− 1
N2 + 1

|S ∩ 1
N Zr|

∑
ä∈X

ḡ(ä)
M̄
≥ − 1

N2 + 1
|S ∩ 1

N Zr|
1
cM̄

∑
ä∈X

g(ä)

≥ − 1
N2 + N r−1

0
cM̄ |S ∩ 1

N Zr|
. (79)

where the last lower bound comes from Equation (74) (where we need to assume N ≥ O(e8r2 log(r))).
We note that from N ≥ 8r3 and Lemma 9.13, we see that |S∩ 1

N Zr−1| ≤ N r−1 · e
(r−1)! . And, using the

bound cM̄ ≤ (16r2)r(r−1) ·
(

4r2

t

)r−1
by Lemma 8.7, we can continue lower bounding Equation (79)

by (using N0 = N/(2t))

≥ − 1
N2 + (r − 1)!/e · (2t)−(r−1)

cM̄
≥ − 1

N2 + (r − 1)!
e · (16r2)r(r−1) · (8r2)r−1

≥ − 1
N2 +O(e−8r2 log(r)) ≥ O(e−8r2 log(r)),

by the assumption on N . Hence, the outer loop running time is O(e8r2 log(r)), yielding a total running
time of O(e8r2 log(r) logN).

9.6.5 Concluding all errors

Lemma 9.18. Let Ax (for x ∈ GLr(KR)) be the output distribution of Algorithm 2 on input10

g · ex · g′ for fixed g, g′ ∈ GLr(KR). Let N ∈ Z>0 be the discretization parameter that satisfies
N ≥ O(de8r2 log(r))

Then Then,

∥ E
x←Ddiag

[Ax]− E
ẍ←D̈diag

[Aẍ]∥ ≤ N−1/2 ·O(de8r2 log(r) + n5 cd(g)1/2 · 4
√

log(1/ε0)).

Proof. This follows from Lemmas 9.14 and 9.16.

9.7 Discretization of the uniform distribution in SUr(KR)
9.7.1 The continuous and the finite distribution

The continuous distribution

Definition 9.19 (Angle distribution). We denote Θ(r) = [0, 2π] × [0, π]r−1 and we define on it a
density function by the following rule: ρ(r)(θ) := ∏r

j=1 ρj(θj) for θ = (θ1, . . . , θr) ∈ Θ(r), where

ρj(θ) :=


1√
π

Γ( j+1
2 )

Γ( j
2 )

sinj−1(θ) if j > 1
1

2π if j = 1
.

10We denote by ex with a diagonal matrix x ∈ GLr(KR) the element of GLr(KR) with diagonal diag(exi )i, where
exi is also component-wise over all places of K.
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Definition 9.20 (Uniform distribution on SUr). As in Definition 8.6, we define the uniform dis-
tribution on SUr(R) by the distribution of Uθ ∈ SUr(R), the real unitary matrix associated with
θ defined by the procedure in Lemma 8.5, where θ ∈ ∏r

j=2 S
j−1(R) is for each component Sj−1 is

sampled according to the (continuous) angle distribution as in Definition 9.19.
Analogously, we define the uniform distribution on SUr(C) by the distribution of Uθ ∈ SUr(C),

the complex unitary matrix associated with θ defined by the procedure in Lemma 8.5, where θ ∈∏r
j=1 S

2j−1(R) is for each component S2j−1 is sampled according to the discrete angle distribution
as in Definition 9.19.

Both are just the uniform distribution over SUr(R) and SUr(C) respectively.

The finite distribution

Definition 9.21 (Discretized angle distribution). For N ∈ Z>0, we denote

Θ̈(r) = ([0, 2π] ∩ 2π
N

Z)× ([0, π]r−1 ∩ π

N
Zr−1)

and we define on it a density function ρ̈(r) by the following procedure:

1. For each i ∈ {1, . . . , r} do:

2. If i = 1, sample z1 = θ1
2π from [0, 1) ∩ 1

N Z uniformly.

3. If i > 1,

4. Sample zi = θi
π from [0, 1) ∩ 1

N Z uniformly.

5. Compute qi ∈ 1
2N2Z such that 1

2N2 > qi − 1√
π

Γ( i+1
2 )

Γ( i
2 ) ≥ 0.

6. Sample u← 1
N2Z ∩ [0, qi] uniformly.

7. Compute ρ̃i ∈ 1
2N2Z such that − 1

2N2 < ρ̃i − ρi(πzi) ≤ 0

8. If u < ρ̃i proceed (accept θi), otherwise go to line 4.

Definition 9.22 (Discretized uniform distribution on SUr). We define the discretized uniform
distribution on SUr(R) by the distribution of Uθ ∈ SUr(R), the real unitary matrix associated with
θ defined by the procedure in Lemma 8.5, where θ ∈ ∏r

j=2 S
j−1(R) is for each component Sj−1 is

sampled according to the discrete angle distribution as in Definition 9.21.
Analogously, we define the discretized uniform distribution on SUr(C) by the distribution of

Uθ ∈ SUr(C), the complex unitary matrix associated with θ defined by the procedure in Lemma 8.5,
where θ ∈ ∏r

j=1 S
2j−1(R) is for each component S2j−1 is sampled according to the discrete angle

distribution as in Definition 9.21 (see also Definition 8.6).

Lemma 9.23 (Efficiency of the finite angle distribution). For N ≥ π3r2 + 2, there exists an
algorithm that computes a sample from the discrete angle distribution (Definition 9.21), assuming
we can sample perfect bits. This algorithm runs in time poly(logN, r).

Proof. Going over the lines of Definition 9.21, we show that this is an efficient algorithm (without
regarding the rejection probability). We finish the proof by showing that the algorithm has only a
polynomially small (in r) acceptance probability.
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Since sampling uniformly in [0, 1) ∩ 1
N Z can be efficiently done in time poly(logN), we deduce

that lines 1 – 4 can be handled efficiently. In line 5 we approximate 1√
π

Γ( i+1
2 )

Γ( i
2 ) within an error of

1/N2 which can be done in time poly(logN). In line 6, again a uniform sample is drawn, which
can be done in time poly(logN). In line 7, ρi(πzi) is being approximated within an error range of
1/N2, which can be done in time poly(logN). In line 8 two rationals u, ρ̃i ∈ 1

2N2Z are compared,
which can be done in time poly(logN).

For the acceptance probability, we assume that r > 1, otherwise the proof is trivial. We compute
the acceptance probability in a single loop over i (starting at line 3), we can deduce that it is at
least

q−1
i

∑
zi∈[0,1)∩ 1

N
Z

(
ρi(πzi)−

1
N2

)
≥ 1√

r

 ∑
zi∈[0,1)∩ 1

N
Z

ρi(πzi)−
1
N

 (80)

since we have qi ≤ 1√
π

Γ( i+1
2 )

Γ( i
2 ) + 1

2N2 ≤
√
r.

As ρj is πr2-Lipschitz, we can deduce that∣∣∣∣∣∣∣
∑

zi∈[0,1)∩ 1
N
Z

ρi(πzi)−
∫

ti∈[0,π]
ρi(ti)dti

∣∣∣∣∣∣∣
≤
∫

ti∈[0, π
N

]

∑
zi∈[0,π)∩ π

N
Z
|ρi(zi + ti)− ρi(zi)|dti

≤
∫

ti∈[0, π
N

]

∑
zi∈[0,π)∩ π

N
Z
πr2tidti = Nπr2 · π

2

2N2 = π3r2

2N .

Hence, using that
∫

ti∈[0,π] ρi(ti)dti = 1 and Equation (80), we obtain a lower bound on the accep-
tance probability of

1√
r

(
1− (1 + π3r2/2)

N

)
≥ 1

2
√
r
,

which is inversely polynomial in r.
Hence, the entire algorithm runs in time poly(logN, r).

9.7.2 The tail error and the discretization error

For this distribution, it is nicer to write Bθ = AUθ
where Uθ is defined by the procedure in

Lemma 8.5.
Recall that SUr(KR) ≃ ∏

ν SUr(Kν) and that an element in SUr(Kν) can be encoded by a
sequence of angles as in

Angν := {(θ(1)
1 , (θ(2)

1 , θ
(2)
2 ), . . . , (θ(k)

1 , θ
(k)
2 . . . , θ

(k)
k ), . . . , (θ(r)

1 , . . . , θ(r)
r ))},

where each tuple is distributed as ρ(j) as in Definition 9.19, which yields a distribution DAngν over
Angν . The precise sizes of the tuples depend on whether ν is real or complex.

We put Ang = ∏
ν Angν and DAng as the compound distribution. The discrete distribution D̈Ang

is defined as the distribution in which each of the angles in Angν are distributed via the discrete
angle distribution.
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The tail error We choose the tail to be

T = {θ ∈ Ang | there exists i such that θi ≤ 2N−1/2}.

By the law of total probability, the fact that Ang has at most 2dr2 “angular components” and
subsequently by the 2πr2-Lipschitz constant of the probability distributions ρ(i)(θ(i)), we obtain

T (Ang) =
∫

θ∈T
DAng(θ)dθ ≤ 2dr2 max

i∈{1,...,r}

∫
θ(i)∈T (i)

ρ(i)(θ(i))dθ(i)

≤ 2dr2(2πr2) · 2N−1/2 ≤ N−1/4 ·O(n5), (81)

where T (j) = {θ(j) | there exists i such that θ(j)
i ≤ 2N−1/2}.

The discretization error

Lemma 9.24. Writing DAng for the uniform distribution over SUr(KR) and D̈Ang for the dis-
cretized version of it (via the angle distributions), we have

∆(DAng, D̈Ang) ≤ 16π2dr4

N
,

for N > 8π2r2.

Proof. Note that, by the triangle inequality, by discretizing the ν-components of DAng (which are
DAngν ) component by component, and subsequently discretizing the components of the distribu-
tion over Angν (which are ρ(i) for i ∈ {1, . . . , r}) component by component (which is possible by
independence), we have

∆(DAng, D̈Ang) ≤ d ·max
ν

∆(DAngν , D̈Angν ) ≤ d
r∑

i=1
∆(ρ(i), ρ̈(i)).

The claim follows by Lemma 9.25. Note that in this upper bound we included the tail space T , but
since that can only increase the estimate, that does not matter.

Lemma 9.25. For any r0 ∈ Z>0 and N > 8π2r2
0, the discretized angle distribution (Definition 9.21)

and the angle distribution (Definition 9.19) satisfy the following property:

∆(ρ(r0), ρ̈(r0))
∑

θ̈(r0)∈Θ̈(r0)

∫
θ(r0)∈F (r0)

∣∣∣∣∣ρ(r0)(θ(r0))− ρ̈(r0)(θ̈(r0))
vol(F (r0))

∣∣∣∣∣ dθ ≤ 16π2r3
0

N
, (82)

where F (r0) = [0, 2π
N )× [0, π

N )r0−1.

Proof. From the sample procedure in Definition 9.21 follows that the sampling probabilities of the
components θ̈(r0)

i of θ̈(r0) are independent, as well as those of θ(r0). We just write the corresponding
probability functions with ρ̈(r0)

i and ρ(r0)
i . By the trick ab−a′b′ = (a−a′)b+(b−b′)a′ (and applying

this inductively to ρ(r0) = ∏
i ρ

(r0)
i and ρ̈(r0) = ∏

i ρ̈
(r0)
i ) we obtain

∑
θ̈(r0)∈Θ̈(r0)

∫
θ(r0)∈F (r0)

∣∣∣∣∣ρ(r0)(θ(r0))− ρ̈(r0)(θ̈(r0))
vol(F (r0))

∣∣∣∣∣ dθ (83)

≤
r∑

i=1

∑
θ̈

(r0)
i ∈aiπ·([0,1)∩ 1

N
Z)

∫
θ

(r0)
i ∈[0,aiπ/N)

∣∣∣∣∣ρ(r0)
i (θ(r0)

i + θ̈
(r0)
i )− ρ̈

(r0)
i (θ̈(r0)

i )
vol([0, aiπ/N))

∣∣∣∣∣ (84)
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where ai = 2 if i = 1 and ai = 1 otherwise.
Now it is true, by the rejection sampling mechanism of Definition 9.21, that ρ̈(r0)

i (θ̈(r0)
i ) ∈

ci[ρ(r0)
i (θ̈(r0)

i )− 2N−2, ρ
(r0)
i (θ̈(r0)

i )] where ci ∈ R>0 is a constant only depending on i, satisfying

c−1
i ∈ [

∑
θ̈

(r0)
i

(ρ(r0)
i (θ̈(r0)

i )− 2N−2),
∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i )] ⊆ [−2N−1 +
∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i ),
∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i )],

where θ̈(r0)
i ranges over aiπ · ([0, 1) ∩ 1

N Z) (with ai = 2 if i = 1 and ai = 1 otherwise).
Since ρ(r0)

i is π · r2
0-Lipschitz, we can deduce that∣∣∣∣∣∣∣

∫
θ

(r0)
i

ρ
(r0)
i (θ)dθ − aiπ

N

∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i )

∣∣∣∣∣∣∣ ≤
∑
θ̈

(r0)
i

∫
θ

(r0)
i ∈[0,aiπ/N)

|ρ(r0)
i (θ̈(r0)

i + θ
(r0)
i )− ρ(r0)

i (θ̈(r0)
i )|dθ(r0)

i

≤ 2π2r2
0

N

Hence, since
∫

θ
(r0)
i

ρ
(r0)
i (θ)dθ = 1, we thus have

c−1
i ∈ [−2N−1 +

∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i ),
∑
θ̈

(r0)
i

ρ
(r0)
i (θ̈(r0)

i )] = [−2N−1 + N

aiπ
− 2π2r2

0,
N

aiπ
+ 2π2r2

0].

Which means that aiπ/(ciN) ∈ [−2aiπN
−2 − 2π2r2

0N
−1 + 1, 2π2r2

0N
−1 + 1]. Choosing N > 8π2r2

0
we surely have ciN

aiπ
∈ [1− 4π2r2

0
N , 1 + 4π2r2

N ] and therefore,

ρ̈
(r0)
i (θ̈(r0)

i )
vol([0, aiπ/N)) ∈

ciN

aiπ
· [ρ(r0)

i (θ̈(r0)
i )− 2N−2, ρ

(r0)
i (θ̈(r0)

i )].

Thus, ∣∣∣∣∣ ρ̈
(r0)
i (θ̈(r0)

i )
vol([0, aiπ/N)) − ρ

(r0)
i (θ̈(r0)

i )
∣∣∣∣∣ ≤ 8π2r2

0
N

Using again the Lipschitz constant, we therefore deduce∣∣∣∣∣ ρ̈
(r0)
i (θ̈(r0)

i )
vol([0, aiπ/N)) − ρ

(r0)
i (θ(r0)

i + θ̈
(r0)
i )

∣∣∣∣∣ ≤ 16π2r2
0

N
.

Plugging this into Equation (84), we obtain a bound of

∑
θ̈(r0)∈Θ̈(r0)

∫
θ(r0)∈F (r0)

∣∣∣∣∣ρ(r0)(θ(r0))− ρ̈(r0)(θ̈(r0))
vol(F (r0))

∣∣∣∣∣ dθ ≤ 16π2r3
0

N
.
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9.7.3 The continuity error

Lemma 9.26. Let Aθ (for θ ∈ Ang) be the output distribution of Algorithm 2 on input g · Uθ · g′
for fixed g, g′ ∈ GLr(KR). Let N ∈ Z>0 be the discretization parameter.

Then the continuity error satisfies

C(D̈Ang,A) ≤ N−1/4 ·O(n5 cd(g)1/2 · 4
√

log(1/ε0).

Proof. We have, by Lemma 9.4, writing ¨Ang for the support of D̈Ang,

C(D̈Ang,A) ≤ max
θ̈∈ ¨Ang

max
θ∈Cθ̈

∥Aθ −Aθ̈∥1.

Since we may omit the tail space T , we can assume, by Lemma 9.27, that ∥Uθ − Uϑ∥2 ≤ 2π2r3d ·
N1/2∥θ−ϑ∥. Since ∥θ̈−θ∥ ≤ 4π

N , we can deduce, by Lemma 3.7, that, writing L = 92n3 4
√

log(1/ε0),

∥Aθ −Aθ̈∥1 ≤ L∥gUθg
′(gUθ̈g

′)−1 − I∥1/2 ≤ L · cd(g)1/2 · ∥Uθ − Uθ̈∥
1/2

≤ L · cd(g)1/2 ·
(
2π2r3d ·N1/2∥θ − ϑ∥

)1/2

≤ L · cd(g)1/2 · 2πr3/2d1/2N1/4∥θ − ϑ∥1/2

≤ N−1/4 ·O(n5 cd(g)1/2 · 4
√

log(1/ε0)).

Lemma 9.27. Let θ = (θ1, . . . , θm) ∈ Ang satisfy θi ≥ 2 ·N−1/2 for all i ∈ {1, . . . ,m}. Then, for
any ϑ ∈ Ang,

∥UθU
−1
ϑ − I∥2 = ∥Uθ − Uϑ∥2 ≤ 2π2r3d ·N1/2∥θ − ϑ∥,

where U is defined as in Lemma 8.5.

Proof. We prove this first for the space Angν , after which it, by the triangle inequality, can be
shown for the whole space Ang as well. We write τ = 2N−1/2.

Write Angν = Θ(r) × · · · ×Θ(1). We have the maps

Θ(r) × · · · ×Θ(1) f−→ Sr × · · · × S1 g−→ SUr(R),

and we write Uθ = gf(θ) ∈ SUr(R) for θ ∈ Θ := Θ(r) × · · · ×Θ(1).
Clearly, Uθ = Uθ(r) · · ·Uθ(1) , where θ(j) ∈ Θ(j), and where Uθ(j) is described by the Householder

transformation that sends yj := fj(θ(j)) ∈ Sj to ej . This Householder transformation is defined,
writing w = yj−ej

∥yj−ej∥ by the rule Uθ(j) := I − 2ww⊤.
We have, since Uθ, Uϑ ∈ SUr(R) are unitary, that ∥UθU

−1
ϑ − I∥2 = ∥Uθ − Uϑ∥2; indeed,

∥Uθ − Uϑ∥2 = ∥(UθU
−1
ϑ − I)Uϑ∥2 ≤ ∥UθU

−1
ϑ − I∥2∥Uϑ∥2 ≤ ∥UθU

−1
ϑ − I∥2

= ∥(Uθ − Uϑ)U−1
ϑ ∥2 ≤ ∥Uθ − Uϑ∥2∥U−1

ϑ ∥2 = ∥Uθ − Uϑ∥2.

Hence, by repeated application of the trick ab− a′b′ = (a− a′)b+ (b− b′)a′, and the fact that the
two-norm of a unitary matrix equals one, we find,

∥UθU
−1
ϑ − I∥2 = ∥Uθ − Uϑ∥2 = ∥Uθ(r) · · ·Uθ(1) − Uϑ(r) · · ·Uϑ(1)∥2 ≤

r∑
j=1
∥Uθ(j) − Uϑ(j)∥2
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Now, writing Uθ(j) = I − 2vv⊤ and Uϑ(j) = I − 2ww⊤ (with unit vectors v = yj−ej

∥yj−ej∥ , w = y′
j−ej

∥y′
j−ej∥ ,

with yj = fj(θ(j)) and y′j = fj(ϑ(j))) we have, using that ∥A⊤∥2 = ∥A∥2,

∥Uθ(j) − Uϑ(j)∥2 = 2∥ww⊤ − vv⊤∥2 = 2∥w(w − v)⊤ + [v(w − v)⊤]⊤∥2
≤ 2∥w(w − v)⊤∥2 + 2∥v(w − v)⊤∥ ≤ 4∥w − v∥.

Assuming that ∥yj−ej∥ > τ or ∥y′j−ej∥ > τ and writing d = y′j−yj , and using the reverse triangle
inequality |∥a∥ − ∥b∥| ≤ ∥a− b∥, we have that

4∥w − v∥ = 4
∥∥∥∥∥(yj − ej)∥yj − ej + d∥ − (yj − ej + d)∥yj − ej∥

∥yj − ej∥∥y′j − ej∥

∥∥∥∥∥
= 4∥(yj − ej)(∥yj − ej + d∥ − ∥yj − ej∥)− d∥yj − ej∥∥

∥yj − ej∥∥y′j − ej∥

≤ 4∥yj − ej∥∥d∥+ ∥d∥∥yj − ej∥
∥yj − ej∥∥y′j − ej∥

≤ 4
∥yj − y′j∥
∥y′j − ej∥

≤ 4τ−1∥yj − y′j∥.

Since this inequality is symmetric in yj and y′j , we can just assume ∥yj−ej∥ > τ . Since the function
yj = fj(θ(j)) is π2r2-Lipschitz, we immediately deduce,

∥Uθ(j) − Uϑ(j)∥2 ≤ 4τ−1∥yj − y′j∥ ≤
4π2r2

τ
∥θ(j) − ϑ(j)∥,

provided that yj = fj(θ(j)) satisfies ∥yj − ej∥ > τ . Note that, for the map fj : Θ(j) → Sj , we have
xj = fj(θ(j)

j ) = cos(θ(j)
j ); hence, for sure, if θ(j)

j > 2
√
τ , we have ∥yj − ej∥ > 1− cos(2

√
τ) > τ for

τ < 1.
So,

∥UθU
−1
ϑ − I∥2 = ∥Uθ − Uϑ∥2 ≤

4π2r3

τ
∥θ − ϑ∥,

for θ = (θ(r), . . . , θ(1)) with θ
(j)
j > 2

√
τ for all j ∈ {1, . . . , r}.

For general θ ∈ Ang (instead of just Angν) we arrive at the similar claim, but with an additional
factor d, which finishes the proof.

9.7.4 Run time

Lemma 9.28. There exists an algorithm sampling from ¨Ang within time poly(logN, dr).
Proof. By Lemma 9.23 one can sample a single angle component (note that the components are
independent) from ¨Ang within polynomial time in logN and r. Hence, since Ang has at most 2dr2

angular components, we obtain at the claim of this lemma.

9.7.5 Concluding all errors

Lemma 9.29. Let Aθ (for θ ∈ Ang) be the output distribution of Algorithm 2 on input g · Uθ · g′
for fixed g, g′ ∈ GLr(KR). Let N ∈ Z>0 be the discretization parameter satisfying N ≥ 8π2r2 + 2

Then,

∥ E
x←DAng

[Ax]− E
ẍ←D̈Ang

[Aẍ]∥ ≤ N−1/4n5O(cd(g)1/2 · 4
√

log(1/ε0)).

Proof. This follows from Equation (81) and lemmas 9.24 and 9.26 and simplifying the expression.
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10 Conclusion
We finally piece together all ingredients and prove Theorem 1, our main theorem on the worst-case
to average-case reduction of SIVP.

Recall from Section 2.3.2 the invariant measure µ on the space Xr = Xr(K) of module lattices
of rank r over the number field K. Recalling the definition of RoundLat from Section 3, define the
average-case distribution as

D = RoundLat(µcut)
where µcut is the Haar-measure induced distribution on Xr, restricted (hence the name “cut”) to
module lattices that are α-balanced, with α = O(B · d · cK) = exp (O(d log d+ log|∆K |)), where B
is as in line 1 in Algorithm 5 and where cK = 1 + ΓK

√
r·d

2 with ΓK ≤ |∆K |1/d.
Note that, by Theorem 4, the distributions µ and µcut are close in statistical distance, and

that (by Proposition 3.1) RoundLat rounds its input lattice to a very close lattice. This gives a
justification as to why RoundLat(µcut) can be seen as a sound discrete average-case distribution.

Algorithm 5 Reducing a fixed (4d · cK)-balanced instance of SIVP over module lattices to a
random instance of SIVP over module lattices.
Require:

• A pseudo-basis (B, I) of a rank r module lattice L0,
• An oracle O solving γ′-SIVP for RoundLat(µcut) with probability p = 2−o(n).

Ensure: With probability 1− 2−Ω(n), a solution to γ-SIVP for L0, with γ = polyr(|∆K |1/d, d) · γ′
1: Put B = exp (Cr(d log d+ log|∆K |)) for a large enough constant Cr > 0 depending on r, t = 1

and σ = 1/d2.
2: Instantiate the discretization parameter N as in Equation (54):

log(N) = O(n2 logn+ n · size(B) + n2 · log(B) + n log |∆K |+ log(1/ε0) + log(1/ε)).

3: repeat
4: Compute a module lattice L1 = g · L0 using Algorithm 4 on input L0 with parameters t

and σ as above, and where every distribution occurring is discretized as in Section 9 with
discretization parameter N , with ε0 := 2−Θ(n) and ε = 2−Θ(n) as in Proposition 9.1.

5: Sample uniformly random p from the set P of all prime ideals with norm at most B (using
[BDP+20, Lemma 2.2]) and take a random sublattice L2 of L1 satisfying L2/L1 ∼= OK/p
using Algorithm 1.

6: Sample L3 ← RoundLat(L2), where RoundLat is the algorithm given in Proposition 3.1, with
error parameter ε0 as above and balancedness parameter α = O(BdcK).

7: Apply the oracle O on L3.
8: until the output of O is of the form {v(3)

1 , . . . , v
(3)
n } and satisfies ∥v(3)

j ∥ ≤ γ′ · O(n · |∆K |
1

2d ) ·
det(L3) 1

n for all j.
9: Use the transformation Y of Proposition 3.1(iii) to compute v(2)

j := Y · v(3)
j for all j.

10: Put v(1)
j := v

(2)
j ∈ L2 ⊆ L1 for all j.

11: Put v(0)
j := g−1v

(1)
j for all j, to get {v(0)

1 , . . . , v
(0)
n } ⊂ L0 with g as in Line 4.

12: return (v(0)
1 , . . . , v

(0)
r ).

Proof of Theorem 1. By Theorem 7, it is sufficient to reduce γ-SIVP for (4d · cK)-balanced lattices
to γ′-SIVP for lattices sampled from D. We use here that cr−1

K ·(1+d/2(rd+1)/2)r−1 from Theorem 7
is polyr(|∆K |1/d, d), since ΓK ≤ |∆K |1/d (see Lemma 2.12).
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Given a (4d · cK)-balanced module lattice L0, we randomize it using the framework from Sec-
tion 4, but with discretized underlying distributions, as in Section 9. After that, we apply RoundLat
(from Proposition 3.1) and feed the randomized and rounded module lattice to the oracle solving
γ′-SIVP for RoundLat(µcut). This yields an output for SIVP for this rounded and randomized mod-
ule lattice. By undoing the “rounding” and the “randomization”, we get an SIVP solution for the
original lattice L0. This process is described in a precise manner in Algorithm 5.

For this reduction in Algorithm 5 to be sound, we need to prove three things. One, we need
to show that the distribution of L3 in line 6 is statistically o(p)-close to RoundLat(µcut) in order
for the oracle in line 7 to succeed with probability Ω(p). Two, we need to upper bound the loss in
quality of the output SIVP solution caused by the randomization (and de-randomization). Three,
we need to bound the expected number of queries to the oracle, and show that every step can be
performed in polynomial time in the size of the input (where we assume r = O(1)).

(1) Statistical closeness. Because the final oracle solving the random instance has success
probability at least 2−o(n), it suffices to allow a statistical error of 2−Ω(n). In this proof, we will
instantiate with parameters aiming for a statistical error of 2−Θ(n) = 2−Θ(d) as r = O(1). Note that
most of the ingredients of the proof can handle arbitrary errors ε > 0, consuming additional time
log(1/ε).

Let z = (B, I) be the input pseudo-basis for L0, and we use the notation fz, φz and Dz as in
Section 9 (see the discussion before Proposition 9.1).

Note that, by construction, L3 in line 6 is distributed according to RoundLat(TP(Dz)). Our
strategy is to bound the distance ∥RoundLat(TP(Dz))−RoundLat(TP(φz))∥1, as well as ∥TPφz−µ∥1
and ∥µ − µcut∥1 by 2−Ω(n). Assuming this, by the data processing inequality (Proposition 2.22)
applied to RoundLat and the triangle inequality, this reasonably yields

∥RoundLat(TP(Dz))− RoundLat(µcut)∥1 ≤ 2−Ω(n).

First, ∥RoundLat(TP(Dz)) − RoundLat(TP(φz))∥1 is bounded by ε0 + ε = 2−Ω(n), by Proposi-
tion 9.1 and our choices of ε0 and ε in the algorithm. Next, ∥µ − µcut∥1 satisfies the same bound
by Theorem 4. Indeed, a µ-random module lattice L satisfies

λK
r (L)/λK

1 (L) ≤ λn(L)/λ1(L)≪ n|∆K |1/d

with probability at least 1− 2Ω(n log r), and on the other hand α = Ω(n · |∆K |1/d).
Next, we bound the statistical distance between TPφzµRiem and µ, which is

1
2

∫
Xr

|TPφz · µRiem(Xr)− 1| dµ = 1
2
∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥
1
,

where the L1-norm is now with respect to µRiem. Applying Cauchy–Schwarz, we have∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥
1
≤
√
µRiem(Xr) ·

∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥
2

≤ exp(C(d+ log|∆K |))
∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥
2
, (85)

for some constant C > 0 depending on r, using Lemma 2.37.
To finally apply Theorem 3, we rework its statement using the assumption that r = O(1) and

using that log x = O(xδ) for any δ > 0. Let κd = κσ = κ/d2 to simplify notation and note that
κ ≥

√
d/σ = d5/2 in the theorem (we make a valid choice of κ below), so that κd ≥

√
d ≫ 1.
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For the first term, we trivially bound ru ≤ d and ru(log ru)3 = o(d2), so we may assume that
max(ru(log ru)3, 1/σ) = 1/σ = d2. We also bound

C1 ≪ B−1/4(d log κd + log|∆K |).

For the second, denote by α(z) the balancedness of L0. Thus, α(z) ≪ dcK ≪ d3/2|∆K |1/d (using
Lemma 2.12 again), so that

C2 ≤ exp(O(d log d+ log|∆K |)).

Let
κ2

d = κ2/d = max
(
d5/2, C(d+ log|∆K |) + d log d+ d

)
.

Since κd is polynomial in d and log|∆K |, we have that d log κd + log|∆K | = O(d log d + log|∆K |).
All in all, applying again some trivial bounds to simplify expressions, we have∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥2

2
≪ exp(2d log d− 2κ2

d) +B−1/2 exp(C ′ · (d log d+ log|∆K |))

for some constant C ′ > 0 depending on r.
We plug this last bound into (85) and use simplifying bounds as above, such as log x ≤ x, and

that √x+ y ≤
√
x+√y for x, y > 0 to arrive at∥∥∥TPφz − µRiem(Xr)−11Xr

∥∥∥
1
≪ e−d = 2−Ω(n).

We use here that our choice of κd implies that

exp(C(d+ log|∆K |)) · exp(d log d− κ2
d) ≤ e−d

and that
B1/4 ≥ exp

(
C ′(d log d+ log|∆K |)/2 + C(d+ log|∆K |) + d

)
.

This is possible with a minimal

B = exp (Or(d log d+ log|∆K |)) ,

where the implied constant depends on r.

(2) Bound on the loss in SIVP-quality. The processing of the SIVP-vectors happens in lines
8, 9, 10 and 11.

We prove in part (1) of this proof that L3 follows a distribution that is 2−Ω(n)-close to RoundLat(µcut).
Since module lattices L sampled from µ satisfy λn(L) ≤ O(n|∆K |

1
2d ) · det(L) 1

n by Theorem 4 with
probability at least 1 − 2−Ω(n log r), surely module lattices L sampled from µcut satisfy the same
inequality (even with a higher probability).

So, with probability 1−2−Ω(n log r), we have that det(L3) 1
n ≤ λn(L3) ≤ O(n · |∆K |

1
2n ) ·det(L3) 1

n ,
and hence line 8 suffices to check whether the oracle is successful, though it might allow for an
extra slack of O(n · |∆K |

1
2n ) = polyr(d, |∆K |1/d), which is acceptable for our use-case. There-

fore, since p = 2−o(n), we may assume with probability 1 − 2−Ω(n) that after line 8, the solution
{v(3)

1 , . . . , v
(3)
n } satisfies ∥v(3)

j ∥ ≤ γ′ · poly(d, |∆K |1/d) · λn(L3). Additionally, we can assume that
λn(L3) ≤ O(n|∆K |

1
2d ) · det(L3) 1

n .
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By Proposition 3.1(iii), we see that det(L3) 1
n ≤ 2 det(L2) 1

n and that applying Y only changes
vector lengths by a factor O(1). Therefore, {v(1)

1 , . . . , v
(1)
n } satisfy, for all j ∈ {1, . . . , n},

∥v(1)
j ∥ ≤ O(n|∆K |

1
2d ) · γ′ · det(L3)

1
n ≤ O(n|∆K |

1
2d ) · γ′ · det(L2)

1
n

≤ O(n|∆K |
1

2d ) ·B1/n · γ′ · det(L1)
1
n

≤ polyr(d, |∆K |
1
d ) · γ′ · det(L1)

1
n

where the last inequality holds by our choice of B in line 1 of Algorithm 5. Since g has conditioning
number e2n2σ+2t (see the proof of Proposition 9.1), by the very same arguments as those of Propo-
sition 3.1(iii), multiplying by g−1 changes the determinant and the lengths of vectors by at most
O(1). Hence, we have, for all j ∈ {1, . . . , n},

∥v(0)
j ∥ ≤ polyr(d, |∆K |

1
d ) · γ′ · det(L0)

1
n ≤ polyr(d, |∆K |

1
d ) · γ′ · λn(L0),

where the last inequality holds by the fact that det(L0)1/n ≤ (∏n
j=1 λj(L0))1/n ≤ λn(L0). So,

indeed, the algorithm solves γ-SIVP for L0 with γ = polyr(d, |∆K |
1
d ) · γ′.

(3) Number of queries and efficiency. Line 4 uses Algorithm 4 with discretization, which
can be computed efficiently according to Proposition 3.1. Line 5 uses the algorithm described in
[BDP+20, Lemma 2.2] as well as Algorithm 1, which run both within polynomial time in the size
of their input (Lemma 2.5). Line 6 uses Algorithm 2, which runs within polynomial in the size of
the input. But for this algorithm to be applicable on L2, we need to show that L2 is α-balanced for
α = O(B ·d · cK). By similar arguments as earlier in the proof, g does not change lengths of vectors
much, and hence, since L0 is (4d · cK)-balanced, we can conclude that L1 is O(d · cK)-balanced. As
L2 is a sub-lattice of L1 of index at most 2B, we deduce, by Lemma 2.15, that L2 is O(B · d · cK)-
balanced, which is what was required to show. Since lines 9, 10 and 11 are mere linear operations
applied to vectors, these lines all run in polynomial time in the size of the input.

For the expected number of queries, note that the distribution of L3 is o(p)-statistically close
to RoundLat(µcut), hence we may assume that the oracle O gives a sound output with probability
O(p). So the expected number of queries is O(p−1). For the total reduction (which includes the cusp
and the flare part) the number of queries is multiplicatively increased by polyr(log |∆K |), which
yields the total expected number of queries.

A Appendix
The lemmas in Appendices A.1 to A.3 are almost literally from [BPW25], and are stated here for
sake of self-containedness.

A.1 On the matrix norm of an inverse basis

Lemma A.1. Suppose B = (a1, . . . ,an) ∈ Rn×n is a square real matrix and a basis of a lattice
L ⊂ Rn. Then

∥B−1∥2 ≤ nn/2+1 · λ1(L)−1 ·

 n∏
j=1

∥bj∥
λj(L)

 ,
where B = (b1, . . . ,bn).
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Proof. For j ∈ {1, . . . , n}, put Cj = ∥bj∥
λj(Λ) ≥ 1. We have that B−1 = 1

det Badj(B). Also, adj(B)ij is
defined by the determinant of the minor of B where the i-th row and j-th column are deleted. By
the Hadamard bound and subsequently by Minkowski’s second theorem (see, e.g., [MG02, Theorem
1.5]),

|adj(B)ij | ≤
∏
k ̸=i

∥bk∥ =
∏
k ̸=i

Ck · λk(L)

≤ nn/2 · (
∏
k ̸=i

Ck) · det(L)/λi(L) ≤ nn/2(
n∏

k=1
Ck) · det(L)/λ1(L).

Observing that det(B) = det(Λ), we obtain

∥B−1∥2 ≤ ∥B−1∥F ≤
1

det(B) · n ·max
ij
|adj(B)ij | ≤ nn/2+1 · (

n∏
k=1

Ck)/λ1(L).

A.2 On the weight of discrete Gaussians on strict sublattices

We show in the following two lemmas that the discrete Gaussian distribution over a lattice with an
arbitrary center point has no heavy weight on any strict sublattice. This fact is used that we can
compute a sample from a discrete Gaussian conditioned on the event that it is linearly independent
to earlier samples.

Lemma A.2. Writing ρσ(x) := e−π∥x∥2/σ2, we have that for any lattice Λ ⊆ V (where V is a
Euclidean space), any σ > 0 and any t, w ∈ V , we have

ρσ(Λ + t+ w) + ρσ(Λ + t− w) ≥ 2ρσ(w)ρσ(Λ + t),

where ρσ(Λ + t) = ∑
ℓ∈Λ ρσ(ℓ+ t).

Proof. This lemma is a simple generalization of [HR14, Claim 2.10], and we follow the same strategy:

ρσ(Λ + t+ w) + ρσ(Λ + t− w) =
∑

x∈Λ+t

(
e−π∥x+w∥2/σ2 + e−π∥x−w∥2/σ2)

= 2e−π∥w∥2/σ2 ∑
x∈Λ+t

(
e−π∥x∥2/σ2 cosh(2π⟨x,w⟩/σ2)

)
≥ 2ρσ(w)ρσ(Λ + t),

where the last inequality follows from cosh(α) ≥ 1 for any real α.

Lemma A.3. Let Λ ⊆ V be a lattice and V an Euclidean space, t ∈ V and σ > c ·
√
n · λn(Λ) for

some c > 0. Then, for any strict sublattice Λ′ ⊊ Λ

Pr
x←GΛ+t,σ

[x ∈ Λ′ + t] = ρσ(Λ′ + t)
ρσ(Λ + t) ≤

1
1 + e−πc−2 .

Proof. Let Λ′ ⊊ Λ be a sub-lattice of Λ and let w ∈ Λ \ Λ′. Then, by Lemma A.2,

ρσ(Λ + t) ≥ ρσ(Λ′ + t) + ρσ(Λ′ + t+ w) + ρσ(Λ′ + t− w)
2

≥ (1 + ρσ(w))ρσ(Λ′ + t).
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Writing GΛ+t,σ for the Gaussian distribution on Λ + t with parameter σ, we have,

Pr
x←GΛ+t,σ

[x ∈ Λ′ + t] = ρσ(Λ′ + t)
ρσ(Λ + t) ≤

1
1 + ρσ(w) .

Note that the set {ℓ ∈ Λ | ∥ℓ∥ ≤
√
nλn(Λ)} contains a HKZ-basis of Λ [LLS90]. Hence, for any

Λ′ ⊊ Λ there must exist w ∈ Λ\Λ′ with ∥w∥ ≤
√
nλn(Λ).

So there exists w ∈ Λ \ Λ′ such that ∥w∥ ≤
√
n · λn(Λ) < σ/c, hence ρσ(w) ≥ exp

(
−πc−2),

proving the lemma.

A.3 On the number of lattice points in a convex measurable volume

Lemma A.7, which shares some similarities with [PP21, §4.2], provides means to estimate the
number of lattice elements in a convex measurable volume. This estimate is essential in Section 9
about discretization. To prepare for the proof of this lemma, we will need some facts on Minkowski
sums of sets.

Definition A.4. Let V be a Euclidean vector space. For two sets X,Y ⊆ V , we define the
Minkowski sum X ⊞ Y as follows.

X ⊞ Y = {x + y | x ∈ X,y ∈ Y }.

For c ∈ R>0 we denote by cX the set

cX = {c · x | x ∈ X}.

Lemma A.5. Let V be a Euclidean vector space and let r, s > 0 and let X ⊆ V be a convex volume.
Then

(rX) ⊞ (sX) = (r + s)X.

Proof. We start with inclusion to the right. Suppose y ∈ (rX) ⊞ (sX), i.e., y = rx + sx′ where
x,x′ ∈ X. Then y

r+s = rx+sx′

r+s ∈ X, since it is a weighted average of two points in X and X is
convex. So y ∈ (r+s)X. Inclusion to the left holds because y ∈ (r+s)X means that y = (r+s)x =
rx + sx ∈ (rX) ⊞ (sX).

Lemma A.6. Let V be a Euclidean vector space, let r > 0, let X,Y ⊆ V be sets and let S ⊆ V be
a symmetric set, i.e., x ∈ S ⇔ −x ∈ S. Then

(X ⊞ S) ∩ Y ⊆ [X ∩ (Y ⊞ S)] ⊞ S.

Proof. Suppose x + s = y ∈ (X ⊞ S) ∩ Y . Then x = y − s ∈ X ∩ (Y ⊞ S), so y = x + s ∈
[X ∩ (Y ⊞ S)] ⊞ S.

Lemma A.7. Let V be a n-dimensional Euclidean vector space, let Λ ⊆ V be a full-rank lattice,
let X ⊆ V be a convex measurable volume for which V0 ⊆ cX for some c ∈ R>0, where V0 is the
(origin-centered) Voronoi cell of Λ. Then, for all t, t′ ∈ V and all q > 2c,

|(Λ + t) ∩ q(X + t′)| ∈ [e−2nc/q, e2nc/q] · q
n · vol(X)
det(Λ) ,

where q(X + t′) = {q · (x+ t′) | x ∈ X} is the scaling of the (translated) set X + t′ by q ∈ R>0.
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Proof. As |(Λ + t) ∩ (qX + qt′)| = |(Λ + t− qt′) ∩ qX|, we just assume, without loss of generality,
that t′ = 0. Note that V0 ⊆ cX, and that X is convex. So, by Lemma A.5, we have (qX) ⊞ V0 ⊆
(qX) ⊞ (cX) = (q + c)X. Similarly, (q − c)X ⊞ V0 ⊆ qX. Therefore

[(Λ + t) ∩ qX] ⊞ V0 ⊆ (q + c)X. (86)

Note that V0 is symmetric and (Λ + t) ⊞ V0 = V , the whole vector space. So, by Lemma A.6 and
(q − c)X ⊞ V0 ⊆ qX,

(q − c)X = [(Λ + t) ⊞ V0] ∩ (q − c)X (87)
⊆ [(Λ + t) ∩ ((q − c)X ⊞ V0)] ⊞ V0 ⊆ [(Λ + t) ∩ qX] ⊞ V0 (88)

By Equations (86) and (88) and the fact that V0 is a fundamental domain of Λ with volume det(Λ),
we obtain

(q − c)n vol(X) ≤ |(Λ + t) ∩ qX| · det(Λ) ≤ (q + c)n vol(X).

Dividing by det(Λ) and using the estimate e−2nc/q ≤ (1 − c/q)n ≤ (1 + c/q)n ≤ e2nc/q (note that
q > 2c) we arrive at the final claim.

A.4 Gaussian tails

Lemma A.8. Let V be a real vector space of dimension n and s > 0. For any ε ∈ (0, 1], it holds
that Prx←GV,s

(∥x∥ ≥ s ·
√

2n · log(2n/ε)) ≤ ε.

Proof. Let B be an orthonormal basis of V and write x = (x1, · · · , xn) the coordinates of x in
this basis. Then the random variables xi are linearly independent Gaussian distributions over R
with standard deviation s. Moreover, for any t > 0, if ∥x∥ ≥ t, there should exist some i such that
|xi| ≥ t/

√
n. Hence, we obtain

Pr
x←GV,s

(
∥x∥ ≥ t

)
≤ n · Pr

x←GR,s

(
|x| ≥ t/

√
n
)
≤ 2n · exp

(
− t2

2n · s2

)
,

where the first inequality comes from the union bound and the last one comes from Chernoff’s
bound. Taking t = s ·

√
2n · log(2n/ε) leads to the desired result.

A.5 Sizes of elements

Lemma A.9 (Rules on sizes of elements).

1. For mj ∈ Z, size(∏k
j=1mj) ≤∑k

j=1 size(mj) and size(∑k
j=1mj) ≤ log2(k) + maxj(size(mj)).

2. For qi ∈ Q, size(∏k
i=1 qi) ≤

∑k
i=1 size(qi) and size(∑k

i=1 qi) ≤ 3∑k
j=1 size(qj).

3. For γj ∈ K, we have size(∑j γj) ≤ 3∑j size(γj). Additionally,

size(
k∏

j=1
γj) ≤ k · 3d2 · (⌈log |∆K |⌉+

k∑
j=1

size(γj)).

4. For fractional OK ideals a, ai of K, we have size(a) ≤ d2 size(N(a)) and size(∏k
i=1 ai) ≤

d2∑k
i=1 size(ai).
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Proof. 1. We have size(mn) = 1+⌈log2(|m|)+log2(|n|)⌉ ≤ size(m)+size(n). This generalizes to
larger products. Assume without loss of generality that m1 is the largest (in absolute value)
among the mj . Then we have

size(
k∑

j=1
mj) = 1 + ⌈log2 |

k∑
j=1

mj |⌉ ≤ 1 + ⌈log2(k · |m1|)⌉ ≤ size(k) + size(m1).

2. We have size(a
b ·

c
d) = size(ac)+size(bd) ≤ size(a)+size(c)+size(b)+size(d) ≤ size(a

b )+size( c
d),

(by part (i)) which generalizes to larger products.
Write qj = aj

bj
, and write

q =
k∑

j=1
qi =

k∑
j=1

aj

bj
=
∑k

j=1

(
aj
∏

t̸=j bt

)
∏k

j=1 bj

Then, by definition and by part (i),

size(q) ≤ size(
k∏

j=1
bj) + size(

k∑
j=1

(aj

∏
t̸=j

bt)) ≤
k∑

j=1
size(bj) + max

j
size(aj

∏
t̸=j

bt) + size(k).

≤ 2
k∑

j=1
size(qj) + size(k) ≤ 3

k∑
j=1

size(qj).

3. Note that the size of γ = ∑k
j=1 γj is dictated by its rational coefficients in the OK-basis

(β1, . . . , βd), which are just the rational coefficients of γj added together. Hence, size(γ) ≤
3∑k

j=1 size(γj) by part (ii).

Writing γ = ∑d
i=1 giβi and δ = ∑d

i=1 diβi, we obtain

γ · δ = (
∑

i

giβi)(
∑

i

diβi) =
∑
ij

gidjβiβj =
d∑

k=1

∑
ij

gidj [βiβj ]k

βk,

where [βiβj ]k ∈ Z denotes the coefficient in Q of βiβj in terms of the basis element βk,
i.e., βiβj = ∑d

k=1[βiβj ]kβk. By the fact that βiβj can be written in the (β1, . . . , βd)-basis with
integer coefficients bounded by

√
d|∆K |d+2, i.e., |[βiβj ]k| ≤

√
d|∆K |d+2 ≤ |∆K |3d (this follows

from the assumptions in the beginning of Section 2.3.3) for all i, j, k, we see that, by part (ii),

size(γδ) =
d∑

k=1
size

∑
ij

gidj [βiβj ]k

 ≤ 3d ·
∑
i,j

(size(gidj) + 3d⌈log |∆K |⌉)

≤ 3d3⌈log |∆K |⌉+ 3d
∑
i,j

(size(gi) + size(dj)) ≤ 3d3(⌈log |∆K |⌉+ size(γ) + size(δ))

For larger products, by dividing the products in two in a binary fashion, we obtain, by
induction,

size(
k∏

j=1
γj) ≤ k · 3d2 · (⌈log |∆K |⌉+

k∑
j=1

size(γj)).
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4. For any integral ideal a ⊆ OK , we have that size(a) ≤ d2 size(N(a)), since a is represented by
its HNF generating matrix (with entries in Z), of which the product of the diagonal entries
must equal N(a). Hence, by the HNF properties, each of the coefficients must be bounded
in absolute value by N(a). For fractional ideals, the scaling of the generating matrix of a
can be chosen to be the denominator of N(a). Hence, also for fractional ideals a holds that
size(a) ≤ d2 size(N(a)). By the fact that the product of the diagonals equals the norm, we
also have size(N(a)) ≤ size(a).
It follows then that size(∏k

i=1 ai) ≤ d2∑k
i=1 size(ai).
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List of symbols

Symbol Description
a, b, c, . . . Ideals of the ring of integers OK of a number field K

AK The adèles of the number field K

B(t) The ball of radius t in SLr(KR), with respect to the the distance notation
ρ (page 25)

B Bound in the definition of the set of all prime ideals P(B) whose norm
is bounded by B (page 31)

B Basis part in (B, I), with B ∈ Kr×r, a pseudo-bases of a module-lattice
M , sometimes also just a basis in Qr×r

d Degree d = [K : Q] of the number field K

G· Either discrete Gaussian or continuous Gaussian distribution, depending
on the subscript (page 20)

H The hyperplane where the logarithmic embedding of the units O×K lives
in (page 23)

I Ideal part in (B, I), with I = (a1, . . . , ar), where (B, I) is a pseudo-basis
of a rank r module-lattice M

K Number field of degree d = [K : Q] and discriminant ∆K

L Generally, a lattice
Lp(·) The space of Lp-integrable functions over the specified space
M A module (lattice) of rank r over the field K

n The dimension n = d · r of the module lattices occurring in this work
over R

N(·) The absolute norm of elements of ideals of the field K

O(·), o(·) Landau’s big-O and small-o notation
OK The ring of integers of K
O×K The unit group of K
p A prime ideal of K
P,P(B) A set of prime ideals of K, generally P = P(B), the set of all prime

ideals with norm bounded by B
r The rank as a module over K, of modules (module lattices) occurring

in this work
r1 The number of real embeddings of K
r2 The number of complex embeddings of K
ru The rank of the unit group O×K
RoundLat,RoundPerf

Lat The algorithm rounding a module lattice to a close rational module
lattice (page 32)

size(·) The number of bits required to represent the algebraic object at hand
(page 15)
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Symbol Description
t A parameter in the continuous randomization (or initial distribution) of

the input module lattice of the random walk method of this paper (see
also B(t)) (page 25)

Tp The Hecke operator corresponding to uniform averaging over submod-
ules N ⊂M such that at M/N ∼= OK/p (page 29)

TP , TP(B) The Hecke operator corresponding to averaging over all Tp with p ∈ P
or P(B) (page 31)

Xr, Xr(K) The space of similarity classes of modules lattices over K of rank r
(page 15)

Xr,a The component of the space of similarity classes of modules lattices over
K of rank r, dictated by the ideal class of a (page 15)

Yr The space of invertible r× r matrices over K up to rotation and scaling
(page 23)

α Balancedness parameter for a module lattice (page 18)
ΓK The maximum of the quotient between the outermost successive minima

λn(I)/λ1(I) over all ideal lattices I of the number field K (page 18)
∆K The discriminant of the number field K

ε A small error parameter in [0, 1], often indicating the failure probability
of an algorithm

ε0 The closeness of the RoundLat-algorithm to the perfect distribution
RoundPerf

Lat (page 33)
λj(Λ) The j-th successive minimum of the lattice Λ with respect to the 2-norm

(page 18)
λ

(∞)
j (Λ) The j-th successive minimum of the lattice Λ with respect to the ∞-

norm (page 18)
λK

j (M) The j-th successive K-minimum of the module lattice M with respect
to the canonical norm (page 18)

µ The Haar measure on Xr (page 15)
µcut The ‘cut’ Haar measure on Xr (page 101)
µRiem The Riemannian measure on Xr (page 22 and page 15)
ρσ The Gaussian function x 7→ e−π∥x∥2/σ2 (page 20)
σ The deviation for the Gaussian function or the (discrete) Gaussian dis-

tribution
φz The initial distribution on Xr by ‘folding’ the distribution fz (page 42)
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