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Abstract. We present the first algorithm for computing class groups and unit
groups of arbitrary number fields that provably runs in probabilistic subex-

ponential time, assuming the Extended Riemann Hypothesis (ERH). Previous

subexponential algorithms were either restricted to imaginary quadratic fields,
or relied on several heuristic assumptions that have long resisted rigorous anal-

ysis.

The heart of our method is a new general strategy to provably solve a
recurring computational problem in number theory (assuming ERH): given

an ideal class [a] of a number field K, sample an ideal b ∈ [a] belonging to

a particular family of ideals (e.g., the family of smooth ideals, or near-prime
ideals). More precisely, let S be an arbitrary family of ideals, and SB the

family of B-smooth ideals. We describe an efficient algorithm that samples

ideals b ∈ [a] such that b ∈ S · SB with probability proportional to the density
of S within the set of all ideals.

The case where S is the set of prime ideals yields the family S · SB of
near-prime ideals, of particular interest in that it constitutes a dense family

of efficiently factorable ideals. The case of smooth ideals S = SB regularly

comes up in index-calculus algorithms (notably to compute class groups and
unit groups), where it has long constituted a theoretical obstacle overcome

only by heuristic arguments.
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1. Introduction

Many number theoretic algorithms resort to heuristic assumptions for their analy-
sis. This issue concerns even the most fundamental problems of the field, such as
the computation of class groups in subexponential time. This persistent need for
heuristic assumptions often stems from a step of this form: given an ideal class [a]
of a number field K, find a representative b ∈ [a] belonging to a particular family
S of ideals (for instance, the family of smooth ideals). It is relatively simple to
design an algorithm for this task: sample a random representative b ∈ [a], and
hope that it belongs to the desired family S. One then heuristically argues that
the probability that b ∈ S should be proportional to the density of S. For instance,
the subexponential density of smooth ideals heuristically implies that one can find
smooth representatives in subexponential time. This is the heart of state-of-the-art
algorithms to compute class groups, unit groups, or generators of principal ideals in
number fields [10, 17, 51], and has long constituted a theoretical obstacle overcome
only by heuristic arguments (with the exception of quadratic fields [38]).

In the first part of this paper, we propose a general strategy to solve these ideal
sampling tasks rigorously and efficiently, assuming only the extended Riemann
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hypothesis (henceforth, ERH). In the second part, we apply this new technique to
present the first algorithm for computing class groups and unit groups of arbitrary
number fields that provably runs in probabilistic subexponential time. These two
parts of the paper can be read essentially independently.

Part 3 consists of roughly two subjects: an slightly extended analysis and an
application of a known provable variant of the BKZ algorithm for ideal lattices
[39], which is used in Part 1 for lattice basis reduction; and an extended analysis
of the algorithm of Buchmann, Pohst and Kessler [19, 18] which is required for
the post-processing part in the class group and unit group computation in Part 2.
These extra analyses are necessary to apply these known results to the specific
use-cases of the present work.

Main result of Part 1: sampling ideals. Let S be an arbitrary family of
ideals, and SB the family of B-smooth ideals (i.e., products of prime ideals of norm
at most B). In the first part of the paper, we describe an efficient algorithm that
samples b ∈ [a] such that b ∈ S · SB with probability proportional to the density
of S. The set SB is used to randomize the input, and B can be chosen as small as
(log |∆K |)O(1), where ∆K is the discriminant of the fieldK. This result is formalized
in Theorem 9.5, page 47, and allows to work with arbitrary ray class groups, and
to restrict SB to ideals whose prime factors fall in a prescribed subgroup.

For concreteness, Theorem 1.1 below is a specialization of Theorem 9.5 to the
simplest case, without ray nor subgroups. Here, δS [r

n] is the local density of S
(Definition 2.11), i.e., the proportion of ideals of norm about rn that belong to S.
Theorem 1.1 (ERH). Assuming ERH, there is a randomized algorithm A such
that the following holds. Let K be a number field, with degree n, discriminant ∆K ,
and let an LLL-reduced basis of the ring of integers OK be given. Let a ⊆ OK be
an integral ideal. Let ε ∈ R>0, let b ≥ 2 be an integer, and let r ≥ 48 · b2n/b · n7/2 ·
|∆K |

3
2n · N (a)

1
n .

Given the above data, the algorithm A outputs β ∈ a such that (β) · a−1 ∈ S · SB
with probability at least δS [r

n]/3− ε, for some smoothness bound B = (log |∆K |+
log log(1/ε))O(1) and for any set S of integral ideals. Furthermore, the algorithm
runs in expected polynomial time in log |∆K |, in log(N (a)), in log(1/ε), in bb, and
in the length of the input.

Remark 1.2. Note that the algorithm is described in a slightly different way than
the above discussion: given a, we find β ∈ a such that βa−1 ∈ S · SB. The ideal
βa−1 is in the inverse class of a, so up to an inversion, this problem is equivalent
to the ideal sampling problem discussed above.

Technique. The folklore strategy to solve ideal sampling tasks is the following. The
input ideal a can be seen as a lattice, via the Minkowski embedding. One may find
a reasonably short basis of a (for instance, by means of LLL [52]), which then allows
one to repeatedly sample reasonably short random elements β ∈ a, until the ideal
b = βa−1 belongs to the desired family S. One then typically argues (heuristically!)
that the probability of success is proportional to the density of S.

To obtain a rigorous sampling algorithm, we proceed in two steps. First, we prove
that a fairly straightforward strategy as above indeed has the desired probability of
success when the input a is treated as a random ideal lattice with uniformly random
Arakelov class. More precisely, we prove in Theorem 7.1 that there is a reasonably
small box B (in the embedding space) such that the expected density (over the
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randomness of a) of elements β ∈ a ∩ B such that βa−1 ∈ S is proportional to the
density of S.

Second, we deal with arbitrary input a by randomizing its Arakelov class via a
generalization of the random walks introduced in [14]. Concretely, the input a is
multiplied by random ideals of small prime norm (the discrete part of the random
walk), and is randomly distorted according to some Gaussian distribution (the
continuous part of the random walk). We prove in Corollary 6.5 that the result is
close to uniformly distributed in the Arakelov ray class group. The discrete part of
the random walk introduces small prime factors, hence our method samples ideals
in S · SB instead of S. In all applications we are aware of, S = S · SB .
Main result of Part 2: computing class groups and unit groups. The case
of smooth ideals S = SB regularly comes up in index-calculus algorithms, such as
the aforementioned algorithms for computing class groups or unit groups. In these
cases, this sampling task is not the only source of heuristics, so significantly more
work is required to obtain a rigorous algorithm. This is the object of the second
part of the article.

Let K be a number field of degree n and discriminant ∆K . The determination
of the structure of its class group Cl(K), together with a system of fundamental
units, is one of the main problems of computational number theory [22, p. 217]. It
has long been believed that this task can be solved in probabilistic subexponential
time. Such algorithms have been described and analyzed under a variety of heuristic
assumptions [17, 10]. Despite decades of investigation, only imaginary quadratic
fields have been amenable to a rigorous analysis [38], assuming ERH. The history
of class group computation is discussed in further detail in Section 12.2. In Part 2
of this paper, we present the first general algorithm for this problem that provably
runs in probabilistic subexponential time, assuming ERH. We use the classical L-
notation

Lx(α, c) = exp
(
(c+ o(1))(log x)α(log log x)1−α

)
,

and Lx(α) = Lx(α,O(1)). We prove the following theorem.

Theorem 1.3 (ERH). There is a probabilistic algorithm which, on input a number
field K of degree n and discriminant ∆K and an LLL-reduced basis of its ring of
integers, computes its ideal class group and a compact representation of a funda-
mental system of units, and runs in expected time polynomial in the length of the
input, in L|∆K |(1/2), in Lnn(2/3), and in min(ρK , L|∆K |(2/3+ o(1))), where ρK is
the residue at 1 of the Dedekind zeta function ζK .

It has been conjectured since Buchmann’s 1988 heuristic algorithm [17] that this
problem can be solved in subexponential time L|∆K |(1/2) for any family of fields

of fixed degree. Theorem 1.3, together with the upper bound ρK = (log |∆K |)O(n)

(see Equation (5) below), implies this conjecture, assuming ERH.
Then, it was conjectured by Biasse and Fieker’s 2014 algorithm [10] that this

problem can be solved in subexponential time even for varying degree. Again,
Theorem 1.3 implies this conjecture, assuming ERH. However, Biasse and Fieker
conjectured a complexity as in Theorem 1.3 where the quantity ρK is replaced with
Lnn(2/3). In our analysis, the quantity ρK arises from the best known estimates
on the density of bounded smooth ideals. It seems ρK should appear in the same
way in the heuristic complexity of [10], unless one expects a better bound on the
density of smooth ideals.
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Computing S-units. While we stated our main result as an algorithm for computing
units and class groups in Theorem 1.3, our algorithm actually does slightly more
than that: it computes the so-called Log-S-unit lattice for any set S of prime ideals.
It is well known that such an algorithm for S-units can be used to compute the
class group and the unit group. Combined with Theorem 17.7, which allows to
decompose any integral ideal as a product of prime ideals in a sufficiently large set
S, this can also be used to solve other algorithmic problems, such as the principal
ideal problem, or the class group discrete logarithm problem.

Main results of Part 3: Detailed analyses of provable lattice techniques.
Part 3 consists of an extended analysis of two already known results in lattice theory;
namely the existence of a BKZ-algorithm variant [39] that has a provable running
time, and the existence of an LLL-algorithm variant (called the Buchmann-Pohst-
Kessler algorithm [19, 18]) that has a relatively well numerical stability, so that it
can be used on ‘approximated’ bases. The extended analysis consists, in the case
of the BKZ-algorithm, mainly of making explicit the techniques described in [39,
Section 3, ‘Cost of BKZ”] and applying this BKZ-variant to ideal lattices. In the
case of the Buchmann-Pohst-Kessler algorithm [19, 18], the present work required
an extended analysis because in our use-case (in contrast to theirs) some lattice
invariants like the rank and the determinant are unknown, thus requiring a slight
extension to their algorithm.

The BKZ-variant a with provable running time is used in Part 1 for lattice basis
reduction of ideal lattices, and the extended algorithm of Buchmann, Pohst and
Kessler is required for the post-processing part in the class group and unit group
computation in Part 2. Note that both of these algorithms being non-heuristic and
having a provable running time is essential for the main results of the present work:
a rigorous analysis of a common number-theoretic technique (Part 1) and a rigorous
algorithm for computing the unit group and the class group that has a provable
upper bound on the run time (Part 2).

Further applications. Sampling smooth ideals is a task that regularly arises in
computational number theory. In Part 2, we focus on the problem of class group and
unit group computation, but it is more generally a common component of index-
calculus algorithms, like the general number field sieve for integer factorization or
the computation of discrete logarithms in finite fields. We do not investigate this
direction further in the present paper.

Applying the method of Part 1 to the case where S is the set of prime ideals
allows one to sample in the family S ·SB of near-prime ideals, of particular interest
in that it constitutes a dense family of efficiently factorable ideals. Therefore, our
sampling method provides a rigorous way to transform any ideal a into an equivalent
ideal b of known factorization. Obtaining such factorable ideals (or elements) is a
key step in algorithms to compute power residue symbols. Specifically, it allows to
perform the ‘principalization step’ in [16, §5.2] efficiently. The first author of the
present article has developed this idea in his PhD dissertation [12], applying the
main result of Part 1 to construct the first polynomial time algorithm to compute
power residue symbols.

Related work. The aforementioned difficulties of ideal sampling and class group
computation have already been overcome in the special case of imaginary quadratic
number fields. Building on a result of Seysen [70], Hafner and McCurley [38] gave
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a provable algorithm for computing class groups and unit groups of imaginary
quadratic fields, assuming ERH. This case distinguishes itself by the finiteness of
the unit group and the existence of reduced representatives of ideal classes. This
algorithm exploits random walks in the class group to find B-smooth principal
ideals. The idea of performing a random walk in the class group was reused in the
algorithms of Buchmann [17] and Biasse and Fieker [10], in a heuristic way. Rather
than random walks in class groups, our method exploits the much richer Arakelov
(ray) class groups. Random walks in Arakelov class groups were first studied in [14]
to prove the random self-reducibility of computational problems in ideal lattices.
Their technique to study the convergence of these walks plays a key role in the
present paper. We note that Schoof [69] rephrased Buchmann’s algorithm in terms
of Arakelov theory, and we borrow from his formalism.

2. Preliminaries

2.1. Notation. We denote by N,Z,Q,R,C the natural numbers, the integers, the
rationals, the real numbers, and the complex numbers respectively. The notation
log refers to logarithms in base e, whereas the notation log2 denotes logarithms
in base 2. For finite sets X we denote by |X| the number of elements in X. For
infinite sets X with a well-defined volume, we use both notations Vol(X) = |X| for
the volume of X. The transpose of a matrix M is denoted by M⊤. For a ring R,
we write R× the set of invertible elements of R, and R∗ := R \ {0}.

We use the classic big O and Ω asymptotic notations, and all hidden constants
are absolute (in particular, they never depend on the choice of a field K). We also
use the notation f = poly(g) as a synonym for f = gO(1). We use the notation Oε
to signify that the hidden constants depend on ε. As already mentioned, to denote
the running time of subexponential algorithms, we use the asymptotic L-notation

Lx(α, c) = exp
(
(c+ o(1))(log x)α(log log x)1−α

)
,

where the o(1) is asymptotic in x (and does not depend on other parameters). We
also write Lx(α) = Lx(α,O(1)).

For a real vector space V ⊆ Rm, we consider the Euclidean norm ∥ · ∥, and the
infinity-norm ∥ · ∥∞. We sometimes write ∥ · ∥2 for ∥ · ∥ to emphasize the type
of norm. We will occasionally use the notation B = B2 and B∞ for the unit ball
with respect to the Euclidean and infinity norm respectively. In particular, the
Euclidean ball of radius r in V is typically denoted

rB = {v ∈ V | ∥v∥ < r}.
The vector space V is either clear from context or explicitly mentioned when intro-
ducing B or B∞.

2.2. The Extended Riemann Hypothesis. All statements that mention (ERH),
such as Theorem 1.1, assume the Extended Riemann Hypothesis, which refers to the
Riemann Hypothesis for Hecke L-functions (see [44, §5.7]).

2.3. Euclidean lattices. A lattice Λ is a discrete subgroup of a real vector space
V = Rm. We write spanR(Λ) the real vector subspace of V spanned by the vectors
of Λ. The rank of the lattice is the dimension of spanR(Λ), and we say the lattice
is full-rank if spanR(Λ) = V . A lattice (of rank n) can be represented by a basis
B = (b1, · · · ,bn) such that Λ = {∑i xibi , xi ∈ Z}. For a given basis B ∈ Rm×n
we denote by L(B) the lattice spanned by the columns of this basis.
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Geometric invariants. The covolume of Λ, denoted by Vol(Λ), is the volume of the
quotient spanR(Λ)/Λ. If B ∈ Rm×n is a basis of Λ (with column vectors), then the

covolume of Λ is equal to Vol(Λ) =
√

det(B⊤B). This quantity is also the volume
of any fundamental domain of the lattice. One such domain is of special interest:
the Voronoi cell.

Definition 2.1. Let Λ ⊆ V be a full-rank lattice. We denote by

V0(Λ) = {x ∈ V | ∥x∥ ≤ ∥x− ℓ∥ for all ℓ ∈ Λ}
the Voronoi cell of Λ around zero. It is a fundamental domain for the lattice Λ (up
to a set of ‘faces’ of measure zero), thus has volume Vol(Λ).

The i-th successive minimum of Λ is denoted by λi(Λ). More precisely, each
λi(Λ) is the smallest real number such that there exist at least i linearly independent
vectors of euclidean norm at most λi(Λ) in Λ. We call λ1(Λ) the first minimum,
and λn(Λ) the last minimum (where n is the rank of the lattice). The covering
radius cov(Λ) is the smallest r > 0 such that for any element x ∈ spanR(Λ) there
exists a lattice point at distance at most r from x. The analogous notions with
respect to the maximum norm ∥ · ∥∞ instead of the Euclidean norm are denoted by

λ
(∞)
i (Λ) and cov∞(Λ).
The following notion, the generating radius ϱ(Λ), is closely related to λn(Λ) and

cov(Λ), but not as standard.

Definition 2.2 (Generating radius). For a lattice Λ, the generating radius ϱ(Λ)
is the smallest real number such that the set of all vectors of Λ of euclidean norm
≤ ϱ(Λ) generates the lattice Λ (as a Z-module). In other words,

ϱ(Λ) = min
(
r > 0 | {x ∈ Λ | ∥x∥ ≤ r} generates Λ

)
.

Lemma 2.3. For any lattice Λ, we have

λn(Λ) ≤ ϱ(Λ) ≤ 2 · cov(Λ) ≤ √n · λn(Λ).
Proof. The left-most inequality follows from the very definitions of λn(Λ) and ϱ(Λ),
and the right-most inequality can be found in [54, Theorem 7.9]. We prove the
middle inequality by using the concept of Voronoi-relevant vectors of the lattice
Λ. The Voronoi cell V0(Λ) of L contains all vectors of spanR(Λ) that are closer
or equally close to 0 than to any other lattice point (see Definition 2.1). We
know (e.g., [54, Proposition 8.4]) that V0(Λ) is compact and convex and that
VolspanR(Λ)(V0(Λ)) = Vol(Λ). From the definition of the Voronoi cell and of the
covering radius of Λ, we also know that all x ∈ V0(Λ) satisfy ∥x∥ ≤ cov(Λ) (see
also [54, Proposition 8.4]).

The Voronoi-relevant vectors of Λ are the vectors SV0 = {v ∈ Λ | ∃x ∈ V0(Λ), ∥x∥ =
∥x−v∥}; these are the vectors defining the facets of the Voronoi cell. From the defi-
nition of these vectors, it holds that V0(Λ) = {x ∈ spanR(Λ) | ∀v ∈ SV0 , ∥x∥ ≤ ∥x−
v∥}. Moreover, since ∥x∥ ≤ cov(Λ) for all x ∈ V0(Λ), we have that ∥v∥ ≤ 2 cov(Λ)
for all Voronoi-relevant vectors v. We will show that SV0 generates the lattice Λ,
which will conclude the proof.

Let Λ′ be the lattice generated by the vectors in SV0 . We know that Λ′ ⊆ Λ and
that Λ′ has rank n (since spanR(Λ

′) = spanR(V0(Λ)) = spanR(Λ)). Moreover, since
SV0 ⊆ Λ′, we know that V0(Λ′) ⊆ {x ∈ spanR(Λ) | ∀v ∈ SV0 , ∥x∥ ≤ ∥x − v∥} =
V0(Λ). From this we conclude that Vol(Λ′) ≤ Vol(Λ) and so Λ′ = Λ as desired. □
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The next two results regarding counting lattice points in sets, Lemma 2.4 and
Lemma 2.8, are folklore. We include proofs for completeness, as they play an
important role in the article.

Estimation on the average number of lattice points in a measurable volume.

Lemma 2.4. Let V be a Euclidean vector space and let Λ ⊆ V be a full rank lattice.
Let S ⊆ V be a measurable set, and let c ∈ V/Λ be chosen uniformly. Then

E
c←V/Λ

[|(Λ + c) ∩ S|] = Vol(S)/Vol(Λ).

Proof. By integrating the measurable indicator set 1S , and choosing a fundamental
domain F of V/Λ (which has volume Vol(Λ)), we obtain

E
c←V/Λ

[|(Λ+c)∩S|] = 1

Vol(F )

∫
c∈F

∑
ℓ∈Λ

1S(c+ℓ)dc =
1

Vol(Λ)

∫
v∈V

1S(v)dv =
Vol(S)

Vol(Λ)
.

□

Estimation on the number of lattice points in a convex measurable volume. For the
ideal sampling algorithm (Algorithm 2) we need to efficiently sample in a shifted
box (see Section 8). Lemma 2.8, which shares some similarities with [64, §4.2],
provides means to estimate the number of lattice elements in such a box. This
estimate is essential in the proof in Section 8. To prepare for the proof of this
lemma, we will need some facts on Minkowski sums of sets.

Definition 2.5. Let V be a Euclidean vector space. For two sets X,Y ⊆ V , we
define the Minkowski sum X ⊞ Y as follows.

X ⊞ Y = {x+ y | x ∈ X,y ∈ Y }.
For c ∈ R>0 we denote by cX the set

cX = {c · x | x ∈ X}.
Lemma 2.6. Let V be a Euclidean vector space and let r, s > 0 and let X ⊆ V be
a convex volume. Then

(rX)⊞ (sX) = (r + s)X.

Proof. We start with inclusion to the right. Suppose y ∈ (rX) ⊞ (sX), i.e., y =

rx + sx′ where x,x′ ∈ X. Then y
r+s = rx+sx′

r+s ∈ X, since it is a weighted average

of two points in X and X is convex. So y ∈ (r + s)X. Inclusion to the left holds
because y ∈ (r + s)X means that y = (r + s)x = rx+ sx ∈ (rX)⊞ (sX). □

Lemma 2.7. Let V be a Euclidean vector space, let r > 0, let X,Y ⊆ V be sets
and let S ⊆ V be a symmetric set, i.e., x ∈ S ⇔ −x ∈ S. Then

(X ⊞ S) ∩ Y ⊆ [X ∩ (Y ⊞ S)]⊞ S.

Proof. Suppose x + s = y ∈ (X ⊞ S) ∩ Y . Then x = y − s ∈ X ∩ (Y ⊞ S), so
y = x+ s ∈ [X ∩ (Y ⊞ S)]⊞ S. □

Lemma 2.8. Let V be a n-dimensional Euclidean vector space, let Λ ⊆ V be a
full-rank lattice, let X ⊆ V be a convex measurable volume for which V0 ⊆ cX for
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some c ∈ R>0, where V0 is the Voronoi cell of Λ (see Definition 2.1). Then, for all
t, t′ ∈ V and all r > 2c,

|(Λ + t) ∩ r(X + t′)| ∈ [e−2nc/r, e2nc/r] · r
n ·Vol(X)

Vol(Λ)
,

where r(X + t′) = {r · (x+ t′) | x ∈ X} is the scaling of the (translated) set X + t′

by r ∈ R>0.

Proof. As |(Λ + t) ∩ (rX + rt′)| = |(Λ + t − rt′) ∩ rX|, we just assume, without
loss of generality, that t′ = 0. Note that V0 ⊆ cX, and that X is convex. So, by
Lemma 2.6, we have (rX)⊞V0 ⊆ (rX)⊞(cX) = (r+c)X. Similarly, (r−c)X⊞V0 ⊆
rX. Therefore

[(Λ + t) ∩ rX]⊞ V0 ⊆ (r + c)X. (1)

Note that V0 is symmetric and (Λ + t) ⊞ V0 = V , the whole vector space. So, by
Lemma 2.7 and (r − c)X ⊞ V0 ⊆ rX,

(r − c)X = [(Λ + t)⊞ V0] ∩ (r − c)X (2)

⊆ [(Λ + t) ∩ ((r − c)X ⊞ V0)]⊞ V0 ⊆ [(Λ + t) ∩ rX]⊞ V0 (3)

By Equations (1) and (3) and the fact that V0 is a fundamental domain of Λ with
volume Vol(Λ), we obtain

(r − c)nVol(X) ≤ |(Λ + t) ∩ rX| ·Vol(Λ) ≤ (r + c)nVol(X).

Dividing by Vol(Λ) and using the estimate e−2nc/r ≤ (1 − c/r)n ≤ (1 + c/r)n ≤
e2nc/r (note that r > 2c) we arrive at the final claim. □

2.4. Number fields. Throughout this paper, we consider a number field K of
rank n over Q, having ring of integers OK , discriminant ∆K , regulator RK , class
number hK and group of roots of unity µK . Additionally, we consider a modulus:
a formal product m = m0m∞, where m0 ⊆ OK is an integral ideal and m∞ is a
formal product of infinite places (see more details below). We know by Minkowski’s
theorem [56, pp. 261–264] that1 log |∆K | ≥ log(π/2)n ≥ 0.4n for n ≥ 2.

The number field K has n field embeddings into C, which are divided in nR real
embeddings and nC conjugate pairs of complex embeddings, with n = nR + 2nC.
These embeddings combined yield the so-called Minkowski embedding

K −→ KR ⊆
⊕

σ:K↪→C
C

α 7−→ (σ(α))σ,

where

KR =

{
x ∈

⊕
σ:K↪→C

C
∣∣∣∣ xσ = xσ

}
.

Here, σ equals the conjugate embedding of σ whenever σ is a complex embedding
and it is just σ itself whenever it is a real embedding. We index the components
of the vectors in KR by the embeddings of K, i.e., we write x = (xσ)σ ∈ KR.
Embeddings up to conjugation are called infinite places, denoted by ν. With any
embedding σ we denote by νσ the associated place; and for any place we choose a
fixed embedding σν . We will sometimes write σ | m∞ to mean that the associated

1We have |∆K | ≥
(
π
4

)n
n2n/(n!)2 ≥

(
π
2

)n
for n ≥ 2, since n2n/(n!)2 ≥ 2n for n ≥ 2.
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place νσ divides m∞. For any radius r ∈ R>0 we write rB∞ = {(xσ)σ ∈ KR | |xσ| ≤
r for all σ}, if it is clear from the context that KR is the vector space at hand.

Ideals. The group of fractional ideals of K is denoted by IK . Fractional ideals are
denoted by a, b, . . ., and the symbols p, q are generally reserved for integral prime
ideals of OK . Any a ∈ IK factors uniquely as a product of prime ideals (with
possibly negative exponents), and we denote by ordp(a) the exponent of p in the
factorization of a; by extension, for any elements α ∈ K∗ we define ordp(α) =
ordp(a) for a = (α) the principal ideal generated by α. Two fractional ideals a, b
are said to be coprime if their unique decomposition into a product of prime ideals
(with possibly negative coefficients) do not share any prime ideals. The algebraic
norm of a fractional ideal a or an element α ∈ K is denoted N (a) and N (α),
respectively. When a = (α), we have N (a) = | N (α)|.
The class number formula. Let hK be the class number of K, RK be its regulator
and µK be its group of roots of unity. Let also ζK be the Dedekind zeta function
of K, and ρK be its residue at 1. The class number formula [58, VII.§5, Cor 5.11]
states that

ρK := lim
s→1

(s− 1)ζK(s) =
2nR · (2π)nC ·RK · hK
|µK | ·

√
|∆K |

. (4)

The Dedekind residue ρK ∈ R>0 is bounded above2 [53]: for n = [K : Q] > 1, we
have

log(ρK) ≤ (n− 1) · log
(
e log |∆K |
2(n− 1)

)
≤ log |∆K |. (5)

It can be approximated in polynomial time up to some factor [5], and so can the
related quantity RK · hK . More precisely, we have the following proposition.

Proposition 2.9 (ERH). There exists a polynomial time algorithm (in log |∆K |)
that takes as input any number field K, and an LLL-reduced basis of its ring of
integers OK , and outputs ρ0 ∈ Q and η0 ∈ Q such that

ρ0 ∈ [ 34 ,
5
4 ] · ρK

η0 ∈ [ 34 ,
5
4 ] ·RK · hK .

Density of ideals. In this article, we consider families of ideals, like smooth ideals or
prime ideals. Given a specifically randomly generated ideal, we want to estimate the
probability that it belongs to a given family. The notion of local density provides a
certain approximation of this probability, for uniformly random ideals of bounded
norm.

Definition 2.10. For any set of ideals S, we define S(t) = {b ∈ S | N (b) ≤ t}.
Definition 2.11 (Local density of an ideal set). Let x > 0 a positive real number,
and let S be a set of integral ideals of K. We define the local density of S at x as

δS [x] = min
t∈[x/en,x]

|S(t)|
ρK · t

= min
t∈[x/en,x]

|{b ∈ S | N (b) ≤ t}|
ρK · t

,

where ρK = lims→1(s− 1)ζK(s) (see Equation (4)).

2We use here that log(ex/2) ≤ x for all x > 0 and the fact that log(|∆K |)/(n − 1) > 0 for
n ≥ 2.
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Note that the local density tends to the (asymptotic) ‘natural density’ of S as
x → ∞, since |{a ⊆ OK | N (a) < t}| ∼ ρK · t [60, §9.5]. However, this notion
of natural density is not fine enough as it is simply 0 for families of interest like
smooth ideals or prime ideals.

Ray. The group of fractional ideals coprime with the finite part m0 of the modulus
m is denoted by ImK . We denote by

Km,1 = ⟨α ∈ OK | α ≡ 1 mod m0 and σ(α) > 0 for all real σ | m∞⟩
the ray modulo m, a multiplicative subgroup of K∗. Here, the notation ⟨·⟩ means
that Km,1 is multiplicatively generated by the elements α ∈ OK satisfying α ≡
1 mod m0 and σ(α) > 0 for all real σ | m∞, which also includes fractions.

The ideal ray class group ClmK modulo m is defined as the quotient of ImK by
the subgroup PrincmK := {(α) ∈ ImK | α ∈ Km,1}. One retrieves the (ordinary)
ideal class group by taking an empty modulus m = OK , for which Km,1 = K∗.
We also define Km = ⟨α ∈ OK | (α) + m0 = OK⟩, the multiplicative subgroup
of K∗ generated by elements coprime to m0. Note that Km,1 ⊆ Km and that
Km = K∗ if m0 = OK . The number of real places ν | m∞ is denoted by |mR|.
We denote N (m) = N (m0) · 2|mR|. We will also use the generalized Euler totient
ϕ(m0) = |Km0/Km0,1| which equals |(OK/m0)

×| for m0 ⊊ OK and equals 1 for
m0 = OK .

We denote Km∞
R = {(xσ)σ ∈ KR | xσ > 0 for real σ | m∞} for the ‘positive

part’ of KR with respect to the modulus m. For any τ ∈ Km, we denote τKm∞
R =

{(xσ)σ ∈ KR | xσ/σ(τ) > 0 for real σ | m∞}, which is the part of KR that has the
same sign as τ at the real embeddings σ | m∞.

2.5. Ideal lattices. Ideals can be viewed as lattices in the real vector space KR,
where KR has its (Euclidean or maximum) norm inherited from the complex vector
space it lives in. Explicitly, the Euclidean and maximum norm of α ∈ K are
respectively defined by the rules ∥α∥2 =

∑
σ |σ(α)|2 and ∥α∥∞ = maxσ |σ(α)|,

where σ ranges over all embeddings K → C.
For any ideal a of K, we define the associated lattice a ⊆ KR to be the image

of a ⊆ K under the Minkowski embedding, which is clearly a discrete additive
subgroup of KR. Abusing notation, we denote both the ideal and the associated
lattice with the same symbol a. In particular, OK is a lattice. Note that we have
Vol(a) =

√
|∆K | N (a) for ideals a ∈ IK . The notion of ideal lattices extends to a

larger family of lattices in KR as follows.

Definition 2.12 (Ideal lattices). Let K be a number field with ring of integers OK .
An ideal lattice of K is a lattice in KR of the form xa where x ∈ K×R is invertible
and a is a fractional ideal of K. We denote the group of ideal lattices by IdLatK .

The set of ideal lattices is a group with product (xa)(yb) = (xy)(ab), inverse
x−1a−1 and unit OK .

Bounds on invariants of ideal lattices. Denote Γ(Λ) = λn(Λ)/λ1(Λ), and define, for
a fixed number field K:

ΓK = sup
xa∈IdLatK

Γ(xa) (6)

We have the following bounds.

Lemma 2.13. For any ideal lattice xa ∈ IdLatK ,
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(i) λ1(xa) ≥
√
n · N (xa)1/n.

(ii) λn(OK)/
√
n ≤ ΓK ≤ λ∞n (OK) ≤ |∆K |1/n.

(iii) For cyclotomic number fields K, ΓK = 1.
(iv) λn(xa) ≤

√
n · ΓK ·Vol(xa)1/n.

(v) cov∞(xa) ≤ cov(xa) ≤ n/2 · ΓK ·Vol(xa)1/n.
Proof. The first item follows from the fact that for any non-zero element z ∈ xa,
it holds that N (xa) ≤ |N (z)| and that | N (z)|2/n ≤ 1

n · ∥z∥2 by the inequality

of arithmetic and geometric means, applied to the (|σ(z)|2)σ. Applying this to a
z reaching λ1(xa) yields λ1(xa) ≥

√
n| N (z)|1/n ≥ √nN (xa)1/n. For the second

item, the inequality λn(OK)/
√
n ≤ ΓK follows from the definition of Γ(OK) and

the fact that λ1(OK) =
√
n (using that λ1(OK) ≥ √n by the first item and that

this lower bound is reached by 1 ∈ OK). To obtain the bound ΓK ≤ λ∞n (OK), pick
an arbitrary ideal lattice xa ∈ IdLatK and choose a shortest element xα ∈ xa with
α ∈ a ∈ IK . That means ∥xα∥ = λ1(xa). Then xa ⊃ x · (α), and therefore,

λn(xa) ≤ λn(x · αOK) ≤ ∥xα∥ · λ∞n (OK) ≤ λ1(xa) · λ∞n (OK). (7)

The bound λ∞n (OK) ≤ |∆K |1/n is obtained from [8, Theorem 3.1] and is tailored
to our purposes in Theorem A.3.1. Part (iii) follows from part (ii) and the fact
that ∥ζ∥ = ∥1∥ for roots of unity ζ ∈ K. Part (iv) is essentially Minkowski’s bound
λ1(xa) ≤

√
nVol(xa)1/n combined with the definition of ΓK . Finally, the last item

follows from the fact that cov(Λ) ≤ √n/2 · λn(Λ) [54, Theorem 7.9]. □

2.6. Representation of elements and ideals. We assume throughout this paper
that the number field K is represented by a monic irreducible polynomial f ∈ Z[x]
satisfying size(f) :=

∑
i log2 |fi| ≤ poly(log |∆K |). This restriction is very mild,

indeed we can prove that such a polynomial always exists (see Appendix A.4)
and there are heuristic polynomial time algorithms computing such polynomials,
e.g., [24, 35].

Additionally, we assume throughout this paper that we know an LLL-reduced
basis (b1, · · · ,bn) of the ring of integers OK of K. Such a basis has vectors (rep-
resented as polynomials in Q[x]/(f(x))) whose size is polynomially bounded3 in
log |∆K |. Note that such a basis can be computed in unconditional, probabilistic
subexponential time in size(f) (by factoring disc(f) with [65], computing a basis of
OK with [20, Theorem 1.4], and reducing it with the LLL algorithm [52]).

For the main result of Part 1 such a basis is not required per se (see the discussion
in Section 9.5), as any sub-order of OK would suffice as well. This choice for a basis
of the ring of integers is done purely because it simplifies the description and analysis
of this main result.

3Let θ denote the class of x in Q[x]/(f(x)), and write bi =
∑n

j=1 qi,jθ
j−1 for the elements

of the LLL-reduced basis of OK (with qi,j ∈ Q). Let B ∈ Cn×n be the matrix whose columns

correspond to the Minkowski embedding of the bi’s, and T be the one corresponding to the θj−1’s.

Then (qi,j)i,j = T−1 ·B. By LLL reducedness of the bi’s, it holds that the log of the coefficients

of B are polynomially bounded in log |∆K |. The coefficients of T−1 correspond to the coefficients
of the Lagrange polynomials associated to the roots of f , so their logarithm is also polynomially

bounded in size(f) = poly(log |∆K |) (using e.g., Mignotte’s root separation lower bound and
Cauchy’s upper bound on the roots). Hence, we conclude that | log(qi,j)| ≤ poly(log |∆K |).

It remains to prove that the denominators of the qi are bounded. As the integral basis

(1, θ, . . . , θn−1) has discriminant ∆(f), any denominator of qi must divide ∆(f)/∆K (since β
is integral). Since the size of ∆(f) is bounded by poly(log |∆K |) (per assumption), any denomi-

nator of qi must so, too.
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All elements and ideals in K can then be represented by vectors and bases with
rational coefficients, by using this basis of OK as a coordinate system; which we do
in this paper.

The size size(k) of a number k ∈ Z is defined to be log2 |k| and is extended to
rationals a

b as size(a) + size(b) for reduced fractions a
b . The size of a Q-vector is

just the sum of the sizes of its entries, which allows to define the size of an element
α ∈ K as the size of the rational vector representing α in the basis of OK . The size
of a matrix Ma defining an ideal a is defined as the sum of the sizes of the matrix
entries.

Basic operations, such as addition, multiplication, inversion and approximate
computation of a complex embedding of elements in K, are all polynomial in
log |∆K | and the (just defined) size of the elements involved.

Elements x = (xσ)σ ∈ KR are represented with rational coefficients, that is,
x ∈ ⊕σ(Q + iQ) ⊆ KR, and the size of such an element is the size of the vector
(xσ)σ (which can be seen as a vector in Qn).

Representation of ideals. We assume throughout the paper that all integral ideals
a ⊆ OK are represented by their Hermite Normal form (HNF) basis by default.
This is possible since their matrix, using the basis of OK as coordinate system, has
integral coefficients.

This requirement allows us to abuse terminology and write sentences like “the
algorithm takes as input an integral ideal a”, without having to specify which basis
of the ideal is given to the algorithm. As the HNF basis of an ideal is a canonical
representation of that ideal, it cannot lead to any confusion.

Addition, multiplication and inversion of ideals given in HNF basis can be per-
formed in time polynomial in the input size and in log |∆K |. Additionally, we have
that the HNF basis of an integral ideal a is bounded in size by poly(n, logN (a)).
So, by using the HNF basis of an integral ideal a by default, one avoids the prob-
lem of the specific representation of a bearing an influence on the running time of
algorithms involving a. We therefore define size(a) to be the size of its HNF basis.
For a finite set S consisting of ideals we define size(S) = |S| · maxa∈S size(a). For
a modulus m = m0m∞, where m0 ⊆ OK and m∞ is a formal product of infinite
places, we define size(m) = size(m0). Namely, as higher powers of infinite places do
not have any influence as compared to a power of one, we will assume throughout
this work that the infinite part m∞ only consists of single powers of places of K.

Compact representation of elements. In Part 2 of this article, an algorithm is dis-
cussed that computes a fundamental system of S-units. In this algorithm, the out-
put elements are given in a so-called compact representation, which we will explain
presently.

Given a set of elements {γ1, . . . , γk} ofK, we can write the element η =
∏k
j=1 γ

nj

j

in compact representation by the pair of vectors

(n1, . . . , nk) ∈ Zk, (γ1, . . . , γk) ∈ Kn (8)

In this way, η is not explicitly computed in terms of the basis of K (or OK), but
rather, the product is left implicit, allowing for much larger elements η ∈ K to be de-

scribed. Indeed, η =
∏k
j=1 γ

nj

j written in an OK-basis might require
∑
j nj size(γj)

bits to write down, whereas the compact representation in Equation (8) only re-
quires at most

∑
j size(nj) +

∑
j size(γj) bits to write down. The drawback of this
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representation is that it only allows polynomial time multiplication and inversion
of elements, but generally not efficient addition.

2.7. The logarithmic embedding. The logarithmic embedding ofK× is the map

Log : K× −→
⊕
ν

R : α 7−→ (nν log |σν(α)|)ν ,

where nν = 2 if ν is a complex place and 1 otherwise. This map naturally extends to
all invertible elements of KR, and this extension is surjective, i.e., LogK×R =

⊕
ν R.

Denoting K0
R = {(xσ)σ ∈ KR |

∏
σ xσ = 1}, we use this logarithmic map to define

the vector space H = Log(K0
R) (called the hyperplane) and the logarithmic unit

lattice

Log(O×K) ⊆ H,
a full-rank lattice in H. We write its dimension by r = dim(H) = nR + nC − 1.
Explicitly, we have

H = LogK0
R = {(xν)ν ∈

⊕
ν

R |
∑
ν

xν = 0}.

The volume of the logarithmic unit lattice is given by the following formula (see,
e.g., [58, I.§7 & I.§5, p. 33])

Vol(Log(O×K)) =
√
nC + nR ·RK . (9)

The first minimum of Log(O×K). By a result of Kessler [46], we have a lower bound

on the first minimum of the lattice Log(O×K).

Lemma 2.14. We have λ1(Log(O×K)) ≥ 1
1000·

√
n·log(n)3 .

2.8. Divisors. We define the divisor group DivK of K as

DivK :=
⊕
p

Z×
⊕
ν

R,

where ν ranges over the set of all infinite places (embeddings into the complex
numbers up to possible conjugation), and p ranges over all prime ideals of OK (also
referred to as the finite places of K). We denote the canonical basis elements with
the symbols LpM and LνM (the divisor with value 1 at p or ν respectively, and 0
everywhere else). Then, an arbitrary divisor can be written as

a =
∑
p

ap · LpM +
∑
ν

aν · LνM,

with only finitely many non-zero ap and with aν ∈ R. We will consistently use
the symbols a,b, e, . . . for such divisors. Given such a divisor a, we often write
af =

∑
p ap · LpM for its “finite part” and a∞ =

∑
ν aν · LνM for its “infinite part”.

The degree map. The degree map is defined as

deg : DivK −→ R∑
p

ap · LpM +
∑
ν

aν · LνM 7−→
∑
p

ap · log(N (p)) +
∑
ν

aν . (10)

The kernel of this map is the subgroup Div0K = ker(deg) of degree-zero divisors.
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From field elements to divisors. Denoting ordp for the valuation at the prime p,
there is a canonical homomorphism

L·M : K× −→ DivK

α 7−→ LαM =
∑
p

ordp(α)LpM−
∑
ν

nν log |σν(α)| · LνM︸ ︷︷ ︸
Log(α)

,

with nν = 2 if ν is complex and 1 otherwise. The product formula states that for
any α ∈ K×, we have LαM ∈ Div0K , i.e., LK×M ⊂ Div0K .

The exponential maps. The finite part af ∈
⊕

p Z of a divisor a naturally corre-
sponds to an ideal in the group IK of fractional ideals via the map

Expf :
⊕
p

Z −→ IK :
∑
p

ap · LpM 7−→
∏
p

pap .

This map is an isomorphism with inverse

d : IK −→
⊕
p

Z : a 7−→
∑
p

ordp(a) · LpM. (11)

We will often use a normalized section defined as

d0 : IK −→ Div0K : a 7−→
∑
p

ordp(a) · LpM−
log(N (a))

n

∑
ν

nνLνM, (12)

to map into Div0K instead of DivK .

The infinite part a∞ ∈
⊕

ν R of a can be mapped into K×R via

Exp∞ :
⊕
ν

R −→ K×R :
∑
ν

aν · LνM 7−→ (en
−1
νσ
·aνσ )σ ∈ K×R .

The map Exp∞ is injective, but not surjective. Note that the logarithmic em-
bedding Log introduced in Section 2.7 is a retraction of Exp∞ (i.e., Log ◦Exp∞ is
the identity). Furthermore, for any x = (xσ)σ ∈ K×R , we have Exp∞(Log(x)) =

(|xσ|)σ ∈ K×R .

The main reason for us to consider divisors is that they encode ideal lattices.
This naturally follows by combining the above exponential maps into the following:

Exp : DivK −→ IdLatK : a 7−→ Exp∞(a∞) · Expf(af).
For a divisor a =

∑
p ap · LpM +

∑
ν aν · LνM, the associated ideal lattice is

Exp(a) = (en
−1
νσ
·aνσ )σ ·

∏
p

pap =

{
(en

−1
νσ
·aνσ · σ(α))σ ∈ KR | α ∈

∏
p

pap

}
⊆ KR.

It is a group homomorphism sending the additive operation in DivK to the multi-
plicative operation in IdLatK . For any divisor a ∈ DivK , we have

Vol(Exp(a))=
√
|∆K | ·

∏
ν

eaν · N
(∏

p

pap

)
=
√
|∆K | · edeg(a).
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Euclidean norm on DivK . For a ∈ DivK written as

a =
∑
p

ap · LpM +
∑
ν

aν · LνM,

we define the norm

∥a∥ =
(∑

p

a2p +
∑
ν

a2ν

)1/2

,

Note that, naturally, H ⊆ Log(K×R ) ↪→ DivK , where the defined Euclidean norms
are compatible.

Subgroups of DivK . Given a set S of prime ideals of OK , we define the subgroup

DivK,S =
⊕
p∈S

Z×
⊕
ν

R ⊆ DivK .

In the next two parts of this article, we will work with two important cases. In
Part 1, we will consider a modulus m = m0m∞, and let S be the set of all prime
ideals that do not divide m0. The resulting group DivKm :=

⊕
p∤m0

Z ×⊕ν R is

called the Arakelov m-ray divisor group. In Part 2, we will consider cases where
the set S is finite. We then call DivK,S the S-divisor group, and it relates to the
classical notion of S-units. Further details on each specific case are discussed in the
relevant sections.

2.9. Probabilities and (Discrete) Gaussian distributions. Given a distribu-
tion D over a discrete set X and x ∈ X, we denote D(x) for the probability that
D outputs x and D(A) =

∑
x∈AD(x) for any A ⊆ X.

Definition 2.15 (Statistical distance). Let (Ω,S) be a measurable space with prob-
ability measures P,Q. The statistical distance (or total variation distance) between
P and Q is defined by the rule

SD(P,Q) = sup
X∈S
|P (X)−Q(X)|.

For a discrete space Ω, we have

SD(P,Q) =
1

2

∑
x∈Ω
|P (x)−Q(x)| =:

1

2
∥P −Q∥1.

For a continuous space Ω with probability densities P,Q, we have

SD(P,Q) =
1

2

∫
x∈Ω
|P (x)−Q(x)| =:

1

2
∥P −Q∥1.

For spaces that are partially discrete and partially continuous, some well-defined
mix of an integral and a sum will define the statistical distance. Due to the equiv-
alence of these notions (up to a constant 1

2 ) we will often describe closeness of
probability distributions in terms of the distance metric ∥ · ∥1, instead of SD(·, ·).

The data processing inequality captures the idea that an algorithm (by just process-
ing a single query) cannot increase the statistical distance between two probability
distributions. A proof can be found for example in [28, §2.8].
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Theorem 2.16 (Data processing inequality). Let (Ω,S) be a measurable space
with probability measures P,Q. Let f be a (potentially probabilistic) function on Ω.
Then

∥f(P )− f(Q)∥1 ≤ ∥P −Q∥1.

In the rest of this section, we recall known results about Gaussian distributions
and prove some lemmas that will be useful for the rest of the article.

Gaussian distributions. We denote gs(x) = exp(−π∥x∥2/s2) the Gaussian function
defined on any Euclidean vector space V . Since

∫
x∈V gs(x)dx = sdimV , we define

the continuous Gaussian distribution on a Euclidean vector space V with parameter
s and center c by the density function

GV,s,c(v) = s− dim(V ) · gs(v − c).

For discrete sets X ⊆ V , specifically lattices, we use the same notation for the
discrete Gaussian, where the subscript X indicates that the Gaussian is discrete.

GX,s,c(x) = gs(x− c)/gs(X − c),

where gs(X−c) =
∑
x∈X gs(x−c). This notation f(X) =

∑
x∈X f(x) for functions

f and discrete sets X will be used frequently. Whenever the Gaussian is centered
at the origin, i.e., c = 0, we will suppress the subscript c from the notation, like
this: GV,s.

Tail bounds of Gaussian distributions. The following lemma originates from Ba-
naszczyk’s paper on transference theorems in lattices [6, Lemma 1.5].

Lemma 2.17 ([6, Lemma 1.5]). For any c > 1/
√
2π and any n dimensional lattice

Λ, g1(Λ \ c
√
nB) ≤ Cng1(Λ), where B is the euclidean ball of radius 1 and C =

c
√
2πe · e−πc2 < 1.

Corollary 2.18. Let Λ be a lattice of rank n and s > 0. For any ε ∈ (0, 1], it holds

that Prx←GΛ,s
(∥x∥ ≥ s ·

√
log(1/ε) + 2n) ≤ ε.

We also have a similar result in the case of a continuous Gaussian distribution.

Lemma 2.19. Let V be a real vector space of dimension n and s > 0. For any
ε ∈ (0, 1], it holds that Prx←GV,s

(∥x∥ ≥ s ·
√
2n · log(2n/ε)) ≤ ε.

Proof. Let B be an orthonormal basis of V and write x = (x1, · · · , xn) the coor-
dinates of x in this basis. Then the random variables xi are linearly independent
Gaussian distributions over R with standard deviation s. Moreover, for any t > 0,
if ∥x∥ ≥ t, there should exist some i such that |xi| ≥ t/

√
n. Hence, we obtain

Pr
x←GV,s

(
∥x∥ ≥ t

)
≤ n · Pr

x←GR,s

(
|x| ≥ t/√n

)
≤ 2n · exp

(
− t2

2n · s2
)
,

where the first inequality comes from the union bound and the last one comes from
Chernoff’s bound. Taking t = s ·

√
2n · log(2n/ε) leads to the desired result. □
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Smoothing on lattices. For any ε > 0 and a lattice Λ we define the smoothing
parameter [55] ηε(Λ) to be the smallest s ∈ R>0 such that g1/s(Λ

∨\{0}) ≤ ε, where
Λ∨ = {x ∈ spanR(Λ) | ⟨x, ℓ⟩ ∈ Z for all ℓ ∈ Λ} is the dual lattice of Λ. This
smoothing parameter satisfies the following bound [55, Lemma 3.3]

ηε(Λ) ≤
√

log(2n(1 + 1/ε))

π
· λn(Λ). (13)

We will use the following classical results on the total Gaussian weight of a
(shifted) lattice Λ.

Lemma 2.20 (Proof of [55, Lemma 4.4]). Let Λ be an n-dimensional lattice and
s ≥ ηε(Λ) for some ε > 0. We have

gs(Λ) ∈ [1− ε, 1 + ε] · sn

Vol(Λ)
.

Lemma 2.21 ([55, Lemma 2.9]). Let Λ be an n-dimensional lattice, s > 0 be a
positive real number and c ∈ spanR(Λ) be a vector, then gs(Λ + c) ≤ gs(Λ).
Approximating and computing discrete Gaussians. We will use the following lemma
which says that one can sample from a distribution statistically close to a discrete
Gaussian distribution. It is an adaptation of [36, Theorem 4.1] for which the Gauss-
ian can be approximated within any error and in which only bit operations are used
(as opposed to real number operations as in the original article).

Lemma 2.22 (Adapted from [36, Theorem 4.1]). There exists a probabilistic algo-
rithm that takes as input a basis B = (b1, · · · ,bn) ∈ Qn×n of an n-dimensional lat-

tice Λ, an error bound εG ∈ (0, 1], a parameter s ≥
√

log(1/εG)+2 log(n)+3
π ·maxi ∥bi∥

and a center c ∈ spanR(Λ)∩Qn and outputs a sample from a distribution ĜB,εG ,s,c
such that SD(ĜB,εG ,s,c,GΛ,s,c) ≤ εG. This algorithm runs in expected time (bit
complexity) polynomial in the size of the input and in log(1/εG). Additionally, the

output of v← ĜB,εG ,s,c always satisfies ∥v − c∥ ≤ s ·
√
n log(2n2/εG).

Proof. The proof can be adapted from the one of [36, Theorem 4.1], which proves
the result for εG = n−ω(1). In this proof, the statistical distance between the

sampled distribution ĜB,εG ,s,c and the ideal distribution GΛ,s,c comes from two
places. The first one is that the algorithm makes n calls to a sub-routine algorithm
SampleZ, sampling from a Gaussian distribution over Z which is only statistically
close to GZ,s′,c′ (for some parameters c′ and s′ depending on the input). Lemmas
4.2 and 4.3 from [36] show that the statistical distance between SampleZ and GZ,s′,c′
can be made as small as any arbitrary δ > 0, to the cost of increasing the running
time of SampleZ in a way that is polynomial in log(1/δ). We choose δ = εG/(2n),
which provides a running time polynomial in log(1/εG) and log n, and ensures that
the n calls to SampleZ are responsible for a change of statistical distance that is at
most εG/2.

The second reason why the algorithm only provides a distribution that is sta-
tistically close to GΛ,s,c comes from the fact that gs′(Z + c) is only approximately
close to gs′(Z) for an arbitrary c ∈ R (where s′ ≥ s/(maxi ∥bi∥)). In the proof of
Theorem 4.1, the authors of [36] show that, provided that s ≥ ηδ(Z) · maxi ∥bi∥,
then this statistical distance is at most δ′/2, where 1 + δ′ =

(
1+δ
1−δ

)n
. We choose
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δ = εG/(8n) ≤ 1/(8n). Using the fact that4
(

1+δ
1−δ

)n
≤ 1 + 8nδ for all δ ≤ 1/(8n)

and n ≥ 1, we obtain that the statistical distance between the approximate distri-
bution and the ideal one is at most 4nδ = εG/2. Using Equation (13), we see that

ηδ(Z) ≤
√

log(1/εG)+2 log(n)+3
π , hence s ≥ ηδ(Z) ·maxi ∥bi∥ as desired.

For the bound on v ← ĜB,εG ,s,c observe the output v0 of the algorithm in [36,
Section 4.2]. By [36, Lemma 4.4], the output of this algorithm satisfies v − c =∑
i∈[n](ẑi − c′i) · b̃i, where the values ẑi and c

′
i are from the algorithm, and the b̃i

are the Gram-Schmidt vectors associated to the bi’s. Hence, by the Pythagorean
theorem, ∥v−c∥2 =

∑
i∈[n] |ẑi−c′i|2·∥b̃i∥2. In part 1(b) of the algorithm [36, Section

4.2], DZ,s′i,c′i is implemented as in [36, Section 4.1], i.e., the algorithm SampleZ is

called (see the proof of [36, Theorem 4.1]). Therefore ẑi can be shown to lie in

Z∩ [c′i− t(n)s′i, c′i+ t(n)s′i], where t(n) =
√

log(n/δ) (with δ = εG/(2n), as before).
As a consequence,

∥v− c∥2 =
∑
i∈[n]

|ẑi− c′i|2 · ∥b̃i∥2 ≤
∑
i∈[n]

t(n)2(s′i)
2 · ∥b̃i∥2 =

∑
i∈[n]

t(n)2s2 = nt(n)2s2,

by the definitions of s′i = s/∥b̃i∥. Hence ∥v−c∥ ≤
√
n log(n/δ)s with δ = εG/(2n),

as was required to prove.
We show now that the algorithm in [36] can be readily adapted into one without

real number operations, but just bit operations. There are two places in the algo-
rithm in [36, Section 3.2] where real arithmetic is used, namely in the subroutine

SampleZ and in the computation of s/∥b̃k∥ where b̃k are the Gram-Schmidt vec-
tors. Note that the Gram-Schmidt orthogonalization itself (without normalizing)
can be done with rational arithmetic in polynomial time and is thus not altered in
this adapted version.

The subroutine SampleZ can be amended to avoid real operations by just ap-
proximating the sampling probabilities ρs(x−c) with x ∈ Z∩ [c−s · t(n), c+s · t(n)]
well enough. This can be done within polynomial bit complexity in the size of the
input, and, by maybe slightly increasing t(n), without loss in the approximation
error δ.

The value of s/∥b̃k∥ is only used in the subroutine SampleZ, where actually its
square is used to compute ρs/∥b̃k∥(x − c) and hence there is no need to compute

s/∥b̃k∥ but rather its square s2/∥b̃k∥2 which consists of rational numbers.
Hence we can conclude that this slight adaptation of [36, Section 3] has polyno-

mial bit-complexity in the size of its input. □

3. Acknowledgements

First and foremost, we would like to express our gratitude to Léo Ducas, who took
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PART 1

Sampling ideals in a class:
smooth, near-prime or otherwise

4. Introduction

In this first part of the article, we propose a general strategy to provably solve a
recurring computational problem in number theory (assuming the extended Rie-
mann hypothesis, ERH): given an ideal class [a] of a number field K, sample an
ideal c ∈ [a] belonging to a particular family of ideals (e.g., the family of smooth
ideals, or near-prime ideals). While there is a simple heuristic algorithm for this
task, it has proved notoriously difficult to resolve it rigorously. It has thereby been
a central roadblock explaining the heuristic nature of many major algorithms in
computational number theory.

The main result of this part is Theorem 9.5 (page 47). Its formulation in full
generality is postponed, as it first requires the introduction of several notions. How-
ever, a simplified statement, which may already suit many needs, is available in
Theorem 1.1 (page 3).

Roadmap. Fix an arbitrary family of ideals S. For convenience, we consider the
input to be an ideal b ∈ [a]−1, and are looking for an ideal c ∈ S in the inverse
class of b. The folklore strategy consists in considering b as an ideal lattice via the
Minkowski embedding, and sampling random elements β ∈ b (within some bounds,
say in a “box” rB of radius r) until c = βb−1 falls in the desired family of ideals S.
Heuristically, one expects that for β “sufficiently random”, the ideal βb−1 falls in S
with probability proportional to the “density” of the family (think about the set of
prime ideals that have norm around x having “density” ≈ 1/(ρK log(x))). This, of
course, cannot be literally true for arbitrary families (e.g., principal ideals), since
βb−1 is confined to one ideal class. Instead, we will solve the problem for c ∈ S ·SB ,
where SB is the family of B-smooth ideals for some bound B. In all applications
we are aware of, S = S · SB (smooth ideals, near-prime ideals).

The Arakelov class group. The notion of ideal lattice plays a key role in this sam-
pling strategy. The space of ideal lattices up to isomorphism is naturally isomorphic
to the so-called Arakelov class groups We open this part of the article in Section 5
with an introduction to Arakelov ray class groups. They can be thought of as a
“combination” of the ray class group and the ray unit group of a number field.
In Section 6, we state a useful result on these Arakelov ray class groups: certain
random walks in them rapidly converge to the uniform distribution. This is a
generalization of [14] from Arakelov class groups to Arakelov ray class groups.

Average densities. In the folklore strategy, one is hoping that for (uniformly) ran-
dom β ∈ b ∩ rB (the intersection of an ideal lattice and a “box”), the probability

21
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that βb−1 ∈ S is proportional to the density of S. This is generally not true.
However, in Section 7, we prove that it is true on average when the ideal lattice b
is also random, uniformly distributed in the Arakelov ray class group. This might
sound too weak for our goal: the input b of the algorithm is not random. It will
actually be sufficient when properly combined with a randomization step.

Ideal sampling. We then turn these density results into an algorithm. First, we
show in Section 8 how to sample uniformly a random element in a set of the form
b ∩ rB, the intersection of an ideal lattice and a “box”.

Then, Section 9 culminates with the main algorithm, Algorithm 2. It addresses
the final obstacle: the density result of Section 7 only holds on average, for uniformly
random ideal lattices. The input b is not random, so we need to randomize it. This
is where random walks in the Arakelov class group come in. Essentially, Algorithm 2
starts by multiplying b with a few “small” prime ideals, resulting in a random ideal
wb where w is smooth (i.e., w ∈ SB for some bound B).

Algorithm 2 then samples a uniformly random β ∈ (wb) ∩ rB. Then:
• From Section 6 and [14] (on the rapid equidistribution of random walks),
the random ideal lattice wb is close to uniformly distributed.
• From Section 7, we obtain that β(wb)−1 ∈ S with probability proportional
to the density of S.

Upon the event β(wb)−1 ∈ S, we get βb−1 = w · (β(wb)−1) ∈ SB · S, as desired.

Further properties. Finally, in Section 10 and Section 11, we develop tools to ease
the applicability of this “ideal sampling” algorithm. These tools are indispensable
for the application presented in Part 2, and may be useful in other contexts. More
precisely, in Section 10, three important properties of the ideal sampling algorithm
are stated and proved: the shifting property, boundedness and almost-Lipschitz-
continuity. In Section 11, we estimate quantities related to the modulus m, which
affect the behavior of the ideal sampling algorithm.

5. Background on the Arakelov class group

Recall that throughout this paper, we consider a number field K of rank n over Q,
having ring of integers OK , discriminant ∆K , regulator RK , class number hK and
group of roots of unity µK . It has nR real embeddings and nC conjugate pairs of
complex embeddings, with n = nR + 2nC.

5.1. The Arakelov Ray Class Group. In this section, we rely heavily on the
notation introduced in Section 2.8 for the divisor group DivK . The Arakelov ray
divisor group with respect to a modulus m = m0m∞ is a subgroup DivKm ⊆ DivK
defined as

DivKm =
⊕
p∤m0

Z×
⊕
ν

R

where p ranges over the set of all prime ideals of OK that do not divide the finite
part m0 of the modulus, and ν over the set of all infinite places (embeddings into
the complex numbers up to conjugation). The case m = OK yields the standard
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divisor group DivK . Recall that we write an arbitrary element in DivKm as

a =
∑
p∤m0

ap · LpM︸ ︷︷ ︸
af

+
∑
ν

aν · LνM︸ ︷︷ ︸
a∞

. (14)

with only finitely many non-zero ap and with aν ∈ R. The map L·M : K× → DivK
naturally restricts and co-restrict to

L·M : Km −→ DivKm

α 7−→ LαM =
∑
p∤m0

ordp(α)LpM−
∑
ν

nν log |σν(α)| · LνM,

where nν = 2 whenever ν is a complex place and 1 otherwise. The divisors of the
form LαM for α ∈ Km,1 are called principal m-ray divisors.

Just as the ideal ray class group is the group of ideals coprime with m quo-
tiented by the ray Km,1, the Picard ray group is the group of Arakelov ray divi-
sors quotiented by the group of principal ray Arakelov divisors. In other words,
the Picard ray group PicKm is defined by the following exact sequence, where
µKm,1 = µK ∩Km,1 are the roots of unity in the ray:

0→ µKm,1 → Km,1 L·M−→ DivKm → PicKm → 0.

For any Arakelov ray divisor a =
∑

p∤m0
ap · LpM +

∑
ν aν · LνM , we denote its class

in the Picard ray group PicKm by [a], in the same fashion that [a] denotes the ideal
class of the ideal a in ClmK .

Since principal ray divisors LαM for α ∈ Km,1 are in the kernel of the degree map,
the degree factors through PicKm . We can therefore define the degree-zero Arakelov
ray divisor group Div0Km = {a ∈ DivKm | deg(a) = 0} and the Arakelov ray class
group Pic0Km = {[a] ∈ PicKm | deg([a]) = 0}.
The maps Expf , Exp∞, d and d0 defined in Section 2.8 naturally restrict and co-
restrict to

Expf :
⊕
p∤m0

Z−→ImK :a 7−→
∏
p∤m0

pap , (15)

Exp∞ :
⊕
ν

R−→K×R :a 7−→
(
en

−1
νσ
·aνσ

)
σ
, (16)

d : ImK −→
⊕
p∤m0

Z :a 7−→
∑
p∤m0

ordp(a) · LpM, (17)

d0 : ImK −→Div0Km :a 7−→ d(a)− nν log(N (a))

n

∑
ν

LνM. (18)

The groups and their relations treated above fit nicely in the diagram of exact
sequences given in Figure 1, where the middle row sequence splits with the section
d0. In this diagram we use the notationO×Km,1 = O×K∩Km,1 and µKm,1 = µK∩Km,1.

The group Tm = H/Log(O×Km,1) is the logarithmic ray unit torus, with Log(O×Km,1)
the logarithmic ray unit lattice.

Relations between different ray groups. The (ray) unit groups O×K ,O×Km,1 , the (ray)

class groups ClK ,Cl
m
K , and the ray groups Km,1 and Km are tightly related by an
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0 0 0

0 O×Km,1/µKm,1 Km,1/µKm,1 PrincmK 0

0 H Div0Km ImK 0

0 Tm Pic0Km ClmK 0

0 0 0

L·MLog

a 7→ Expf (af )

d0

Figure 1. A commutative diagram of short exact sequences in-
volving the Arakelov ray class group.

exact sequence (e.g., [49, Chapter VI, §1]), relating the (relative) cardinalities of
these groups. Namely,

|O×K/O×Km,1 | · |ClmK | = ϕ(m0) · 2|mR| · |ClK |, (19)

where ϕ(m0) = |Km0/Km0,1| and |mR| is the number of real places dividing m∞,
(note that |Km/Km,1| = ϕ(m0) · 2|mR|). Also, by observing the kernel-cokernel
sequence of the inclusions O×Km,1 ⊆ O×K ⊆ H = logK0

R, we obtain,

|µKm,1 | · |O×K/O×Km,1 | = |µK | ·Vol(Tm)/Vol(T ). (20)

Geometric properties of the divisor group and the Arakelov class group. Recall that
the norm of a divisor is defined as

∥a∥ =
(∑

p

a2p +
∑
ν

a2ν

)1/2

.

In the following lemma, we show that the volume of the Arakelov ray class group
roughly follows the square root of the absolute value of the field discriminant times
ϕ(m0) · 2|mR|; with a possible additional correction factor due to the roots of unity.

Lemma 5.1 (Volume of Pic0Km). For n = [K : Q] > 1, we have

Vol
(
Pic0Km

)
= |ClmK | ·Vol(Tm) =

|µKm,1 |
|µK |

· ϕ(m0) · 2|mR| · hK ·Vol(T ) (21)

=
|µKm,1 |
|µK |

· ϕ(m0) · hK ·RK ·
√
r+ 1 · 2|mR|, (22)

where ϕ(m0) = |Km0/Km0,1| and |mR| is the number of real places dividing m∞.
Additionally,

log
(
Vol

(
Pic0Km

))
≤ log

(
N (m0) · 2|mR|

)
+ log |∆K |. (23)

Proof. The first identity involving the volume of the Arakelov ray class group fol-
lows from the exact sequence in Figure 1. The second one can be deduced from
Equations (19) and (20). The third one follows from the volume computation of T
in Equation (9).
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The bound on the logarithm is obtained by using
|µKm,1 |
|µK | ≤ 1, applying the class

number formula [58, VII.§5, Cor 5.11] and Louboutin’s bound [53] on the residue
ρK of the Dedekind zeta function at s = 1:

|Pic0Km | ≤ ϕ(m0) · hK ·RK ·
√
r+ 1 · 2|mR| =

ϕ(m0) · ρK ·
√
|∆K | · |µK | ·

√
nR + nC

2nR−|mR| · (2π)nC

≤ ϕ(m0) · 2|mR| ·
√
|∆K | · ρK ≤ ϕ(m0) · 2|mR| ·

√
|∆K | ·

(
e log |∆K |
2(n− 1)

)n−1
≤ ϕ(m0) · 2|mR| · |∆K |.

The first inequality follows from |µK |
√
nR+nC

2nR (2π)nC ≤ n3/2

2n ≤ 1. The last inequality

follows from the fact that e log |x|
|x| ≤ 1 for all x ∈ R. This inequality instantiated

with x = |∆K |
1

2(n−1) then yields
(
e log |∆K |
2(n−1)

)n−1
≤
√
|∆K |. □

5.2. Divisors and ideal lattices. The Exp map introduced in Section 2.8 restricts
to the group homomorphism

Exp : DivKm −→ IdLatK : a 7−→ Exp∞(a∞) · Expf(af),
sending each Arakelov divisor to an ideal lattice. Recall that for any divisor a ∈
DivKm , we have Vol(Exp(a))=

√
|∆K | · edeg(a).

5.3. τ-equivalent elements and generators of an Arakelov ray divisor.
Suppose that m is a modulus, and let a be any ideal coprime to m0. An element α ∈
a is said to be τ -equivalent (with respect to m) if α ≡ τ mod m0 and σν(α)/σν(τ) ∈
R>0 for all real ν | m∞. If additionally, a is principal, any τ -equivalent element α
such that a = (α) is called a τ -equivalent generator of a.

These notions generalize to Arakelov ray divisors. As we can see Arakelov ray
divisors as ideal lattices xa, an element of such a divisor is just an element of the
shape xα where α ∈ a and x ∈ KR. Similarly, a generator of such divisor is an
element in K×R of the shape xα, where α is a generator of a. The precise definitions
are as follows.

Definition 5.2 (τ -equivalent elements of an Arakelov ray divisor). Let τ ∈ Km and
let a ∈ DivKm be an Arakelov ray divisor with an infinite part a∞ and a finite part
af (see Equation (14)). We define the set of τ -equivalent elements Exp(a)τ ⊆ KR
of a by the following rule

Exp(a)τ := Exp∞(a∞) · (Expf(af) ∩ τKm,1)

Equivalently, we can write

Exp(a)τ = {α ∈ Exp(a) | Exp∞(−a∞) · α ∈ τKm,1}.
Definition 5.3 (τ -equivalent generators of an Arakelov ray divisor). Let τ ∈ Km

and let a ∈ DivKm be an Arakelov ray divisor with an infinite part a∞ and a
finite part af (see Equation (14)). We define the set of τ -equivalent generators

Exp(a)
×
τ ⊆ KR of a by the following rule

Exp(a)
×
τ :=


Exp∞(a∞) · (κ · O×K ∩ τKm,1) ⊆ Exp(a) if Expf(af) = (κ)

for some κ ∈ Km

∅ otherwise
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Equivalently, we can write

Exp(a)
×
τ = {α ∈ Exp(a) | Exp∞(−a∞) · α ∈ τKm,1 is a generator of Expf(af)}.

5.4. Uniform sampling of prime ideals in a certain Arakelov class. In the
main result of this part, we will need to sample primes p that satisfy [d0(p)] ∈ G
for a certain finite-index subgroup of Pic0Km . The procedure explaining this and
the respective running time can be found in this lemma; the proof is provided in
Appendix A.2.

Lemma 5.4 (Uniform sampling of prime ideals, ERH). Let a basis of OK be known,
and let m0 ⊆ OK be a modulus. Let G ⊆ Pic0Km a finite-index subgroup and let
OG be an oracle that on input an ideal c returns whether [d0(c)] ∈ G or not. Let
PB = {p prime ideal of K | N (p) ≤ B, p ∤ m0 and [d0(p)] ∈ G}.

There exists a bound

B0 = Õ
(
[Pic0Km : G]2 ·

[
n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2

])
such that for all B ≥ B0, one can sample uniformly from PB in expected time
O([Pic0Km : G] · n3 log2B) and using O([Pic0Km : G] · n logB) queries to OG.

6. Random walks in Arakelov ray class groups

In this section, we present a theorem on the rapid mixing of random walks on
finite-index subgroups of Arakelov ray class groups. It is a generalization of the
main theorem of [14], from Arakelov class groups to finite-index subgroups G of
Arakelov ray class groups. Starting with a point in the hyperplane H ↪→ Div0Km ,
sampled according to a Gaussian distribution, we prove that multiplying this point
sufficiently often by small random prime ideals whose Arakelov classes are in G ⊆
Pic0Km yields a random ray divisor that is very close to uniformly distributed in G,
(the concerning subgroup of the Arakelov ray class group).

Definition 6.1 (Random Walk Distribution in Div0Km). For a number field K and
a finite-index subgroup G ⊆ Pic0Km , we denote by WG(B,N, s) ∈ L1(Div0Km) the
distribution on Div0Km that is obtained by the following random walk procedure.

Sample a = (aν)ν ∈ H ⊆ Div0Km according to a centered Gaussian distribution
with standard deviation s > 0 (see Section 2.9). Subsequently, sample N ideals pj
uniformly from the set of all prime ideals coprime with m0, with norm bounded by

B and whose Arakelov class [d0(pj)] lies in G. Finally, output a +
∑N
j=1 d

0(pj),

where a ∈ Div0Km is understood via the inclusion H ⊆ Div0Km .

Definition 6.2. For any distribution D on Div0Km , we define the distribution [D]
on Pic0Km by the following rule:

[D](·) =
∑

κ∈Km,1/µKm,1

D(·+ LκM).

This distribution [D] on Pic0Km arises whenever one samples a ← D and subse-
quently takes the Arakelov ray class [a] ∈ Pic0Km .

Definition 6.3 (RandomWalk Distribution in Pic0Km). We denote by [WG(B,N, s)]
the distribution on the Arakelov class group obtained by sampling a fromWG(B,N, s)
and taking the Arakelov ray class [a] ∈ Pic0Km (as in Definition 6.2).
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Theorem 6.4 (Random Walks in finite-index subgroups of the Arakelov Ray Class
Group, ERH). Let ε > 0 and s > 0 be any positive real numbers and let k ∈ R>0

be a positive real number as well. Let G ⊆ Pic0Km be a finite-index subgroup of the

Arakelov ray class group. Putting5 s̃ = min(
√
2 ·s, 1/η1(Log(O×Km,1)

∨)), there exists
a bound

B = Õ
(
[Pic0Km : G]2 · n2k

[
n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2

])
such that for any integer

N ≥
⌈

1

2k log n
· (r · log(1/s̃) + 2 log(1/ε) + log|Pic0Km | − log[Pic0Km : G] + 2)

⌉
,

(24)

the random walk distribution [WG(B,N, s)] is ε-close to uniform in L1(G), i.e.,

∥[WG(B,N, s)]− U(G)∥1 ≤ ε,
where N (m) = N (m0) · 2|mR|, r = dim(H) = nR +nC− 1 and |mR| is the number of
different real places dividing m (see Section 2.4).

Proof. The proof is very similar to that of [14], adapted to account for the ray and
the finite-index subgroup. Details can be found in Appendix A.1. □

The following instantiation of the random walk theorem gives the appropriate
parameters for the main application of this paper, the sampling algorithm (see
Algorithm 2 and Theorem 9.5)

Corollary 6.5 (ERH). Let n = [K : Q] ≥ 2, s = 1/n2, let G ⊆ Pic0Km be a
finite-index subgroup and let ε > 0 be an error parameter. There exists a bound

B = Õ
(
[Pic0Km : G]2 · n2 ·

[
n2(log log(1/ε))2 + (log(|∆K | N (m)))2

])
such that for

N = ⌈7n+2 log(1/ε)+log|Pic0Km |−log[Pic0Km : G]+2⌉ the random walk distribution
[W(B,N, s)] on Pic0Km is ε-close to uniform in L1(G), i.e.,

∥[W(B,N, s)]− U(G)∥1 ≤ ε.
Proof. This formulation of the random walk theorem is obtained by instantiating
Theorem 6.4 with s = 1/n2 and k = 1. To obtain the bounds on B and N , we

use the inequality 1/s̃ = max(n2/
√
2, η1(Log(O×Km,1)

∨)) ≤ 2800 · n2, which we will
verify at the end of this proof.

One then gets the bound on B by applying Theorem 6.4 and simply moving the
n2(log(1/s̃))2 into the polylogarithmic factors. For the lower bound on N , note
that 1

2 log(2) ≤ 1 and6 r · log(1/s̃)/(2 log n) ≤ 7n. Hence, a sufficient lower bound on

N is the one in Theorem 6.4 with 1
2k logn removed and r · log(1/s̃) replaced by 7n.

As promised, we finish the proof by showing 1/s̃ ≤ 2800 · n2. As Log(O×Km,1) ⊆
Log(O×K), we have Log(O×Km,1)

∨ ⊇ Log(O×K)∨. Therefore, the smoothing parameter

5Recall that for any lattice Λ, we write Λ∨ for its dual, and η1(Λ) for its smoothing parameter

(see page 18).
6Using the bound 1/s̃ ≤ 2800 · n2, we have

r·log(1/s̃)
2 logn

≤ r·log(2800·n2)
2 logn

=
r·[log(2800)+2 logn]

2 logn
≤

r · ( log(2800)
2 logn

+ 1) ≤ (
log(2800)
2 log 2

+ 1)n ≤ 7n.
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of Log(O×Km,1)
∨ satisfies

η1(Log(O×Km,1)
∨) ≤ η1(Log(O×K)∨) ≤

√
r

λ1(Log(O×K))
≤ 1000 ·n · log(n)3 ≤ 2800 ·n2.

Here, the first inequality follows from the fact that η1(Λ) ≤ η1(Λ
′) if Λ ⊇ Λ′. The

second inequality holds for general lattices [55, Lemma 3.2], the third inequality
holds by the fact that 1/λ1(Log(O×K)) ≤ 1000 · √n · log(n)3 (see Lemma 2.14) and
r ≤ n, and the last inequality by x log(x)3 ≤ 1.4 · x2 for all x > 0. □

7. Average densities and sampling

7.1. Result. Let S ⊆ IK be a set of integral ideals, and assume that a is an
Arakelov ray divisor whose class is uniformly distributed. In this section, we show
that one can sample elements β such that βa−1 corresponds to an ideal of the
family S with the probability one would naturally expect, i.e., proportional to the
density of S. This is made precise in Theorem 7.1 via the notion of local density.
Recall that the local density of a set of ideals S is defined (Definition 2.11) as

δS [x] = min
t∈[x/en,x]

|S(t)|
ρK · t

= min
t∈[x/en,x]

|{b ∈ S | N (b) ≤ t}|
ρK · t

,

where, ρK = lims→1(s− 1)ζK(s) (see Equation (4)).
Recall that for r ∈ R>0, the box of radius r in KR is rB∞ = {(xσ)σ ∈ KR | |xσ| ≤

r}.

Theorem 7.1. Let G ⊆ Pic0Km be a finite-index subgroup of the Arakelov ray class
group, and let [b] ∈ Pic0Km arbitrary, and let D be a distribution on Div0Km such

that [D] is uniform on the coset G + [b]. Let r ≥ 8 · n2 · ΓK · |∆K |
1
2n · N (m)1/n,

where ΓK ≤ λ∞n (OK) ≤ |∆K |1/n is defined in Equation (6), let τ ∈ Km and let S
be a set of integral ideals coprime to m0 for which holds [d0(S)] ⊆ G + [LτM] − [b],
with local density δS [r

n] at rn. Then

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ S

∣∣∣ α · Exp∞(−a∞) ∈ τKm,1
]]

(25)

≥ N (m0)

ϕ(m0)
· [Pic

0
Km : G]

3
· δS [rn] (26)

≥ [Pic0Km : G]

3
· δS [rn] (27)

where α ← Exp(a) ∩ rB∞ is uniformly sampled from the finite set Exp(a) ∩ rB∞
and ϕ(m0) = |Km0/Km0,1| ≤ N (m0).

Remark 7.2. The factor 1/3 in Equations (26) and (27) can be made arbitrarily
close to 1 by increasing the radius r ∈ R and widening the density interval [x/en, x]
in Definition 2.11.

Remark 7.3. It is possible, with essentially the same proof, to rephrase this theorem
in such a way that it concerns an intersection of events instead of a conditional
probability. The probability then also depends on the number N (m) = N (m0) ·2|mR|,
where |mR| is the number of real places dividing m∞. Under the same conditions as
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in Theorem 7.1, one can prove that

Pr
a←D

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ S, and
α · Exp∞(−a∞) ∈ τKm,1

]
≥ N (m0)

ϕ(m0)
· [Pic

0
Km : G]

3 · N (m)
· δS [rn]. (28)

7.2. Proof of Theorem 7.1.

7.2.1. Fixing the ideal c ∈ S and the Arakelov divisor a ∈ Div0Km . We concentrate
on the ‘inner probability’ of Equation (25) in Theorem 7.1 in the case where S = {c}
consists of a single integral ideal. We denote

pa,c = Pr
α←Exp(a)∩rB∞

[
(α) · Exp(−a) = c

∣∣∣ α · Exp∞(−a∞) ∈ τKm,1
]
, (29)

where we leave the dependency on r ∈ R>0, the modulus m and τ ∈ Km/Km,1

implicit. By the law of conditional probability, we have that pa,c in Equation (29)
equals

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c
and

α · Exp∞(−a∞) ∈ τKm,1

/ Pr
α←Exp(a)∩rB∞

[
α · Exp∞(−a∞) ∈ τKm,1

]
(30)

The following lemma addresses the probability values of the numerator and denom-
inator in Equation (30) separately.

Lemma 7.4. Let m = m0m∞ be a modulus, let τ ∈ Km/Km,1, let a ∈ Div0Km be a
fixed Arakelov ray divisor, and let c ∈ ImK be an integral ideal. Then

Pr
α←Exp(a)∩rB∞

 (α) · Exp(−a) = c
and

α · Exp∞(−a∞) ∈ τKm,1

 =
|Exp(a+ d(c))

×
τ ∩ rB∞|

|Exp(a) ∩ rB∞|
, (31)

and, there exists some τ̃ ∈ KR such that

Pr
α←Exp(a)∩rB∞

[
α · Exp∞(−a∞) ∈ τKm,1

]
=
|(Exp(a)m0 + τ̃) ∩ rB∞ ∩ τKm∞

R |
|Exp(a) ∩ rB∞|

,

(32)

where the sampling α ← Exp(a) ∩ rB∞ is uniform in both expressions, and where
τKm∞

R = {(xσ)σ ∈ KR | xσ/σ(τ) > 0 for real σ | m∞}.
Proof. By examining Definition 5.3 closely, noting that Expf((a+ d(c))f) = Expf(af)·
c ∈ ImK , we see that for all α ∈ Exp(a),

(α) · Exp(−a) = c and α · Exp∞(−a∞) ∈ τKm,1 ⇐⇒ α ∈ Exp(a+ d(c))
×
τ .

As the number of choices for α ∈ Exp(a)∩rB∞ equals |Exp(a)∩rB∞|, the number

of good choices equals |Exp(a+ d(c))
×
τ ∩ rB∞| and since the sampling procedure

is uniform, we arrive at the first probability claim. For the second probability
claim, write a = Expf(af) ∈ ImK , for conciseness. We note that for α ∈ Exp(a),
α · Exp∞(−a∞) ∈ τKm,1 is equivalent to

α · Exp∞(−a∞) ∈ Expf(af) ∩ τKm,1 = a ∩ τKm,1 = (am0 + τ ′) ∩ τKm∞
R ,

where τ ′ ∈ a is such that τ ′ ≡ τ modulo m0 (note that a and m0 are coprime).
So, for α ∈ Exp(a) ∩ rB∞, the statement α · Exp∞(−a∞) ∈ τKm,1 is equivalent

to

α ∈ Exp∞(a∞)
(
(am0 + τ ′) ∩ τKm∞

R
)
∩ B∞ = (Exp(a)m0 + τ̃) ∩ B∞ ∩ τKm∞

R
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where we use the fact that Exp(a)τKm∞
R = τKm∞

R and where we put τ̃ = Exp∞(a∞)τ ′ ∈
KR. This proves the claim. □

By combining Equations (30) to (32) and scratching redundant factors, one con-
cludes that there exists τ̃ ∈ Exp(a) such that

pa,c =
|Exp(a+ d(c))

×
τ ∩ rB∞|

|(Exp(a)m0 + τ̃) ∩ rB∞ ∩ τKm∞
R | . (33)

7.2.2. Estimating |(Exp(a)m0+ τ̃)∩rBm∞∩τKm∞
R |. When the radius r is sufficiently

large compared to the lattice Exp(a)m0 ⊆ KR, one can deduce that for a ∈ Div0Km

the number of points in (Exp(a)m0+ τ̃)∩rB∞∩τKm∞
R is approximately Vol(rB∞) ·

2−|mR|/ det(m0), where the 2
−|mR| accounts for the fact that we only take the halves

of the box for which xσ/σ(τ) > 0 at the real embeddings σ | m∞. More precisely,
we instantiate Lemma 2.8 with

• Λ = Exp(a+ d(m0)) ⊆ KR, for which holds Vol(Λ) = N (m0) ·
√
|∆K |,

• t = τ̃ ∈ KR,
• (t′)σ = sgn(σ(τ)) · 1/2 for real ν | m∞, and (t′)σ = 0 otherwise. Here
sgn(σ(τ)) is the sign of σ(τ).
• X = {(xσ)σ ∈ KR | |xσ| ≤ 1 and |xσ| ≤ 1

2 if σ is real and σ | m∞}, such
that X + t′ = B∞ ∩ τKm∞

R . Note that Vol(X) = 2nR−|mR| · (2π)nC , due to
the hybrid complex-real nature of Km∞

R and taking account for the required
positivity (or negativity, depending on τ) at the real places ν | m∞.

• c = n ·N (m0)
1
n ·ΓK · |∆K |

1
2n ≥ 2 · cov(Exp(a+ d(m0))) (see Lemma 2.13(i)

and (iv)), so that the Voronoi cell V0 of Exp(a+ d(m0)) lies in cX.

This yields, for r > 8 · n2 · N (m0)
1
n · ΓK · |∆K |

1
2n ≥ 8nc,

|(Exp(a)m0 + τ̃) ∩ rB∞ ∩ τKm∞
R | ∈ [e−1/4, e1/4] · r

n · 2nR−|mR| · (2π)nC

N (m0) ·
√
|∆K |

. (34)

Applying this to the denominator of Equation (33), we directly deduce that

pa,c ∈ [e−1/4, e1/4] ·
√
|∆K | · N (m0) · 2|mR|

rn · 2nR · (2π)nC
· |Exp(a+ d(c))

×
τ ∩ rB∞| (35)

7.2.3. Estimating the probability of sampling a fixed ideal for a random Arakelov
divisor. Still focusing on the simplified case where S = {c}, the goal of this proof
is to find a lower bound for E

a←D
[pa,c]. By linearity of expectation, we have

E
a←D

[pa,c] ∈ [e−1/4, e1/4] ·
√
|∆K | · N (m0) · 2|mR|

rn · 2nR · (2π)nC
· E
a←D

[
|Exp(a+ d(c))

×
τ ∩ rB∞|

]
.

(36)

So it remains to focus on the expected value of |Exp(a+ d(c))
×
τ ∩ rB∞| for a← D.

7.2.4. The number |Exp(a+ d(c))
×
τ ∩ rB∞| only depends on the Arakelov ray class

of a ∈ Div0Km . A fact that plays a large role in the full proof, is that the number

|Exp(a+ d(c))
×
τ ∩rB∞| of τ -equivalent generators in a box depends on the Arakelov

ray class [a] rather than the divisor a itself. This has as a consequence that the
involved probability distribution changes from D to [D] = U(G), uniform on G ⊆
Pic0Km , which is easier to analyze. This fact, among others, is proven in the following
lemma.
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Lemma 7.5. For all ray divisors a ∈ Div0Km , elements τ, τ ′ ∈ Km, ideals c ∈ ImK
and real numbers r > 0 we have the following list of facts.

(i) |Exp(a)×τ ∩ rB∞| = |Exp(a+ Lτ ′M)×ττ ′ ∩ rB∞|, i.e., the number of τ -equivalent
ray generators of a in a fixed box of radius r is equal to the number of ττ ′-
equivalent ray generators of a+ Lτ ′M in the same box.

(ii) |Exp(a+ d(c))
×
τ ∩ rB∞| = |Exp(a+ d0(c))

×
τ ∩ r

N (c)1/n
B∞|, since the maps d0

and d only differ by some scaling N (c)1/n.
(iii) Writing a∞ =

∑
ν aν · LνM ∈ Div0Km , we have

|Exp(a∞)
×
1 ∩ rB∞| = |µKm,1 | · |(Log(O×Km,1) + (aν)ν) ∩ Slog(r)|, (37)

where Slog r = {(bν)ν ∈
⊕

ν R | bν ≤ nν log(r) ,
∑
ν bν = 0} ⊆ H is a simplex

(as in Lemma 7.6) and Log(O×Km,1) = Log(O×K ∩Km,1). Here, nν = 2 if ν is
complex and 1 otherwise.

Proof. For part (i), observe that multiplying by
(
σ(τ ′)
|σ(τ ′)|

)
σ
∈ KR yields a bijection

from Exp(a) to Exp(a+ Lτ ′M), preserving the maximum norm. It remains to show

that this bijection sends Exp(a)
×
τ to Exp(a+ Lτ ′M)×τ ′τ . Using Definition 5.3 and

assuming Expf(af) = κOK (and therefore Expf([a+ Lτ ′M]f) = τ ′κOK), we have(
σ(τ ′)

|σ(τ ′)|

)
σ

· Exp(a)×τ =

(
1

|σ(τ ′)|

)
σ

· (τ ′) · Exp∞(a∞) · (κO×K ∩ τKm,1)︸ ︷︷ ︸
Exp(a)×τ

=

(
1

|σ(τ ′)|

)
σ

· Exp∞(a∞)︸ ︷︷ ︸
Exp∞((a+Lτ ′M)∞)

·(τ ′κO×K ∩ τ ′τKm,1) = Exp(a+ Lτ ′M)×τ ′τ

For part (ii), recall that multiplying the ideal lattice Exp(d(c)) = c ⊆ KR by
the scalar N (c)−1/n results in the ideal lattice Exp(d0(c)). Applying this scalar
multiplication to the set Exp(a+d(c))∩rB∞ yields a bijective correspondence with
Exp(a+ d0(c)) ∩ r

N (c)1/n
B∞.

In part (iii) it is enough to show that the logarithm Log : K×R → Log(K×R ) takes

Exp(a∞)
×
1 to the shifted lattice Log(O×Km,1) + (aν)ν ⊂ H and takes rB∞ ∩K0

R to

the simplex Slog(r) ⊂ H. This logarithmic map is |µKm,1 |-to-one on Exp(a∞)
×
1 , as

it sends roots of unity to the all-zero vector in Log(K×R ) (which is the unit in that
group), yielding the extra factor |µKm,1 | in Equation (37). Here, µKm,1 = µK∩Km,1,
i.e., the roots of unity in Km,1. □

As a corollary of Lemma 7.5(i) we deduce that |Exp(a)×τ ∩rB∞| = |Exp(a+ LκM)×τ ∩
rB∞| for κ ∈ Km,1, i.e., the number of elements |Exp(a)×τ ∩ rB∞| only depends on
the Arakelov ray class of a (next to r ∈ R, m and τ ∈ Km). Choose a (mea-
surable) fundamental domain F ⊆ Div0Km of the quotient group Pic0Km . Put
FG = {a ∈ F | [a] ∈ G}, which is a subdomain of F for the subgroup G ⊆ Pic0Km

and likewise put FTm = {a ∈ F | [a] ∈ Tm}, a fundamental domain of Tm in
Pic0Km . Note that FTm ⊆ FG. By the assumption that [D] is uniform on G + [b],
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and [d0(c)] ∈ [d0(S)] ⊆ G+ [LτM]− [b], we deduce, writing r̃ = rN (c)−1/n,

E
a←D

[
|Exp(a+ d(c))

×
τ ∩ rB∞|

]
= E

a←D

[
|Exp(a+ d0(c))

×
τ ∩ r̃B∞|

]
(38)

= E
a←U(FG+[b])

[
|Exp(a+ d0(c))

×
τ ∩ r̃B∞|

]
= E

a←U(FG)

[
|Exp(a+ LτM)×τ ∩ r̃B∞|

]
(39)

= E
a←U(FG)

[
|Exp(a)×1 ∩ r̃B∞|

]
=

1

|G/Tm| E
a←U(FTm )

[
|Exp(a)×1 ∩ r̃B∞|

]
(40)

where the first equality follows from scaling (Lemma 7.5(ii)) and the second one by
the fact that the random variable is an Arakelov ray class invariant (Lemma 7.5(i))
and that [D] is uniform on G + [b]. The third equality holds because the class
[a + d0(c)] for a ∈ Pic0Km uniformly distributed over FG + [b] is distributed as
[a′+ LτM] for a′ ← U(FG). This follows from the assumption d0(c) ∈ G+[LτM]− [b].
The fourth equality follows directly from Lemma 7.5(i), and the last equality follows
from Definition 5.3. Namely, an Arakelov divisor a can only have generators if the
ideal class of Exp(af) is trivial, i.e., if [a] ∈ Tm. So, instead, a can be chosen
uniformly from a fundamental domain FTm of Tm in Div0Km , with a correction
factor of 1

|G/Tm| in the expected value.

7.2.5. Volume of the simplex in H. For the next step in the proof, we need to know
the volume of the simplex Slog r ⊆ H, hence the following lemma.

Lemma 7.6. The volume of the simplex Sα = {(bν)ν ∈ H | bν ≤ nνα} ⊆ H =
LogK0

R for α ∈ R>0 is given by

Vol(Sα) =

√
r+ 1 · (nα)r

r!
,

where r = nR + nC − 1 and where nν = 2 whenever ν is complex and nν = 1 when
ν is real.

Proof. By applying to Sα ⊆ H the translation cν = nνα− bν , one can see that Sα
is a regular r-simplex {c ∈ ∏ν R |

∑
ν cν = n · α and cν ≥ 0} with edge length√

2 · n · α. Therefore, the volume of Sα equals Vol(Sα) =
(nα)r

√
r+1

r! [66]. □

7.2.6. Taking the logarithmic map into H = LogK0
R. Applying the logarithmic map

on the set Exp(a)
×
1 ∩ r · N (c)−1/nB∞, sends Exp(a)

×
1 to a shift of the logarithmic

ray unit lattice Log(O×Km,1) ⊆ H and r · N (c)−1/nB∞ to a simplex Sn log r−logN (c),

where Sx = Log(xB∞) ⊆ H = LogK0
R as in Lemma 7.6 (see also Lemma 7.5(iii)).

Note that Vol(Tm) = Vol(Log(O×Km,1)).
The expected value as in Equation (40) then equals the average number of points

of a randomly shifted logarithmic ray unit lattice into this simplex, which equals
Vol(Sn log r−logN (c))/Vol(T

m) (see Lemma 2.4). Therefore,

1

|G/Tm| E
a←U(FTm )

[|Exp(a)×1 ∩ rN (c)−1/nB∞|] =
|µKm,1 | ·Vol(Sn log r−logN (c))

|G/Tm| · |Tm|
(41)

=
[Pic0Km : G] · |µK | ·Vol(Sn log r−logN (c))

ϕ(m0) · 2|mR| · hK · |T |
=

[Pic0Km : G] · |µK | · C(r,N (c))

ϕ(m0) · 2|mR| · hK ·RK
(42)
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where, for the second equation, we use that |G/Tm|·|Tm| = |G| = |Pic0Km |/[Pic0Km :
G] and Equation (21) of Lemma 5.1. For the third equation we use the fact that
Vol(Sn log r−log N(c))

|T | = C(r,N (c))
RK

, where we define C(r,N (c)) := (n log r−logN (c))r/r!

(see Lemma 7.6 and Equation (9)).

7.2.7. Applying the Abel summation formula to get the probability for the ideal set
S. By combining Equations (36), (40) and (42), using the class number formula

(see Equation (4)) and the fact that N (m0)
ϕ(m0)

= |OK/m0|
|(OK/m0)×| ≥ 1, one obtains,

E
a←D

[pa,c] ≥ e−1/4 ·
√
|∆K | · N (m0) · 2|mR|

rn · 2nR · (2π)nC
· [Pic

0
Km : G] · |µK | · C(r,N (c))

ϕ(m0) · 2|mR| · hK ·RK
(43)

= e−1/4 · [Pic
0
Km : G] · C(r,N (c))

rn · ρK
· N (m0)

ϕ(m0)
(44)

where |mR| is the number of real places dividing m∞ and where C(r,N (c)) =
(n log r − logN (c))r/r!. By taking the sum over all c ∈ S (note that [d0(S)] ⊆ G),
using linearity of the expected value operator, one can achieve the following lower
bound.

E
a←D

[∑
c∈S

pa,c

]
=
∑
c∈S

E
a←D

[pa,c] (45)

∈ [e−1/4, e1/4] · N (m0)

ϕ(m0)
· [Pic0Km : G] ·

∑
c∈S

C(r,N (c))

ρK · rn
(46)

By an application of the Abel summation formula, one can relate the sum
∑

c∈S C(r,N (c))
to an integral involving the counting function |S(t)| = |{c ∈ S | N (a) ≤ t}| of the
ideal set S and the derivative of the volume function C(r,N) = (n log r− logN)r/r!
with respect to the variable N . More precisely, we have∑

c∈S

C(r,N (c))

ρK · rn
= −

∫ rn

t=1

|S(t)|
ρK · rn

·
[
d
dNC(r,N)

∣∣∣
N=t

]
dt (47)

=
1

(r− 1)!

∫ rn

t=1

|S(t)|
ρK · t

·
[
d
dN Γ

(
r, n log r − logN

)∣∣∣
N=t

]
dt, (48)

Where the first equality is the Abel summation formula [2, Theorem 4.2] and the
second equality follows from computing the derivative of the upper incomplete
Gamma function Γ(r, x) =

∫∞
x
ur−1e−udu.

− d
dNC(r,N)

∣∣∣
t
=

(n log r − log t)r−1

t · (r− 1)!
=

rn

t · (r− 1)!
·
[
d
dN Γ

(
r, n log r − logN

)]∣∣∣
t
.

Using Definition 2.11 about ideal density and the fact that the integrand is positive,
Equation (48) is lower bounded by

1

(r− 1)!

∫ rn

t=(r/e)n

|S(t)|
ρK · t

·
[
d
dN Γ

(
r, n log r − logN

)∣∣∣
N=t

]
dt (49)

≥ δS [r
n]

(r− 1)!

∫ rn

t=(r/e)n

[
d
dN Γ

(
r, n log r − logN

)∣∣∣
N=t

]
dt ≥ 1

2 · δS [rn], (50)
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where the last inequality (Equation (50)) follows from the definition of the upper
incomplete Gamma function,

1

(r− 1)!

∫ rn

t=(r/e)n

(
d

dt
Γ(r, n log r − logN)

∣∣
N=t

)
dt =

1

(r− 1)!
· (Γ(r, 0)− Γ(r, n))

= 1− e−n
r−1∑
k=0

nk

k!
≥ 1/2,

where we used the fact that e−n
∑

r−1
k=0

nk

k! equals the probability that a Poisson
distribution with parameter n yields at most r − 1 ≤ n − 1 occurrences, which is
bounded by a half.

By combining Equations (46), (48) and (50) and using e−1/4/2 > 1/3, we obtain

E
a←D

[
Pr

α←Exp(a)∩rB∞

[
(α) · Exp(−a) ∈ S

∣∣ α · Exp∞(−a∞) ∈ τKm,1
]]

≥ N (m0)

ϕ(m0)
· [Pic0Km : G] · δS [rn]/3.

which finishes the proof. □

8. Uniform sampling in a box intersected with an ideal lattice

8.1. Introduction. In this section, we explain how one can efficiently sample in a
(shifted) ideal lattice x(b+ γ) intersected with a (partially positive) box, provided
that the dimensions of the box are sufficiently large. More precisely, let r > 0 and
let rB∞ denote the box

rB∞ := {(xσ)σ ∈ KR | |xσ| ≤ r, ∀σ}.
Now, the box of interest is rB∞∩τKm∞

R , whose coordinates at σ have the same sign
as (σ(τ))σ for the real embeddings σ | m∞. Our aim of this section is to perfectly
uniform sample from the intersection rB∞ ∩ τKm∞

R ∩ x(b+ γ).
The algorithm we use to sample uniformly in this box follows the framework

described by Plançon and Prest in [64], and is very similar to their instantiation of
that framework [64, Sec. 4.2]. The main two differences are that [64] analyzes the
running time of their algorithm only heuristically, whereas here we provide a prov-
able running time; also, [64] assumes perfect uniform samples from real intervals,
whereas here we only rely on perfectly uniform bits.

Technical idea of the algorithm. The core idea of the algorithm applies to general
lattices and relies on two observations. The first observation: for lattices Λ satis-
fying Λ ⊆ 1

NZn and sufficiently large, bounded convex sets S ⊆ Rn, the task of

uniformly sampling from S ∩ Λ reduces to uniformly sampling in (1 + c)S ∩ 1
NZn

for some constant c > 0, where we understand (1 + c) · S := {(1 + c) · s | s ∈ S}.
Indeed, we can use a ‘good’ fundamental domain F of Λ to round a uniform sample
of (1+ c) ·S ∩ 1

NZn to a point in Λ. Since (F + ℓ)∩ 1
NZn contains the same number

of elements for all ℓ ∈ Λ ∩ S (since Λ ⊆ 1
NZn), this yields a perfect uniform distri-

bution over S ∩ Λ, if c > 0 is chosen adequately. This observation is formalized in
Lemma 8.7.

The second observation is that each lattice Λ given by a basis B can be approxi-
mated by a lattice Λ̃ given by a basis B̃ that satisfies Λ̃ ⊆ 1

NZn. Hence, by the first

observation, one can perfectly uniformly sample from Λ̃ ∩ S for suitable S. If the
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approximation B̃ ≈ B is good enough, one can transform this perfectly uniform
sample from Λ̃ ∩ S to a perfectly uniform sample from Λ ∩ S. This observation is
formalized in Proposition 8.8.

Note that in the first observation, a ‘good’ fundamental domain of the lattice
is required. For such a fundamental domain, we need to know a sufficiently good
basis of the ideal we want to sample from. We obtain such a basis by using one of
the provable variants of the BKZ algorithm [68, 39, 33, 1]. Lemma 8.5 captures the
end result of using a provable variant of the BKZ algorithm; for an in-depth proof
of this lemma, we refer to Sections 26 to 28.

Remark 8.1. We note that this choice of basis reduction algorithm (BKZ) does not
exploit the ideal structure of the lattice. There do exist algorithms that exploit the
ideal structure [29, 63] and might outperform BKZ in some context. However, these
algorithms are heuristic, require a quantum computer and/or some exponential pre-
processing on the number field and in the case of [29] are restricted to cyclotomic
number fields. Hence, we chose to use the BKZ algorithm here in order to obtain a
non-heuristic algorithm. If one allows heuristics and quantum algorithms, it may be
possible to diminish the block-size dependent quantity bb that appears in the running
time of the basis reduction algorithm.

Ray. Actually, in this section, a slightly more general algorithm is described. In
this more general algorithm, we sample elements from an intersection of a (shifted)
ideal lattice x(b + γ) and a box rB∞, that also fall in the τ -ray mod m, for some
τ ∈ Km.

That is, we will sample from x((b+ γ)∩ τKm,1) intersected with rB∞; those are
the elements of the shape x(β + γ) for which β + γ ∈ τKm,1 and |xσσ(β + γ)| ≤ r
for all embeddings σ. So, for the algorithm including the modulus m, the output
additionally satisfies certain modular conditions depending on the modulus m.

One retrieves the simpler algorithm (without a modulus) that samples in x(b+
γ) ∩ rB∞ by just putting m = OK (so that τKm,1 = Km,1 = Km = K∗ for all
τ ∈ K∗).

8.2. On efficiently deciding whether an algebraic number is greater or
equal to some rational number. To be able to perfectly sample from an ideal
lattice intersected with a box, one needs to be able to efficiently decide, for an
algebraic number α ∈ K in symbolic representation, whether |σ(α)| > r or |σ(α)| ≤
r (or, for real embeddings, whether σ(α) > r or ≤ r) for some rational r ∈ Q and
embedding σ. Namely, the combined information over all places signifies whether
the algebraic number α is inside some box rB∞ or not.

The challenge in this question is that the algebraic number is given in some
symbolic representation, like α = 408

√
2− 577(≈ −0.0008665). In order to decide,

for example, whether α > 0 or ≤ 0, we need to know how well to approximate this
number (in this particular case at least up to 3 decimals).

The result of this section, in a nutshell, is that for any algebraic number α ∈ K
we can efficiently decide whether |σ(α)| (or σ(α) in the case of a real place) is
larger than some rational r ∈ Q or not. This is proven in the following sequence
of lemmas. The next lemma is coined Liouville’s lemma, since the technique comes
from the tendency of algebraic numbers to avoid rationals, which was originally
used to show the explicit existence of transcendental numbers (Liouville numbers).
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Lemma 8.2 (Louiville’s lemma). Let f(x) ∈ Z[x] be a degree n polynomial. Let
ω ∈ R be a real root of f . Then, if ω /∈ Z, we have, for all z ∈ Z,

|ω − z| >
[
(n+ 1)3 · 2n · (2 + ∥f∥∞)n

]−1
=: A(f).

Proof. Let h | f be an irreducible factor of f and let ω be a real root of h(x) ∈ Z[x].
If h is linear, ω = c

d ∈ Q, and by the rational root theorem, d is an integer factor
of the leading coefficient of h (and thus of that of f). Hence, if ω /∈ Z, we have
|ω − z| ≥ 1/d ≥ 1/∥f∥∞ > A(f) for every z ∈ Z.

Assume now that h is non-linear. By the mean value theorem, we have, for any
t ∈ [ω − 1, ω + 1],

|h(t)| = |h(t)− h(ω)| ≤ max
t0∈[ω−1,ω+1]

|h′(t0)| · |t− ω| (51)

Additionally, for any integer z ∈ Z, we have |h(z)| ≥ 1, since h(x) ∈ Z[x] is irre-
ducible and of degree > 1 (and hence cannot have integer roots). This immediately
yields, for any integer z ∈ Z,

|z − ω| ≥ |h(z)|
maxx0∈[ω−1,ω+1] |h′(x0)|

≥
(

max
x0∈[ω−1,ω+1]

|h′(x0)|
)−1

(52)

≥
(
max
h|f

max
ω root of h

max
x0∈[ω−1,ω+1]

|h′(x0)|
)−1

(53)

where, in the last line, the first maximum is over all divisors of f (also the possible
linear ones) and the second maximum is over all real roots. We now aim to find
a easy-to-compute lower bound on Equation (53), which we call A(f), in terms of
the coefficients of f alone, using the Landau-Mignotte bound [76, Theorem 6.32]
and Cauchy’s bound [27, Section 3.6].

By the triangle inequality, writing h(x) =
∑deg(h)
j=0 hj ·xj , ∥h∥∞ = maxj |hj | and

∥f∥∞ = maxj |fj |, we can deduce

max
x0∈[ω−1,ω+1]

|h′(x0)| ≤
deg(h)∑
j=1

j · |hj | · max
x0∈[ω−1,ω+1]

|x0|j−1

≤ deg(h)2 · ∥h∥∞ · max
x0∈[ω−1,ω+1]

|x0|deg(h)−1

≤ deg(h)2 · ∥h∥∞ · (|ω|+ 1)deg(h)−1

≤ n2 · (n+ 1) · 2n · ∥f∥∞ · (|ω|+ 1)n−1 (Landau-Mignotte bound)

≤ n2 · (n+ 1) · 2n · ∥f∥∞ · (2 + ∥f∥∞)n−1 (Cauchy’s bound)

< (n+ 1)3 · 2n · (2 + ∥f∥∞)n = A(f)−1.

where we recall that n = deg(f) ≥ deg(h). Thus, for any z ∈ Z and any real root
ω of f satisfying ω /∈ Z, we have

|ω − x| ≥ A(f) =
[
(n+ 1)3 · 2n · (2 + ∥f∥∞)n

]−1
. (54)

□

Corollary 8.3. There exists an algorithm that, given as input a degree n polynomial
f(x) ∈ Z[x] and some rational r ∈ Q, decides whether the roots ωi ∈ C of f(x)
satisfy |ωi| > r or |ωi| ≤ r for complex roots ωi, respectively, ωi > r or ωi ≤ r for
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real roots ωi. The running time of the algorithm is polynomial in the size of f(x)
and r.

Proof. Denote r = a
b ∈ Q. We replace the roots ωi by b ·ωi, the polynomial f(x) by

bn ·f(b−1 ·x) and the rational r by a ∈ Z. Hence, we may without loss of generality
assume that r ∈ Z, with the expense of an increase in the size of the polynomial f
by n · size(r).

We start with the case of a real root ω of f , and we then proceed with the case
of a complex root.
Real root case.
According to Lemma 8.2, we have for any real but non-integral root ω of f(x) and
any z ∈ Z, |ω−z| > A(f). This lower bound gives us means to decide whether a real
root of f is larger (or equal) or smaller than some integer. Namely, approximate

the real roots of f within precision < A(f)/2 =
[
(n+ 1)3 · (2 + ∥f∥∞)n

]−1
/2,

which can be done in time poly(n, log ∥f∥∞) = poly(n, size(f), size(r)). Denote the
approximations of these real roots by ω̃i ≈ ωi. There are two cases:

• |ω̃i − z| < A(f)/2 for some integer z ∈ Z. In that case, ωi = z. Indeed, if
ωi were not an integer, we must have

A(f) ≤ |ωi − z| ≤ |ωi − ω̃i|+ |ω̃i − z| < A(f),

which is a contradiction. Hence, ωi is an integer and equal to z ∈ Z. In
such case, deciding whether |ωi| > r or ≤ r is easily and efficiently done.

• |ω̃i − z| ≥ A(f)/2 for all z ∈ Z. Then, by the triangle inequality, we have
ωi /∈ Z, since, for all z ∈ Z,

|ωi − z| ≥ |ω̃i − z|︸ ︷︷ ︸
≥A(f)/2

− |ωi − ω̃i|︸ ︷︷ ︸
<A(f)/2

> 0.

Hence, by Lemma 8.2, |ωi−z| ≥ A(f) for any integer z ∈ Z. We claim that
ω̃i > r if and only if ωi > r. That is, by using the approximation ω̃i, we
can decide whether ωi > r or ≤ r.

Indeed, suppose (as to achieve a contradiction) that ωi ≤ r but ω̃i > r.
Then, since |ωi − r| ≥ A(f), and thus r − ωi ≥ A(f).

r − ωi︸ ︷︷ ︸
≥Ã(f)

= (r − ω̃i)︸ ︷︷ ︸
≤0

+ (ωi − ω̃i)︸ ︷︷ ︸
∈[−A(f)/2,A(f)/2]

≤ A(f)/2

which is a contradiction. The other case (ωi > r but ω̃i ≤ r) can be
excluded similarly.

Complex root case.
For the complex root case, we take the companion matrix Mf of f =

∑n
j=0 fjx

j .

This n × n matrix Mf is defined by (Mf )j+1,j = 1 for j ∈ {1, . . . , n − 1} and
(Mf )j,n = −fj−1/fn for j ∈ {1, . . . , n} (this is the companion matrix of the monic
polynomial f−1n · f(x)). It is known that Mf has the roots ωi of f as eigen val-
ues. Therefore, the matrix resulting from the Kronecker product Mf ⊗Mf has all
products ωiωj (i, j ∈ {1, . . . , n}) as eigen values, in particular the square absolute
values |ωi|2 for all original roots of f .

Computing the characteristic polynomial ofMf⊗Mf , and clearing denominators
of that polynomials yields the n2-degree integer polynomial g(x) ∈ Z[x]. Identifying
the roots of g that are the square absolute values of those of f (by approximating
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the roots of both), one can apply the same technique as in the real root case to
decide whether |ωi|2 > r2 or not.

It remains to be shown that the polynomial g is polynomially bounded in size by
the size of f , so that all operations can be done in polynomial time in size(f) and
size(r). The j-th coefficient pj of the characteristic polynomial p(x) of Mf ⊗Mf

can be computed (up to sign) by taking the sum of all
(
n2

j

)
principal minors of

Mf ⊗Mf of size j [42, §1.2, Equation (1.2.13)]. By Hadamard’s bound, each of
these principal minors has size at most ∥f∥2j∞ and can only have a denominator
that is a divisor of f2jn . Hence, f2nn · p(x) must be a multiple of g(x). This means
that ∥g∥∞ ≤ ∥p∥∞ ≤ (n2)!∥f∥2n∞ . Hence, size(g) ≤ poly(n, size(f)), which was to
be demonstrated. □

Corollary 8.4. There exist an algorithm that on input a degree n number field
K = Q(θ), an ideal b, an element x = (xσ)σ ∈ K×R represented by rational numbers,
an element α ∈ b represented by the Q-basis of K (the power-basis formed by θ),
a rational g ∈ Q and an integer k ∈ Z>0, decides whether xσ|σ(α)| > g1/k or
xσ|σ(α)| ≤ g1/k, for every complex embedding σ; and decides whether xσσ(α) >
g1/k or xσσ(α) ≤ g1/k, for every real embedding σ. Moreover, this algorithm runs
in time poly(size(α), size(x), size(b), size(g), n, log |∆K |, k).
Proof. Throughout this paper we assume that the polynomial f defining the number
field K satisfies size(f) ≤ poly(log |∆K |) (see Section 2.6). As xσ|σ(α)| > g1/k is
equivalent to |σ(αk)| > g/xkσ (with a possible sign change), we can reduce this
result to that of Corollary 8.3.

The sole challenge is to find and bound the polynomial of which αk is a root. For
this we start by bounding the polynomial for which α ∈ b is a root. Write down
the multiplication matrix of α in the θ-basis. That is, the matrix defined by the
coefficients qij occurring in the identities αθj =

∑n−1
i=0 qijθ

i for j ∈ {0, . . . , n − 1}.
Then the characteristic polynomial of this matrix is one of which α ∈ b must be a
root.

The size of the multiplication matrix of α is bounded by poly(size(α), size(f)) =
poly(size(α), log |∆K |). Hence, the size of the characteristic polynomial (whose j-
th coefficient can be shown to be the sum of all principal minors of size j of the
multiplication matrix, which can be bounded by Hadamard’s bound) must be poly-
nomially bounded in size(α), log |∆K | and n as well. By a very similar reasoning,
the size of the characteristic polynomial of αk must be poly(n, log |∆K |, size(α), k).
By applying Corollary 8.3, we obtain the final result. □

8.3. Lattice reduction. Being able to successfully sample in an ideal lattice inter-
sected with a box largely depends on the maximum vector length (i.e., the quality)
of the basis of the ideal lattice compared to the dimensions of the box. If these
dimensions of the box are somewhat larger than the basis vectors, this sampling
can be done efficiently. For the applications and algorithms of the present work,
we generally require the dimensions of this box to be as small as possible, since
this benefits their complexity. As a consequence, we would like to obtain a basis of
the ideal lattice with as small as possible maximum vector length (i.e., best basis
quality), but without paying too much time.

The standard algorithm for finding lattice bases of good quality is the Block Ko-
rkine Zolotarev (BKZ) algorithm, which allows for a controllable trade-off between
the output basis quality and the heuristic run time. Unfortunately, no published
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versions of the BKZ-algorithm exist that have a provable run-time, which is what
we require in the present work (as our end goal is an algorithm with a provable
run-time). Hence, Sections 26 to 28 of this paper is devoted to showing that there
exists a variant of the BKZ-algorithm with the same trade-off between output basis
quality and run time as the textbook version, but in which the run time is actually
proven and non-heuristic.

The proof of this result requires both careful numerical analysis (for the ideal
lattice case) and precise monitoring of the sizes (‘potential’) of the bases occurring
intermediately in the algorithm. To stay relevant with the current topic, this proof
is therefore postponed to Part 3. The overall result can be summarized in the
following lemma.

Lemma 8.5. Let K be a number field of degree n. Let xa be an ideal lattice where
x ∈ K×R is represented by rational numbers, and where a ∈ IK is represented by
a rational Hermite Normal Form matrix Ma with respect to a given LLL-reduced
basis of OK .

Then there exists an algorithm that computes a Z-basis (xα1, . . . , xαn) of xa with
αi ∈ K such that

∥x · αi∥ ≤ 2n · b2n/b · λn(x · a),
using time at most T = poly(bb, size(a), log |∆K |, size(x)).

Proof. The proof can be found in Section 28.6. □

8.4. Perfectly uniform sampling in a bounded convex set intersected with
a lattice.

Notation 8.6. We denote Br = {x ∈ Rn | ∥x∥ < r}. For any bounded convex set
S ⊆ Rn and c ∈ R>0, we denote cS := {c · s | s ∈ S}. For a basis B = (b1, . . . ,bn)
of Rn, we denote L(B) = BZn := {∑n

i=1 bizi | zi ∈ Z for all i} (which is a lattice).

Lemma 8.7. Let B = (b1, . . . ,bn) with bi ∈ 1
NZn be a basis, let D =

∑
i ∥bi∥, let

U, c, ε ∈ R>0 such that c > ε > 0. Suppose S is a convex set satisfying BD/ε ⊆ S ⊆
BU for which we can perfectly uniformly sample in (c+ ε)S ∩ 1

NZn within expected
time T . Additionally, suppose we can efficiently decide membership in cS.

Then we can perfectly uniformly sample in cS∩BZn within time poly(T, size(B),
logU, logN) with success probability lower bounded by

|(c− ε)S ∩ 1
NZn|

|(c+ ε)S ∩ 1
NZn| (55)

Proof. (Algorithm description) Sample a perfectly uniform u ∈ (c+ ε)S ∩ 1
NZn.

Compute v = B−1u (which can be done in time poly(T, size(B), logU)) and put
wi = ⌊vi⌉, rounding to the nearest integer. Output Bw if Bw ∈ cS, otherwise
output ‘failure’.

(Analysis) We will prove that this procedure yields a perfectly uniform sample
in BZn ∩ cS and that the success probability of a single iteration is lower bounded
by the quantity in Equation (55).

For a fixed b ∈ (BZn) ∩ cS, the probability that b is outputted is proportional
to the number |(b + B · [− 1

2 ,
1
2 )
n) ∩ (c + ε)S ∩ 1

NZn|. We have b ∈ cS; and each

x ∈ B · [− 1
2 ,

1
2 )
n satisfies ∥x∥ ≤ D/2 ≤ D, hence x ∈ BD ⊆ ε · S (since BD/ε ⊆ S).
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So, we obtain that b+B · [− 1
2 ,

1
2 )
n ⊆ (c+ ε)S by the convexity of S. Therefore

|(b+B · [− 1
2 ,

1
2 )
n) ∩ (c+ ε)S ∩ 1

N
Zn| = |(b+B · [− 1

2 ,
1
2 )
n) ∩ 1

N
Zn|

= Nn det(B),

for all b ∈ (BZn) ∩ S. Note that this relies critically on 1
NZn ⊆ BZn. So the

sampling probability is the same for all b ∈ (BZn)∩ cS, which is the property of a
perfect uniform distribution. It remains to show that the probability of success (a
sample in BZn ∩ cS) is lower bounded.

If the initial uniform sample u satisfies u ∈ (c − ε)S ∩ 1
NZn, then Bw =

B⌊B−1u⌉ = u+y for some y ∈ B[− 1
2 ,

1
2 )
n ⊆ εS (where we mean with ⌊·⌉ that every

coordinate is rounded to the nearest integer). For such u holds that u+ y must lie

in cS. Therefore, the success probability is lower bounded by
|(c−ε)S∩ 1

N Zn|
|(c+ε)S∩ 1

N Zn| . □

In our context, the basis Bb of an ideal lattice b (as embedded in the Minkowski
space) cannot be represented by rational numbers, but is rather symbolically rep-
resented. In the following proposition we show that this is not a real complication;
namely, it is enough to be able to compute a sufficiently good rational approxi-
mation C ≈ Bb in order to be able to perfectly uniformly sample in this lattice b
intersected with a certain convex set S.

As a consequence, the algorithm of the following proposition takes as an input
a sufficiently good approximation C of B and uses only this rational matrix C to
compute with. To be able to check whether an element of the lattice BZn lies in
the convex set S or not, an auxiliary oracle is needed. In our use-case, this oracle
can be implemented by using the results of Section 8.2.

Proposition 8.8. Let B = (b1, . . . ,bn) with bi ∈ Rn be a basis of lattice Λ and
let D = 2

∑
i ∥bi∥.

(1) Let t ∈ Rn satisfying ∥t∥ < U for some U ∈ R>0.
(2) Let N ∈ Z>0 satisfying n

N ≤ D and let C ∈ 1
NZn be an approximation of

B satisfying ∥C−B∥ ≤ ∥B−1∥−1 ·D/U and
∑
i ∥ci∥ ≤ D.

(3) Let t̃ ∈ 1
NZn an approximation of t ∈ Rn satisfying ∥t − t̃∥∞ ≤ 1

2N and

∥t̃∥ < 2U .
(4) Let 1/5 > ε > 0 and let S ⊆ Rn be a convex set satisfying BD/ε ⊆ S ⊆ BU .
(5) Suppose we can perfectly uniformly sample in (1 + 4ε)S ∩ 1

NZn within ex-
pected time T .

(6) Additionally, suppose we have an oracle OB that can decide, on input v ∈
Zn, whether Bv ∈ S + t or not.

Then we can sample v ∈ Zn such that Bv is perfectly uniformly distributed in
(S+ t)∩BZn, within expected time poly(T, size(C), logU, logN), using a single call
to OB, and with success probability lower bounded by

|(1− 5ε)S ∩ 1
NZn|

|(1 + 5ε)S ∩ 1
NZn|

Proof. (Algorithm description)
(1) We start with processing the shift t ∈ Rn. We use the approximation t̃ ∈ 1

NZn
that satisfies ∥t − t̃∥∞ ≤ 1

2N ≤ D/(2n) and hence ∥t − t̃∥2 ≤ D/2. We compute

w0 = ⌊C−1t̃ ⌉ (where ⌊·⌉ means that each component is rounded to the nearest
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integer).
(2) Imitate the approach in Lemma 8.7, (taking c = 1 + 3ε) by sampling u ∈
1
NZn ∩ (1 + 4ε)S and computing c = C⌊C−1u⌉ until c ∈ (1 + 3ε)S. By the ex-
act same reasoning as in Lemma 8.7, one then obtains a perfectly uniform sample
c ∈ C · Zn ∩ (1 + 3ε)S.
(3)We compute v = C−1c = ⌊C−1u⌉ and we output v+w0 ∈ Zn ifB(v+w0) ∈ S+t
(using the oracle OB). Otherwise output ‘failure’.

(Analysis) In this analysis we will denote b = Bv,b0 = Bw0, c = Cv and
c0 = Cw0. We will first show that the output v + w0 ∈ Zn has the property that
B(v + w0) is perfectly uniformly distributed in BZn ∩ (S + t). We will finish the
proof with a lower bound on the success probability and a run time analysis.

By Lemma 8.7, we know that v + w0 has the property that C(v + w0) = c+ c0
is perfectly uniform in CZn ∩ [(1+3ε)S+ c0]. Hence B(v+w0) = BC−1(c+ c0) is
perfectly uniform in BZn ∩ [BC−1(1+ 3ε)S +b0]. So, since we reject those v+w0

for which B(v+w0) /∈ S+t, it is sufficient to show that S+t ⊂ BC−1(1+3ε)S+b0.
This is equivalent to CB−1(S + t) ⊂ (1 + 3ε)S + c0 which is in turn equivalent to
CB−1(S + t)− c0 ⊂ (1 + 3ε)S. To show this, take an arbitrary s ∈ S, and put

CB−1(s+ t)− c0 = s+ t− c0 + (CB−1 − I)s+ (CB−1 − I)t. (56)

We will now show that ∥t−c0∥ ≤ D, ∥(CB−1−I)s∥ ≤ D and ∥(CB−1−I)t∥ ≤ D,
so that the right-hand side of Equation (56) lies in S⊞B3D ⊆ S⊞(3ε)S = (1+3ε)S
(where ⊞ denotes the Minkowski sum). We have ∥t − c0∥ ≤ ∥t − t̃∥ + ∥t̃ − c0∥ ≤
D/2 + D/2 since ∥t − t̃∥ ≤ D/2 by construction and t̃ − c0 = t̃ − C⌊C−1t̃⌉ =
t̃ − C(C−1t̃ + u) = Cu with u ∈ [−1/2, 1/2)n. Hence ∥t̃ − c0∥ = ∥Cu∥ ≤ D/2,
by assumption. Using the properties of matrix norms, we obtain ∥(CB−1 − I)∥ =
∥(C − B)B−1∥ ≤ ∥C − B∥∥B−1∥ ≤ D/U . Combining this with the assumptions
∥s∥ ≤ U and ∥t∥ ≤ U , we obtain that all the summands’ norms are bounded by D.

(Success probability) For the success probability, note that, if u ∈ 1
NZn from

step (2) of the algorithm description were to be in (1− 5ε)S, a similar reasoning as
above shows that, for v = ⌊C−1u⌉, we surely have c = Cv ∈ (1− 4ε)S.

We have, by the Neumann series of (I−(I−C−1B))−1, noting that ∥I−C−1B∥ ≤
D/U ≤ ε < 1/5,

∥BC−1 − I∥ = ∥(I − (I −C−1B))−1 − I∥ =
∥∥ ∞∑
j=1

(I −C−1B)j
∣∣ ≤ ∞∑

j=1

∥I −C−1B∥j

≤ 5
4D/U.

Hence, by similar computations as above, we can bound the norms of the following
summands:

B(v + w0) = BC−1(c+ c0)− t
= c+ (BC−1 − I)c︸ ︷︷ ︸

≤ 5
4D

+(BC−1 − I)t︸ ︷︷ ︸
≤ 5

4D

+(BC−1 − I)(c0 − t)︸ ︷︷ ︸
≤ 5

4D
2/U≤D/4

+ c0 − t︸ ︷︷ ︸
≤D

.

So, since c = Cv ∈ (1 − 4ε)S and all the other summands together have norm
at most 4D and their sum thus lies in B4D ⊆ 4εS, we see that B(v + w0) ∈
(1− 4ε)S ⊞ 4εS ⊆ S.
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Therefore, the success probability of the entire procedure is lower bounded by
|(1−5ε)S∩ 1

N Zn|
|(1+4ε)S∩ 1

N Zn| ≥
|(1−5ε)S∩ 1

N Zn|
|(1+5ε)S∩ 1

N Zn| .

(Run time analysis) Note that the additional running time of this algorithm
compared to Lemma 8.7 is caused by the (possible) extra computations on t̃ ∈ 1

NZn
(which satisfies ∥t̃∥ ≤ 2U , which can be at most poly(size(C), logU, logN). The
dependency on n is hidden in size(C). □

Notation 8.9. We define ϕ :
∏
σ Z ↪→ KR, (nσ)σ 7→ (xσ)σ by putting

xσν
= nσν

+ inσ̄ν
if ν is complex

xσ̄ν
= nσν

− inσ̄ν
if ν is complex

xσν
= nσν

if ν is real

(57)

Abusing notation, we will just denote Zn or
∏
σ Z for ϕ(

∏
σ Z).

Corollary 8.10. Let K be a degree n number field, let x ∈ K×R be represented
by rational numbers, let b ∈ IK be an ideal and let m = m0m∞ be a modulus. Let
ω ∈ Q≥1 and let r = 48·ω ·b2n/b ·n7/2 ·|∆K |

3
2n ·N (xbm0)

1
n . Let Bbm0 = (b1, . . . ,bn)

with bj ∈ KR (i.e., in the Minkowski space) be a basis of bm0 satisfying

∥x · bi∥ ≤ 2n · b2n/b · λn(x · b ·m0)

Let τ ∈ Km satisfying ∥xτ∥ ≤ r. Then we can perfectly uniformly sample from

x(bm0 + τ) ∩ rBτ∞.
within expected time poly(n, log |∆K |, size(b), size(m), size(x), size(ω))

Proof. We apply Proposition 8.8. For this, we need to satisfy all requirements (1)
- (6) in Proposition 8.8. We start with (1) and (4), then proceed with (2), (3),
(5) and (6). Note that Proposition 8.8 only outputs some v ∈ Zn, but because the
elements in x(bm0 + τ) can be symbolically represented, we will see that such an
output v = (v1, . . . , vn) ∈ Zn can be converted into x

∑n
j=1 βjvj+xτ where βj ∈ K

is the element in bm0 associated with the basis element bj .
Requirements (1) and (4). Since a uniform sample from x(bm0 + τ) ∩ rBτ∞

can be simply obtained by taking a uniform sample of xbm0 ∩ (rBτ∞ − xτ) and
adding xτ afterwards, we concentrate on taking a uniform sample from this latter
set. Recall that

rBτ∞ = {(xσ)σ ∈ KR | |xσ| ≤ r and xσ/σ(τ) > 0 for real σ | m}.
Hence we can write rBτ∞ = (r′σ)σB∞ + t′ = S + t′ with r′σ = r/2 for real σ | m∞
and r′σ = r otherwise, and t′σ = r/2 for real σ | m∞ and t′σ = 0 otherwise; and
S = (r′σ)B∞ (which is a convex set). Then, putting t := t′ − xτ , we have

rBτ∞ − xτ = S + t′ − xτ = S + t

Note that ∥x · bi∥ ≤ r/(24n2) (by the definition of r and Lemma 2.13(ii) and (iv);
see also Equation (61)). Hence, writing D = 2

∑
i ∥x · bi∥ ≤ r/(12n), we see that

B6nD ⊆ Br/2 ⊆ S ⊆ Br and ∥t∥∞ ≤ ∥t′∥+∥xτ∥ ≤ 2nr. So, taking ε := 1/(6n) and
U := 2nr satisfies the requirements (1) and (4) of Proposition 8.8.

Requirement (2) and (3). Let us first compute an upper bound on U/D. We
have (see Lemma 2.13) λ1(xm0b) ≥

√
nN (xm0b)

1/n and henceD ≥ 2n3/2N (xm0b)
1/n.
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Hence, since U = 2nr, and b1/b ≤ e1/e,

U/D ≤ (2 · n) · 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (xbm0)

1
n

2n3/2 · N (xm0b)1/n
= 48 · ω · e2n/e · n3 · |∆K |

(58)

We need to (efficiently) approximate C ∈ 1
NZn with ∥C−B∥ ≤ ∥B−1∥−1 ·D/U ,

with B = xBbm0 . For that it is sufficient7 to choose N ≥ n · ∥B−1∥ · U/D. Using
Lemma 24.2, noting that λn(x · b ·m0)/λ1(x · b ·m0) ≤ |∆K |1/n (see Lemma 2.13)
and b1/b ≤ e1/e, we obtain

∥B−1∥ ≤ nn/2+1λ1(xbm0) ·

 n∏
j=1

2n · b2n/b · λn(x · b ·m0)

λj(xbm0)


≤ nn/2+1|∆K | · (2n)n · e2n

2/e. (59)

Combining Equation (58) and Equation (59), instantiating

N := ⌈n · nn/2+1|∆K | · (2n)n · e2n
2/e · 48 · ω · e2n/e · n3 · |∆K |⌉ ≥ n · ∥B−1∥−1 · U/D

(60)

we can certainly compute such approximation C within time poly(n, log(N), log(r))
for such N (since ∥xbi∥ < r). Similarly, for requirement (3), we can efficiently
compute t̃ ∈ 1

NZn satisfying ∥t − t̃∥ ≤ 1/(2N). Since 1/(2N) ≤ D/2 ≤ U we

certainly have ∥t̃∥ ≤ 2U .
Requirement (5). We can efficiently and perfectly uniformly sample in 1

NZn∩
(1 + c)S for every c > 0 (where we understand Zn ↪→ KR as in Notation 8.9) by
simple rejection sampling (where the ‘circles’ associated to the complex places are
done one-by-one). Indeed, for this N , the uniform random sampling in (1+ 4ε)S ∩
1
NZn (with ε = 1/(6n)) has bit complexity O(n log(rN)).

Requirement (6). For the implementation of the oracle OxBbm0
, it is enough to

show that we can efficiently decide for any rational number g ∈ Q, integer k ∈ Z>0

and any embedding σ of K, whether an algebraic number xβ with β ∈ bm0 satisfies
|σ(xβ)| > g1/k or |σ(xβ)| ≤ g1/k. Indeed, this holds since the set S is entirely
defined in terms of these (absolute values of) embeddings. By putting k = 2 · b · n
we can write r = g1/k for some rational r. The existence and the effectiveness of
such an oracle is precisely the object of Corollary 8.4; it is clear that it runs in
expected time poly(n, log |∆K |, size(b), size(m), size(x), size(ω)).

Bit complexity Since log(r), log(N) are both poly(n, log |∆K |, size(b), size(m),
size(x), size(ω)), a single run of the algorithm takes bit complexity poly(n, log |∆K |,
size(b), size(m), size(x), size(ω)). If the success probability of a single run is bounded
from below by a constant, the entire algorithm (until success) has the same expected
bit complexity. It thus remains to show that, for the box S = (r′σ)B∞, ε = 1/(6n),
and N as in Equation (60), the success probability is lower bounded by a constant.
We have that the success probability is lower bounded by (using Lemma 2.8 with
c = (minσ |r′σ|)−1 and (the r of that lemma) r = (1± 5ε) ∈ [ 16 , 2])

|(1− 5ε)S ∩ 1
NZn|

|(1 + 5ε)S ∩ 1
NZn| ≥

(1− 5ε)n|S|
(1 + 5ε)n|S|

Nne−12nc

Nne4nc
≥ (1− 1/n)ne−16nc

(1 + 1/n)n
≥ e−2·e−1 ≥ e−3,

7We have ∥A∥ ≤ ∥A∥F = (
∑

ij |Aij |2)1/2 (Frobenius norm) and hence approximating B by

C ∈ N−1Zn×n yields a C for which |Cij−Bij | ≤ N−1 and hence ∥B−C∥ ≤ ∥B−C∥F ≤ nN−1.
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Algorithm 1 Uniform sampling in x · ((b+ γ) ∩ τKm,1) ∩ rB∞
Require:

• An LLL-reduced basis of OK ,
• A modulus m = m0m∞ of the degree n number field K.
• An ideal b ∈ ImK ,
• An element γ ∈ K,
• An element τ ∈ Km,
• A block size parameter b ∈ Z, with 2 ≤ b ≤ n.
• A element x ∈ K×R ,
• A real number ω ∈ Q≥1.

Ensure: A uniformly distributed element β ∈ x · ((b + γ) ∩ τKm,1) ∩ rB∞ with

r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (xbm0)

1
n .

1: Defining the radius of the ball.
Define r = 48 · ω · b2n/b · n7/2 · |∆K |

3
2n · N (xbm0)

1
n .

2: Obtaining a short basis of xbm0.
Apply Lemma 8.5 to obtain a b-BKZ reduced basis Bbm0

= (b1, . . . ,bn) of bm0

that satisfies

∥x · bi∥ ≤ 2n · b2n/b · λn(x · b ·m0)

≤ 2n · b2n/b · √n · |∆K |3/(2n) · N (xbm0)
1/n ≤ r/(24n2), (61)

where the second inequality follows from Lemma 2.13(ii) and (iv) and the third
from the definition of r.

3: Computing a new shift γm to take account for the modulus.
Compute γm ∈ b+γ such that γm ≡ τ modulo m0, which is possible by the fact
that b and m0 are coprime. If m0 = OK , we put γm = γ.

4: Reducing the shift γm modulo the short basis of bm0.
Reduce γm ∈ K modulo this b-BKZ-reduced basis (b1, · · · ,bn) of bm0, yielding
γred ∈ γm + bm0. That is, write γm =

∑
i tibi and put γred =

∑
i(ti − ⌊ti⌉)bi.

5: Sampling an element in x · ((bm0 + γred) ∩ rBτ∞.
Using Corollary 8.10, sample β ∈ x · ((bm0 + γred) ∩ rBτ∞.

6: return β.

since c = (minσ |r′σ|)−1 ≤ (r/2)−1 ≤ 1/(24n). □

8.5. Algorithm for sampling in a box intersected with an ideal lattice.

Lemma 8.11. Let K be a number field, let m = m0m∞ be a modulus of OK , let
τ ∈ Km. Let b ∈ ImK be an ideal of K coprime with m0 and let γ ∈ K be a shift.
Let γm ∈ b+ γ such that γm ≡ τ modulo m0.

Then

(b+ γ) ∩ τKm,1 = (bm0 + γm) ∩ τKm∞
R

Proof. By scaling up b, γ, τ by an integerM ∈ N>0 coprime with m0, we can assume
that they lie in OK . It is then enough to show that (Mb + Mγ) ∩MτKm,1 =
(Mbm0 +Mγm) ∩MτKm∞

R .
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We start with inclusion to the right. Since Mb + Mγ ⊆ OK , we have that
α ∈ (Mb +Mγ) ∩MτKm,1 satisfies α = Mβ +Mγ = Mτ + µ with β ∈ b and
µ ∈ m0 ⊆ OK . Additionally σ(α)/σ(τ) > 0 for real σ | m∞ (since multiplying with
M does not change the sign of σ(τ)).

By the definition of γm ∈ K, we have γm ∈ b + γ and γm ∈ m0 + τ . Hence
α − Mγm ≡ 0 mod both Mb and m0. Hence α ≡ Mγm modulo Mbm0, i.e.,
α ∈Mbm0 +Mγm. Also, σ(α)/σ(τ) > 0 for real σ mod m∞, so α ∈ τKm∞

R .
The inclusion to the left can be done similarly. Any α ∈ (Mbm0 +Mγm) ⊆ OK

satisfies α ∈ Mb +Mγ. Also, since α ≡ Mγm ≡ Mτ mod m0 and α ∈ τKm∞
R , we

have α ∈MτKm,1. This concludes the proof. □

Proposition 8.12 (Correctness and efficiency of Algorithm 1). Let K be a number
field of degree n, let m = m0m∞ be a modulus of OK , let b ∈ ImK be an ideal, let
γ ∈ K be a shift, let τ ∈ OK be coprime to m0, let b ∈ {1, . . . , n} be a block size
parameter, let x ∈ K×R be represented by rational numbers, let ω ∈ Q≥1 and put

r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (xbm0)

1
n .

Then, the randomized algorithm Algorithm 1 samples from a uniform distribution
over x · ((b + γ) ∩ τKm,1) ∩ rB∞. Moreover, this algorithm runs in expected time
poly(n, log |∆K |, size(m), size(b), size(γ), size(τ), size(x), size(ω)).

Proof. The correctness of the algorithm follows from Corollary 8.10 and Lemma 8.11.
The only thing that needs to be checked is that γred satisfies ∥xγred∥ ≤ r. We have
γred =

∑
i cibi with ci ∈ [−1/2, 1/2), hence ∥xγred∥ ≤

∑
i |ci|∥xbi∥ ≤ r, since the

basis was BKZ-reduced (see line 2).
We conclude the proof with the estimate on the running time. In line 1, a mere

instantiation of the radius r is given.
In line 2, a short basis of xbm0 is computed using a BKZ-like algorithm. This

takes, by Lemma 8.5, time poly(bb, size(b), size(m0), log |∆K |, size(x)).
In line 3, a γm ∈ K is computed satisfying γm ∈ (b + γ) ∩ (m0 + τ). For

this, it suffices to compute elements β ∈ b and µ ∈ m0 such that β + µ = 1 (by
putting γm = τβ + γµ). Such a pair (β, µ) ∈ b × m can be found by applying the
Hermite normal form to the concatenated basis matrices of b and m [23, Proposition

1.3.1]. This requires Õ(n5 log(M)2) time [72], where M is the maximum entry
occurring in the basis matrices. Clearly this overall process takes time polynomial
in n, size(m0), size(γ) and size(b).

In line 4, this element γm is reduced modulo bm0, which takes time at most
poly(size(b), size(m0), size(γ)), since size(γm) = poly(size(b), size(m0), size(γ)).

Lastly, in line 5, a uniform sample is taken, following Corollary 8.10. The ex-
pected bit complexity then follows. □

9. Ideal sampling

9.1. Introduction. In this section, we prove the main result of this part, Theo-
rem 9.5. Recall the task at hand. Fix a family of ideals S. Given an ideal a, find
β ∈ a such that βa−1 ∈ S · SB with probability proportional to the density of S.

In Section 6 is proven that the input ideal lattice a can be randomized so that
its Arakelov class is uniformly distributed. For such random ideal lattices, by Sec-
tion 7, the event βa−1 ∈ S · SB happens with the anticipated probability (the ideal
density of S) when β is sampled in a large enough box. Subsequently, we proved
in Section 8 that one can efficiently sample from such a box. Combining these
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results together leads to Algorithm 2 and Theorem 9.5, of which the latter can be
informally rephrased as follows: There is an efficient way to sample β ∈ a satisfying
βa−1 ∈ S · SB with a provable lower bound on the sampling probability.

In the proof of Theorem 9.5 we require three technical results, which are in the
later separate Section 9.3 and Section 9.4. The first of these three results is a
lemma that states that part of Algorithm 2 is exactly a random walk as in Theo-
rem 6.4, applied to the input ideal lattice y · b. This allows to apply the density
result as in Theorem 7.1. The second result consists of a lemma that states that a
distribution D on Div0Km for which holds that the ‘folded’ distribution [D] is close
to uniform in Pic0Km , the original distribution D is close to some DU on Div0Km

satisfying [DU ] = U(Pic0Km). This allows for the statistical argument that we may
assume the ‘randomized’ ideal lattice being drawn from DU rather than the original
distribution D, for the cost of a small error coming from the statistical distance.

The last of these three results is Proposition 9.12, which shows that the output
distribution of Algorithm 2 and that of the ‘continuous variant of Algorithm 2’
(which is to be specified precisely later) are close. This result is very useful because
some algorithmic properties are much easier to prove for this ‘continuous variant’;
this closeness of the output distributions then show that these properties must also
hold for the original variant of Algorithm 2, though with a small error due to the
slight difference between the output distributions of the two variants.

9.2. Ideal sampling.

Definition 9.1. We denote by SGB the set of B-smooth integral ideals coprime with

m0 and whose prime divisors lie in the subgroup G ⊆ Pic0Km , i.e.,

SGB =
{
a ideal of OK

∣∣ p | a implies p ∤ m0,N (p) ≤ B and [d0(p)] ∈ G}.
For G = Pic0Km we just get the set of smooth ideals SB coprime with m0.

Notation 9.2. Let m = m0m∞ be a modulus of K and let τ ∈ OK be an element
coprime with m0. Then we denote

τKm∞
R := {(xσ)σ ∈ KR | sign(xσ) = sign(σ(τ)) for all real σ | m∞}.

Alternatively, this set consists of all (xσ)σ ∈ KR for which holds xσ/σ(τ) > 0 for
all real σ | m∞.

Notation 9.3. Let H = Log(K0
R) be the hyper space of the number field K, i.e.,

H = {(xν)ν ∈ H | ∑ν xν = 0}. Let (ν1, . . . , νr+1) be an ordering of the places
(with r + 1 = nR + nC). We denote ZH ⊆ H for the integral lattice with basis
BH = (eν1 − eν2 , . . . , eνi − eνi+1

, . . . , eνr − eνr+1
), where eνi is the standard basis.

It satisfies λ1(ZH) = λr(ZH) =
√
2 and hence cov(ZH) ≤ n.

We will denote Ḧ = δ
nZH for the ‘discretized’ hyper space, where δ > 0 is some

grid parameter. We then have cov(Ḧ) ≤ δ.
Lemma 9.4. The output distribution of Algorithm 2 is independent of the absolute
value of the norm | N (y)| of y, and independent of the signs (and complex phase)
of the entries yσ of y = (yσ)σ ∈ K×R .

Proof. The variable y only occurs in lines 6 and 7. The element β̃ is perfectly
uniformly random over

(
(Aσ · yσ)σ ·

[
b̄ ∩ τKm,1

])
∩ r · N (yb̄)1/n · B∞. Hence,
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β := (A−1σ · y−1σ )σ · β̃ is uniformly distributed over([
b̄ ∩ τKm,1

])
∩ r · (A−1σ · y−1σ )σ · | N (y)|1/n · N (b̄)1/n · B∞

=
([
b̄ ∩ τKm,1

])
∩ r · (A−1σ · (y0)−1σ )σ · N (b̄)1/n · B∞,

where y0 := y/| N (y)|1/n. Hence, the algorithm depends on y0 and in particular
not on | N (y)|. Since the set B∞ is symmetric around zero, the signs (and complex
phases) of y0σ (and hence of y) do not have any influence on the set (A−1σ · (y0)−1σ )σ ·
N (b̄)1/n · B∞. □

Theorem 9.5 (ERH, Ideal sampling theorem). Let K be a number field of degree
n, let m = m0m∞ be a modulus, let G ⊆ Pic0Km a finite-index subgroup of Pic0Km

and let OG be an oracle that on input an ideal c outputs whether [d0(c)] ∈ G or not.
Let b ∈ IK be an ideal coprime with m0, let τ ∈ Km (see Section 2.4) satisfying
[LτM] ∈ G, and let y ∈ K×R be represented by rational coordinates. Let b ∈ {2, · · · , n}
be an integer, let 0 < ε < min(1, 20n ) be an error parameter and let ω ∈ Q≥1. Let S
be a set of integral ideals coprime with m0, satisfying [d0(S)] ⊆ G− [d0(b)].
(A) Correctness. Algorithm 2 outputs an element β ∈ b such that

• (β) · b−1 ∈ S · SGB ,
• β ∈ τKm,1 (i.e., ordp(β − τ) ≥ ordp(m0) for all p | m0 and σ(β/τ) > 0 for
all real σ | m∞),
• |N (β)| ≤ N (b) ·BN · rn

with probability at least

N (m0)

ϕ(m0)
· [Pic

0
Km : G]

3
· δS [rn]− ε ≥

[Pic0Km : G]

3
· δS [rn]− ε. (62)

Here, B = Õ
(
[Pic0Km : G]2 · n2 ·

[
n2 · (log log(1/ε))2 + (log(|∆K | N (m)))2

])
, N =

⌈7n+log(N (m))+log |Pic0Km |−log[Pic0Km : G]+2 log(1/ε)+1⌉ as in Corollary 6.5,

r = 48 ·ω ·b2n/b ·n7/2 · |∆K |
3
2n ·N (m0)

1
n , and N (m) = 2|mR| ·N (m0) with |mR| being

the number of different real embeddings dividing m (see Section 2.4).
(B) Running time. Furthermore, Algorithm 2 has a bit complexity of poly(bb,
log |∆K |, size(b), log(1/ε), log(N (m)), [Pic0Km : G], size(y), size(τ), size(ω)) and uses
at most poly(log |∆K |, logN (m)) · [Pic0Km : G] queries to OG.

Proof of Theorem 9.5 (A) Correctness. This proof is structured as follows. We will
assume, purely for the sake of argument, that lines 4 and 5 in Algorithm 2 are
replaced by the following,

“Sample a = (aσ)σ ← GH,s and put (Aσ)σ = (en
−1
νσ
aσ )σ”. (63)

and that y ∈ K×R is replaced8 by y0 = y/| N (y)|1/n (so that b = Log(y) ∈ H).
This is indeed purely for the sake of argument, since these changes renders this
algorithm unprocessable by a computer, due to the real arithmetic. We will show
two things: (1) After these changes, which we will call the ‘continuous version
of Algorithm 2’, both the correctness and the success probability claim as stated
in Equation (62) of (A) do hold (but with ε/2 instead of ε); and (2) the output
distribution of this ‘continuous version of Algorithm 2’ is ε/2-statistically close to
the output distribution of the ordinary (or discrete) version of Algorithm 2 (that

8Note that this particular change of y by y0 does not impact the output distribution, by
Lemma 9.4.
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is, without the changes on y and line 4 and 5). Together, we may then conclude
that the correctness and success probability claim holds for the ordinary version of
Algorithm 2, which is what we aimed to show.

Part (1): Showing the correctness and success probability for the
‘continuous version of Algorithm 2’. We assume that lines 4 and 5 from
Algorithm 2 are replaced by Equation (63) and that y ∈ K0

R. We will denote
b = Log(y) ∈ H. Then, by Lemma 9.8, which we will treat later, the ideal-element
pair

(
(β)b̄−1, β

)
∈ ImK × b from Algorithm 2 is distributed as(

(α) · Exp(−a), α · Exp∞(−a∞)
)
,

with a ← W = WG(N,B, s) + d0(b) + b and subsequently α ← Exp(a)τ ∩ rB∞
uniformly. Here W = WG(N,B, s) + d0(b) + b is the random walk distribution
starting on the point d0(b) + b ∈ Div0Km (see Definition 6.1). Here, Exp(a)τ is
defined in Definition 5.2 and b ∈ H ⊆ Div0Km .

For the random walk distribution W =WG(N,B, s) + d0(b) + b on Div0Km with
these parameters (N,B, s) holds that [W] on Pic0Km is ε/2-close to the uniform
distribution U(G + d0(b)) on the coset G + d0(b) in the total variation distance.
So, allowing an error of ε/2 we may as well assume that a instead comes from a
distribution D on Div0Km that satisfies [D] = U(G+ d0(b)) (see Lemma 9.9).

By applying Theorem 7.1, using that [LτM] ∈ G, one then obtains that the prob-
ability that (β) · b̄−1 = (α) Exp(−a) ∈ S given that β = αExp∞(−a∞) ∈ τKm,1

(which is precisely the way how α is sampled) is at least N (m0)
ϕ(m0)

[Pic0Km :G]

3 ·δS [rn]−ε/2.
From the fact that b̄ = b ·∏j pj with pj ∤ m, [d0(pj)] ∈ G, and N (pj) ≤ B, we have

that (β) · b−1 ∈ S · SGB in that case, and the probability claim of Equation (62)
(with ε/2 instead of ε) follows.

We finish part (1) of this proof by showing that the output β ∈ b of Algorithm 2
satisfies all bullet points of the theorem. By lines 6 and 7 it follows that β ∈ τKm,1.
By line 6 it follows that β̃ ∈ r · N (b̄)1/n · B∞, hence | N (β̃)| ≤ rn · N (b̄) ≤ rn ·BN ·
N (b). Since the Gaussian distortion (Aσ)σ (in the ‘continuous version’) does not

change the norm (as a ∈ H), we have | N (β)| = | N (β̃)|.
Part (2): Showing that the output distribution of the ‘continuous

version of Algorithm 2’ and the discrete version are ε/2-close. By the
proposition in Section 9.4, together with the fact that the discrete Gaussian in line
4 is approximated within statistical distance ε/4, we conclude that with the choice

of the ‘grid parameter’ δ of Ḧ in line 4 of Algorithm 2, the statistical difference
between the ‘continuous variant’ and the ordinary variant of Algorithm 2 is at most
ε/4 + ε/4 = ε/2.

Hence, the success probability of the ordinary Algorithm 2 as in the theorem
statement is lower bounded by

N (m0)

ϕ(m0)

[Pic0Km : G]

3
· δS [rn]− ε/2− ε/2 =

N (m0)

ϕ(m0)

[Pic0Km : G]

3
· δS [rn]− ε,

as was required to prove. □

Proof of Theorem 9.5 (B) Running time. In the following complexity analysis, any
complexity that is within poly(log |∆K |, size(b), log(1/ε), log(N (m)), [Pic0Km : G],
size(y), size(τ)) we will call ‘polynomial in the size of the input’. Note that logB
and N are poly(log |∆K |, size(b), log(1/ε), log(N (m)), log([Pic0Km : G])), so any
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complexity polynomially bounded by logB and N must be polynomial in the size
of the input as well. We can omit the dependency here on |G| since log |G| ≤
log |Pic0Km | ≤ log(|∆K | N (m)) (see Lemma 5.1).

We go through lines 1 to 7 of Algorithm 2. Line 1 just initializes B and N and
s. Line 2 uses Lemma 5.4 N times to obtain the random primes p1, . . . , pN . This
takes complexity O([Pic0Km : G] ·n3 · log2(B) ·N) and O(N · [Pic0Km : G] ·n logB) =
poly(log |∆K |, logN (m))) · [Pic0Km : G] queries to OG.

In line 3, b is multiplied by the N sampled prime ideals. Multiplication of two
ideals can be done by LLL-reducing the n2×n matrix involving all products of the
Z-generators of the respective ideals, taking bit complexity Õ(n11 log(M)3) [59],
where M is the maximum entry of the matrix involved. This multiplication is done
with N ideals for which log(M) is bounded by poly(log |∆K |, size(b), log(B)), which
means that the total bit complexity of this ideal multiplication is in polynomially
bounded in the size of the input. An alternative way to see this is by using the
two-element representation of ideals (e.g., [26, §4.7]).

Line 4 requires to sample ä from an approximate discrete Gaussian Ĝ δ
nBH ,ε/4,s,0

in Ḧ = δ
nZH as in Lemma 2.22 (with BH as in Notation 9.3), which is within

statistical distance εG := ε/4 of an exact discrete Gaussian. Indeed, observing that

the maximum length of the basis of δ
nZH (see Notation 9.3) is at most

√
2δ/n we

see that certainly (see line 4)

s ≥ δ
√
n log(2n/(ε/40)) ≥

√
log(4/ε) + 2 log(n) + 3

π
·
√
2δ

n
.

This, according to Lemma 2.22, takes expected time polynomial in the input size
and log(1/ε). Since the input size is poly(1/δ) = poly(n, log |∆K |, log(1/ε), log(ω))
this Gaussian sampling algorithm has a expected bit complexity of poly(n, log |∆K |,
log(1/ε), log(ω)). Note that, by Lemma 2.22, the length of ä cannot exceed s ·√
n log(2n2/ε).

In line 5 we need to approximate (en
−1
νσ
äσ )σ by rational (Aσ)σ such that the

relative multiplicative error is small enough. Since the length of ä does not exceed
s·
√
n log(2n2/ε) (note that s = 1/n2) we clearly see that minσ äσ cannot be smaller

than ε/(2n2) < e−
√

log(2n2/ε). Hence, approximating (Aσ)σ as in line 5 can be done
in time poly(n, log(1/δ), log(1/ε)) which is poly(n, log |∆K |, log(1/ε), log(ω)). Note
that the size of (Aσ)σ itself is also bounded polynomially in these latter parameters.

Line 6 requires Algorithm 1, which uses expected bit complexity at most poly(bb,
size(b̄), size(m0), log |∆K |, size(y), size((Aσ)σ), size(τ)). Note that size(b̄) = poly(size(b),
N, log(B)). Proposition 8.12 can be applied here because we have r · N (b̄)1/n ·
| N (y)| = 48 · ω · b2n/b · n7/2 · |∆K |

3
2n · N (m0)

1
n · N (b̄)

1
n · | N (y)|.

The last line, line 7, only multiplies β̃ with (A−1σ ·y−1σ )σ, which has bit complexity

polynomial in size((Aσ)σ, (yσ)σ, size(β̃)) which is polynomial in the size of the input,

as size(β̃) must be poly(r, size(b̄), size(y), size((Aσ)σ).
Therefore, all steps require a bit complexity at most polynomial in the size of the

input and bb. The total number of queries toOG is at most poly(log |∆K |, logN (m)))·
[Pic0Km : G]. □

Remark 9.6. If m = OK , we have N (m) = ϕ(m) = 1, and Km = Km,1 = K∗. In
this case, τKm,1 = K∗
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Algorithm 2 Sampling of β ∈ b such that β ∈ τKm,1

Require:

• An LLL-reduced basis of OK ,
• A modulus m = m0m∞ of the degree n number field K.
• A finite-index subgroup G ⊆ Pic0Km ,
• An ideal b ∈ IK coprime with m0,
• An element y ∈ K×R ,
• An element τ ∈ Km, satisfying [LτM] ∈ G,
• An error parameter ε > 0.
• A block size parameter b ∈ Z, with 2 ≤ b ≤ n.
• An oracle OG that on input an ideal c outputs whether [d0(c)] ∈ G.
• An element ω ∈ Q≥1.

Ensure: An element β ∈ b
1: Let B,N be as in Corollary 6.5, put s = 1/n2 and put r = 48 · ω · b2n/b · n7/2 ·
|∆K |

3
2n · N (m0)

1
n .

2: Sample N random prime ideals p1, . . . , pN uniformly from the set
{p prime ideal of K | N(p) ≤ B, p ∤ m0, [d

0(p)] ∈ G}, using the oracle OG

and Lemma 5.4
3: Multiply b by these N random prime ideals pj , obtaining b̄ = b ·∏j pj .
4: Sample, using Lemma 2.22, an approximation of the discrete Gaussian

ä = (äσ)σ ← Ĝ δ
nBH ,εG ,s,0

with error parameter εG := ε/4, where δ
nBH is a basis of Ḧ = δ

nZH (see
Notation 9.3) and

δ :=
(ε/40)4n

2s+1 · s
ωn · e10n2 · |∆K | ·

√
n log(2n/(ε/40))

.

5: Compute a rationally represented (Aσ)σ ∈ K0
R such that

max
σ
|Aσ/en

−1
νσ
äνσ − 1| ≤ δ/(2n),

where nνσ = 2 if σ is complex and 1 otherwise.
6: Sample, following Algorithm 1 with input γ = 0, a uniformly random element

β̃ ∈
(
(Aσ · yσ)σ ·

[
b̄ ∩ τKm,1

])
∩ r · | N (y)|1/n · N (b̄)1/n · B∞

7: return β = (A−1σ · y−1σ )σ · β̃ ∈ b.

Remark 9.7. The requirement [LτM] ∈ G is not necessary. The same proof and
algorithm applies for arbitrary [LτM]; but, as β ∈ τKm,1, we have [LβM] = [LτM].
Hence, if we do not assume [LτM] ∈ G, the property [LβM] ∈ G is generally not valid
anymore.

9.3. Two help lemmas. The following two lemmas are used in the proof of The-
orem 9.5. The first of these lemmas shows that part of Algorithm 2 consists of a
random walk, whereas the second one shows that one can replace the random walk
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distribution over Div0Km with a close distribution DU whose ‘folded analogue’ [DU ]
in Pic0Km is uniform.

Lemma 9.8 (The ‘continuous version of Algorithm 2’ mimicks a random walk).
Let m a modulus, let N,B, s and r as in Algorithm 2 and let WG = WG(N,B, s)
be the random walk distribution on G ⊆ Pic0Km (see Definition 6.1). Let Wr be
the distribution on (α,a) ∈ KR ×Div0Km obtained by sampling a←WG(N,B, s) +
d0(b) + b with b = Log(y) where y ∈ K0

R followed by sampling

α ∈ Exp(a)τ ∩ rB∞
uniformly. Then the pair

(
(β) · b̄−1, β

)
∈ ImK × b obtained by running Algorithm 2

where lines 4 and 5 are replaced by Equation (63) (coined the ‘continuous version’),
follows the same distribution as

(
(α) ·Exp(−a), α ·Exp∞(−a∞)

)
with (α,a)←Wr.

Proof. Both the distributionWG and the ‘continuous version of Algorithm 2’ (where
lines 4 and 5 are replaced by Equation (63), as in the proof of Theorem 9.5) involve
the following two random processes: picking N uniformly random primes from
{p ∈ ImK prime | N (p) ≤ B and [d0(p)] ∈ G} and sampling a Gaussian a =
(aν)ν ∈ H; both with the exact same parameters. Without loss of generality,
we can therefore focus on one fixed sample {pj | 1 ≤ j ≤ N} of primes and
one fixed vector a = (aν)ν ∈ H. This means that we consider the fixed a =∑N
j=1 d

0(pj) + a + d0(b) + b ∈ Div0Km for the procedure involving Wr and the

fixed ideal b̄ = b
∏N
j=1 pj and distortion Exp(a+ b) = (en

−1
νσ

(aνσ+bνσ ))σ (recall that

(yσ)σ = (en
−1
νσ
bνσ )σ; note that, by Lemma 9.4, we may assume that the entries of yσ

are all positive) for the procedure involving the ‘continuous version of Algorithm 2’.
Then, writing b̄ = N (b̄)1/n and b̄ = Exp(af), we have

Exp(a)τ = Exp(a+ b)(b̄ ∩ τKm,1)/b̄ and Exp∞(a∞) = Exp(a+ b)/b̄

Thus, αExp(−a∞) for uniformly random α ∈ Exp(a)τ ∩ rB∞ is distributed as

Exp∞(−a∞) · U
(
Exp(a)τ ∩ rB∞

)
(64)

=Exp(−a− b) · b̄︸ ︷︷ ︸
Exp∞(−a∞)

·U
(
Exp(a+ b)(b̄ ∩ τKm,1)/b̄︸ ︷︷ ︸

Exp(a)τ

∩rB∞
)

(65)

=U
(
(b̄ ∩ τKm,1) ∩ Exp(−a− b) · b̄ · rB∞

)
(66)

which is exactly the distribution of β ∈ b̄ in Algorithm 2 for fixed b̄ and (aν)ν . It
follows that

(α) Exp(−a) = (α)Exp∞(−a∞)Expf(−af) = (α)Exp∞(−a∞)/b̄

is distributed as (β)b̄−1, which finishes the proof. □

We will need the following ‘lifting’ lemma, which states that the random walk
distributionWG(N,B, s) over Div0Km is close to a distribution D such that the class
[D] is uniform over a coset G ⊆ Pic0Km .

Lemma 9.9 (Lifting property of distributions). Let G ⊆ Pic0Km be a finite-index
subgroup and suppose that a distribution D : Div0Km → R≥0 satisfies ∥[D]− U(G+

[b])∥1 < ε for some coset G + [b], where b ∈ Pic0Km . Then there exists a ‘lifted’
distribution DU : DivKm → R≥0 such that [DU ] = U(G+ [b]) and ∥D − DU∥1 < ε.
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Proof. Put

DU (a) =
{

1
Vol(G) ·

D(a)
[D]([a]) if [D]([a]) ̸= 0

u otherwise
,

for some u : Div0Km → R≥0 that satisfies [u] = 1
Vol(G) · 1G ∈ L1(Pic

0
Km). Then, one

can check that [DU ] = 1
Vol(G) · 1G is uniform on G + [b]. Furthermore, writing F

for a fundamental domain in Div0Km for Pic0Km , we have

∥D − DU∥1 =

∫
a∈F

∑
α∈Km,1/µKm,1

|D(a+ LαM)−DU (a+ LαM)|da

=

∫
[a]∈Pic0

Km

∣∣∣∣[D]([a])− 1G+[b]([a])

Vol(G)

∣∣∣∣ d([a]) = ∥[D]− U(G+ [b])∥1 ≤ ε.

The first equation holds by definition, the second equation by the fact that the sign
of (D(a+ LαM)−DU (a+ LαM)) depends (by construction) solely on the coset [a]. □

9.4. Statistical distance between the ‘continuous variant’ and the ordi-
nary variant of Algorithm 2. In this subsection we show that there is only a
small statistical distance between the output distributions of the ‘continuous vari-
ant of Algorithm 2’ (where lines 4 and 5 are replaced by Equation (63)) and the
ordinary variant of Algorithm 2 (with no changes). This result is used in the proof
of part (A) of Theorem 9.5 and in the proof that Algorithm 2 is almost-Lipschitz
in the later Lemma 10.6.

To prove the closeness of these two distributions, we fix all the input parameters
and compare the two output distributions; where we note that we may assume that
y ∈ K0

R and that the entries of y are positive, by Lemma 9.4. By the law of total
probability, it is enough to show the closeness of these two distributions for a fixed
sample of the primes {pj} (as in line 3), and hence a fixed ideal b̄. Indeed, the
difference between the two distributions can be attributed solely to the way the
Gaussian a = (aν)ν ∈ H (discrete or continuous) is sampled and the influence it
bears on the uniform distribution of β.

Though the input of Algorithm 2 is given in terms of an ideal b and an element
y = Exp((bν)ν) ∈ K0

R with b ∈ H we will often consider the divisor a = d0(b)+ b as
input instead. As this is a one-to-one correspondence, and is used only theoretically
(for cleanness of notation), no harm is done.

By a similar computation as in the proof of Lemma 9.8, one can deduce that the
output β is distributed as (denoting b = Log(y) ∈ H)

U
(
(b̄ ∩ τKm,1) ∩ Exp(−Log((Aσ)σ)− b) · N (b̄)1/n · rB∞

)
(67)

=y−1 · U
(
(y · (b̄ ∩ τKm,1)) ∩ Exp(−Log((Aσ)σ)) · N (b̄)1/n · rB∞

)
(68)

=y−1 · U
(
(y · (b̄m0 + γ)) ∩ Exp(−Log((Aσ)σ)) · N (b̄)1/n · rBτ∞

)
(69)

both in the ‘continuous version’ as in the ordinary version (since the definition of
(Aσ)σ ∈ KR changes accordingly). Equation Equation (69) follows from Lemma 8.11;
where Bτ∞ = B∞ ∩ τKm0 (see Notation 9.2). Note that from Equation (69) follows
that (Aσ)σ has only an influence on the shape (‘skewness’) of the box N (b̄)1/n ·rBτ∞
where the uniform sampling takes place. All other things are equal; hence we in-
troduce the following notation.
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Notation 9.10. For a ∈ H, we denote Ua for the uniform distribution over the set
(y(b̄m0+γ))∩Exp(a) ·N (b̄)1/n ·rBτ∞, where r = 48 ·ω ·b2n/b ·n7/2 · |∆K |

3
2n ·N (m0)

1
n

with ω ∈ Q≥1; as in Algorithm 2, i.e.,

Ua := U
(
(y·(b̄m0+γ))∩Exp(a)·N (b̄)1/n ·rBτ∞

)
= U

(
(y·(b̄m0+γ))∩Exp(a)·r0Bτ∞

)
.

where we write r0 := N (b̄)1/n · r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (b̄m0)

1
n . Note

that, for yβ ∈ y(b̄m0 + γ) ∩ τKm∞
R , we have that

Ua[yβ] > 0⇐⇒ log |σν(yβ)| ≤ log r0 + n−1ν aν for all ν

where nν = 2 if ν is complex and 1 otherwise. We denote

Syβ = {a ∈ H | n−1ν aν ≥ log |σν(yβ)| − log r0 for all ν}.

I.e., we have, for yβ ∈ y(b̄m0 + γ) ∩ τKm∞
R and a ∈ H,

a ∈ Syβ ⇔ yβ ∈ Exp(a) · r0Bτ∞ ⇔ Ua[β] > 0.

We denote ∂Syβ for the boundary of Syβ; note that this boundary is a subset of
r = dim(H) hyperplanes in H of dimension r− 1.

In the ordinary variant of Algorithm 2, an approximation (Aσ)σ of (en
−1
νσ
äνσ )σ

with ä ∈ Ḧ is computed, hence leading to a slight error. For ease of notation we

denote (Aσ)σ = Exp(˜̈a) = (en
−1
νσ

˜̈aσ )σ. By construction (see line 4) we have (for
δ < 1/2)

∥ä− ˜̈a∥2 ≤ nmax
σ
| log(Aσ)− log(en

−1
νσ
äνσ )| = nmax

ν
| log(Aσν

/en
−1
νσ
·äν )| (70)

≤ nmax
σ

log |1− δ| ≤ 2n · δ/(2n) = δ. (71)

So, the ordinary variant of Algorithm 2, with fixed choices of primes {pj} leading
to b̄, has output distribution∑

ä∈Ḧ

U˜̈aGḦ,s(ä) =
∑
ä∈Ḧ

U˜̈a(−) · GḦ,s(ä),

whereas the ‘continuous variant of Algorithm 2’ (with the same choices of {pj}),
has output distribution∫

a∈H
UaGH,s(a) =

∫
a∈H
Ua(−) · GH,s(a).

Lemma 9.11. Using Notation 9.10, let δ > 0 be a distance parameter and denote
Bδ(a) ⊆ H for the 2-ball of radius δ around a ∈ H (where we denote Bδ := Bδ(0)).
Then, for a /∈ ⋃yβ∈y(b̄m0+γ)

(∂Syβ ⊞Bδ) and a
′ ∈ Bδ(a),

Ua = Ua′ .

Proof. For a /∈ ∂Syβ ⊞Bδ holds that Bδ(a) ∩ ∂Syβ = ∅. Hence for all a′ ∈ Bδ, the
status of yβ ∈ ea+a′ · N (b̄)1/n · r0Bτ∞ (where r0 = N (b̄)1/n · r) does not change.
Hence, if a /∈ ⋃yβ∈y(b̄m0+γ)

(∂Syβ ⊞ Bδ), the entire distribution Ua−a′ = Ua is

constant for a′ ∈ Bδ. This concludes the proof. □
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Proposition 9.12. Using the notation of Notation 9.10, let 1/(2n) > ε > 0 be an

error parameter. Let s > 0 be a Gaussian parameter and let Ḧ ⊆ H be a full-rank
lattice whose Voronoi domain F satisfies

δ := max
a∈F
∥a∥ ≤ ε4n

2s+1 · s
ωn · e10n2 · |∆K | ·

√
n log(2n/ε)

(72)

Then ∥∥∥∥∥∥
∫
a∈H
UxGH,s(a)da−

∑
ä∈Ḧ

U˜̈aGḦ,s(ä)

∥∥∥∥∥∥
1

≤ 9ε

Proof. Writing F for the Voronoi fundamental domain of the lattice Ḧ, using the
identity AB−A′B′ = (A−A′)B+A′(B−B′), the triangle inequality and the fact
that ∥U˜̈a∥1 = 1, we obtain∥∥∥∥∥∥

∫
a∈H
UxGH,s(a)da−

∑
ä∈Ḧ

U˜̈aGḦ,s(ä)

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
∫
a∈F

∑
ä∈Ḧ

Uä+aGH,s(ä+ a)− U˜̈a
GḦ,s(ä)
Vol(F )

da

∥∥∥∥∥∥
1

≤
∫
a∈F

∑
ä∈Ḧ

∥Uä+a − U˜̈a∥1GH,s(ä+ a)da

︸ ︷︷ ︸
(I)

+

∫
a∈F

∑
ä∈Ḧ

∣∣∣∣GH,s(ä+ a)−
GḦ,s(ä)
Vol(F )

∣∣∣∣ da︸ ︷︷ ︸
(II)

.

(73)

We will bound the parts (I) and (II) separately, starting with (I).
Bound on (I).
In the following sequence of inequalities we use respectively Lemma 9.11 (in com-

bination with Equation (70)), cov(Ḧ) = maxx∈F ∥x∥ = δ and the fact that total
variation distances are always bounded by 2. Also, we use a Gaussian tail bound
(see Lemma 2.19) with radius R := s

√
n log(2n/ε) > 2δ > 0 (since we can deduce

that δ < s/2 from the assumption in Equation (72)). Combining this, writing
Tδ =

⋃
yβ∈y(b̄m0+γ)

(∂Syβ ⊞Bδ), we obtain

(I) ≤
∫
a∈F

∑
ä∈Ḧ
ä∈Tδ

∥Uä+a − U˜̈a∥1GH,s(ä+ a)da ≤ 2

∫
a∈F

∑
ä∈Ḧ
ä∈Tδ

GH,s(ä+ a)da (74)

≤ 2

∫
a∈T2δ

GH,s(a)da ≤ ε+ 2

∫
a∈T2δ

∥a∥<R

GH,s(a)da (75)

The third inequality follows from the observation that ä + a ∈ ∂Syβ ⊞ B2δ if ä ∈
∂Syβ ⊞Bδ (since a ∈ F ⊆ Bδ).

If a ∈ ∂Syβ⊞B2δ and ∥a∥ < R, then (for all ν) n−1ν aν ≥ log |σν(yβ)|− log r0−R
(since R > 2δ), and hence log |σν(yβ)| ≤ n−1ν aν + log r0 + R, i.e., maxσ |σ(yβ)| ≤
r0 · exp(maxν aν)e

R ≤ r0e
2R (since we assumed ∥a∥ < R). Recall, by definition,

r0 = N (b̄)1/n · r. Hence, by the condition ∥a∥ < R, we may take the union
T2δ =

⋃
yβ∈y(b̄m0+γ)

(∂Syβ ⊞B2δ) only over those yβ satisfying yβ ∈ r0e2RB∞.
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We concentrate for the moment on the Gaussian weight on a single Syβ ⊞B2δ in
the union of T2δ. Note that ∂Syβ lies in a union of r = dim(H) ≤ n hyperplanes in
H. Denoting P for a hyperplane in H of dimension dim(H)− 1 that goes through
the origin, we have, for all yβ ∈ y(b̄m0 + γ),∫

a∈∂Syβ⊞B2δ

GH,s(a)da ≤ n
∫
a∈P⊞B2δ

GH,s(a)da ≤ n · erf(2δ/s) ≤ 4n · δ/s, (76)

where erf is the standard error function of the standard normal distribution that
satisfies erf(x) ≤ 2√

π
x. The inequality in Equation (76) holds because the hyper-

plane P ⊆ H going through the origin is the one where P ⊞ B2δ has the largest
Gaussian weight.

Writing e2nR · N0 for an upper bound for |(y(b̄m0 + γ)) ∩ r0e2RB∞| for which
we will instantiate N0 later, we combine Equation (75) and Equation (76), and the
assumption in Equation (72) on δ, to obtain

(I) ≤ ε+ 2

∫
a∈

⋃
β∈b(∂Sβ⊞B2δ)

∥a∥<R

GH,s(a)da ≤ ε+
8n · e2nR ·N0 · δ

s
≤ 2ε. (77)

It remains to show that δ as in the assumptions of this proposition indeed satisfies
δ ≤ ε · s · (8n)−1e−2nR ·N−10 . We have exp(−2nR) = exp(−2n3/2s

√
log(2n/ε)) ≥

exp(−4n2s log(1/ε)) = ε4n
2s (where we use that ε < 1/(2n)). Also, by a similar

reasoning as in Section 7.2.2, using r0 = N (b̄)1/nr, and the definition r = 48 · ω ·
b2n/b · n7/2 · |∆K |

3
2n · N (m0)

1
n , we have

N0 ∈ [e−1/4, e1/4] · N (b̄) · 2nR · (2π)nC · rn
N (b̄m0) ·

√
|∆K |

∈ [e−1/4, e1/4] · 48n · ωn · 2nR · (2π)nC · b2n2/b · n7n/2 · |∆K |

And henceN0 ≤ ωn·e6n
2 ·|∆K | since 48n·b2n

2/b·n7n/2 ≤ en log(48)+2n2/e+7n log(n)/2 ≤
e6n

2

(because log(48)+(2/e) ·n+7 log(n)/2 ≤ 6n for all n > 0). Therefore, indeed,

δ ≤ ε4n
2s+1 · s

ωn · e10n2 · |∆K | ·
√
n log(2n/ε)

= ε · s · e−4n2 · ε4n2s · ω−n · e−6n2 · |∆K |−1 · (n log(2n/ε))−1/2 (78)

≤ ε · s · (8n)−1e−2nR ·N−10

Bound on (II)

We still write F for the Voronoi domain of Ḧ. We apply Lemma 9.13 to obtain a
bound on (II). Indeed, by putting Λ = Ḧ and noting that λn(Ḧ) ≤ 2δ = 2 cov2(Ḧ)
(see Lemma 2.3) we surely have

λn(Ḧ) ≤ 2δ ≤ 2 · ε4n
2s+1 · s

e10n2 · |∆K | ·
√
n log(2n/ε)

≤ ε · s
5πn · 2 ·

√
n log(2n/ε)

where we use that e10n
2

> 20πn for n ≥ 1. Now, since 2 ·
√
n log(2n/ε) >√

n log(4n/ε) the parameter s satisfies the assumptions of Lemma 9.13, hence we
can bound (II) by 7ε.
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Combining Equation (73) and the bound on (II), we obtain∥∥∥∥∥∥
∫
a∈H
UxGH,s(a)da−

∑
ä∈Ḧ

UäGḦ,s(ä)

∥∥∥∥∥∥
1

≤ 9ε,

as required. □

Lemma 9.13. Let Λ ⊆ V be a full-rank lattice, let F be the Voronoi domain of Λ,
let ε < 1/2 be some error parameter and let s > 5π ·

√
n log(4n/ε) · ε−1 · n · λn(Λ).

Then ∫
x∈F

∑
ℓ∈Λ

∣∣GV,s(ℓ+ x)− |F |−1GΛ,s(ℓ)
∣∣dx ≤ 7ε

Proof. Note that cov2(Λ) = maxx∈F ∥x∥ ≤ n · λn(Λ)/2 (see Lemma 2.3). Using

smoothing arguments, (using that s >
√
log(2n(1 + 1/ε))/π · λn(Λ)) writing d =

dim(V ), we see that (see Lemma 2.20)

|F |−1 ·GΛ,s(ℓ) = gs(ℓ)·
1

|F | · gs(Λ)
∈ [1−2ε, 1+2ε]·s−d ·gs(ℓ) = [1−2ε, 1+2ε]·GV,s(ℓ),

where we used that 1−2ε ≤ (1+ ε)−1 ≤ (1− ε)−1 ≤ 1+2ε for ε < 1/2. Using this,
in combination with the tail bound (both using Corollary 2.18 and Lemma 2.19)

with tail cut parameter R := s
√
n log(2n/ε) > cov2(Λ), we obtain∫

x∈F

∑
ℓ∈Λ

∣∣GV,s(ℓ+ x)− |F |−1GΛ,s(ℓ)
∣∣dx (79)

≤ 2ε+

∫
x∈F

∑
ℓ∈Λ
∥ℓ∥≤2R

∣∣GV,s(ℓ+ x)− |F |−1 · GΛ,s(ℓ)
∣∣ dx

≤ 2ε+ 4ε+

∫
a∈F

∑
ℓ∈Λ
∥ℓ∥≤2R

∣∣∣GV,s(ℓ+ x)− GV,s(ℓ)
∣∣∣dx

≤ 6ε+

∫
x∈F

∑
ℓ∈Λ
∥ℓ∥≤2R

GV,s(ℓ+ x)|1− e5π·cov2(Λ)·R/s2 |dx (80)

≤ 6ε+
10π cov2(Λ)R

s2
≤ 6ε+

5πnλn(Λ)R

s2
< 7ε. (81)

The inequality in Equation (80) follows from the fact that

−s
2

π
log gs(ℓ+ x) = ∥ℓ+ x∥2 = ∥ℓ∥2 + 2⟨ℓ, x⟩+ ∥x∥2

∈ [∥ℓ∥2 − 4R cov2(Λ), ∥ℓ∥2 + 5R cov2(Λ)]

which follows by Cauchy-Schwarz and the fact that maxx∈F ∥x∥ ≤ cov2(Λ) ≤ R.
The last inequalities in Equation (81) follow from |1− ex| ≤ 2x for x < 1/2, and

5πnλn(Λ)R

s2
=

5πnλn(Λ)
√
n log(2n/ε)

s
< ε.

□
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9.5. The sampling theorem in arbitrary orders of a number field. The
sampling theorem (Theorem 9.5) is not restricted to the ring of integers OK of a
number field K. Below we give a quick sketch how to amend the reasoning as to
obtain a similar result for arbitrary orders within K.

Write R ⊆ OK for an order, fR = {x ∈ K | xOK ⊆ R} for its conductor
and ∆R for its discriminant. Then we can in fact apply the sampling algorithm
(Algorithm 2) for R in place of OK if fR | m. Indeed, for all ideals and elements
involved are assumed to be coprime with fR, there is a one-to-one correspondence
between ideal arithmetic in R and OK , by the maps A 7→ AOK and a 7→ a ∩ R
for ideals A of R and ideals a of OK . These maps are compatible with ideal
multiplication, as long as all ideals involved are coprime to fR (e.g., combine [58,
Chapter I, Proposition 12.10] and [3, Chapter 1, Extension and Contraction]).

Lemma 9.14. Let R ⊆ OK an order of a number field K with conductor fR.
Suppose that fR | m and that τ ∈ R. Then replacing every occurring ideal a (that
is, b, pj ,m0) by the ideal A = a∩R in Algorithm 2 and using only arithmetic in R,
does not change the output distribution.

Proof. We go through every step of Algorithm 2, where we will use that b and
the primes pj are coprime with m0. In step 3 we multiply B = b ∩ R by random
prime ideals Pj = pj ∩R satisfying [d0(pj)] ∈ G. Hence we obtain B̄ = b̄∩R with
b̄ = b ·∏j pj . The Gaussian distortion in step 4, is not affected by the specific order
R.

In step 6, we have b̄ ∩ τKm,1 = (b̄m0 + τ̃) ∩ τKm∞
R for τ̃ ∈ b̄ satisfying τ̃ ≡ τ

mod m0 (see Lemma 8.11). Since fR | m0, we have that M0 := m0∩R = m0, by the
very definition of the conductor; it is the largest ideal of OK that is also an ideal
in R. Therefore, τ̃ ∈ τ +m0 ⊆ R, as τ is assumed to be in R.

So, b̄ ∩ τKm,1 ∩ R = (b̄m0 + τ̃) ∩ R. Since fR | m0, we have that B̄M0 =
(b̄m0) ∩R = b̄m0. Hence, b̄m0 + τ̃ = B̄M0 + τ̃ ⊆ R.

Then it follows that the sampling an output distribution of steps 6 and 7 are the
same as in the original algorithm. □

Remark 9.15. Note that, if only a sub-order R ⊆ OK is known, the call to Al-
gorithm 1 in line 6 of Algorithm 2 cannot be done with r = 48 · ω · b2n/b · n7/2 ·
|∆K |

3
2n · N (m0)

1
n . Instead, the larger r = 48 · ω · b2n/b · n7/2 · |∆(R)| 3

2n · N (m0)
1
n

must then be used, where |∆(R)| = [OK : R]2|∆K | is the discriminant of R.

10. Properties of the ideal sampling algorithm

10.1. Introduction. In this section we will treat several important properties of
the ideal sampling algorithm (Algorithm 2). These properties are phrased in terms
of the output distribution of Algorithm 2, that is, the distribution of β ∈ K on line
5. This distribution has three important properties: having the shifting property,
being bounded and being almost Lipschitz continuous.

The boundedness and the shifting property are useful to show certain randomness
properties of the output distribution of Algorithm 2 on a random input. In Part 2
of this paper, we will use Algorithm 2 on a ‘Gaussian’ input to rigorously compute
S-unit groups. For this, these two properties will be of fundamental importance
to show that sampling sufficiently many ‘relations’ will eventually lead to the full
S-unit group.
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The (almost-) Lipschitz continuous property is there to show that rounding or
slightly disturbing the input of the ideal sampling algorithm does not impact the
output of this algorithm significantly (this concerns the variable Log(y) = b =
(bν)ν ∈ H). From this one can conclude that rounding or finite precision issues do
not play a role at all for the input of Algorithm 2.

By Lemma 9.4, the output distribution of Algorithm 2 is independent on the
norm of y ∈ K×R and the signs of the entries. Hence, in theoretical arguments, we

are always allowed to replace y by y0 = y/| N (y)|1/n ∈ K0
R and to assume that

the entries of y0 are positive. In the actual running algorithm we will not do this,
because in general y0 does not consist of rational numbers.

The shifting property. The shifting property of Algorithm 2 relates a certain change
in the input to a similar change in the output. For this property to be phrased
succinctly it is useful to consider the input of the algorithm to be the zero-degree
Arakelov divisor a = d0(b)+ b (one retrieves b = Exp(af) and b = a− d0(b), where
b = Log(y); here we use H ⊆ Div0Km).

Shifting the input a by a principal divisor, yielding a+ LαM (with α ∈ Km,1), has
as a result that the output distribution of Algorithm 2 is ‘multiplied’ by α. More
precisely, the probability of sampling η ∈ K in the ideal sampling algorithm on
input divisor a is precisely the same as the probability of sampling α · η on input
a+ LαM. Writing Da for the output distribution of Algorithm 2 (see Notation 10.1)
this can be more succinctly written as:

Da(η) = Da+LαM(α · η).

This is called the ‘shifting’ property because a shift of the input divisor by a prin-
cipal divisor LαM causes the output distribution to ‘shift’ (multiplicatively) by the
same element α.

This property of Algorithm 2 is proven in Section 10.3.

Boundedness. The output distribution of Algorithm 2 being bounded means here
that the output cannot exceed a certain size. This property is almost immediate by
the fact that the output element is sampled in a (slightly) distorted box, where the
distortion is dictated by a truncated discrete Gaussian (see Lemma 2.22). Exactly
the dimensions of this box give the upper bound on the size of the elements; this is
proven in Section 10.4.

Lipschitz continuous. The output distribution being almost-Lipschitz is useful when
one considers the input to be discretized or rounded. Again, using the notation Da

for the output distribution of Algorithm 2 on input divisor a (see Notation 10.1),
being almost Lipschitz means that the total variation distance between Da and
Da+a with a = (aν)ν ∈ H is linearly upper bounded by ∥a∥, allowing some slack
by adding a small error. More precisely, there exist L ∈ R>0 and a small η ∈ [0, 1)
such that for all a, a ∈ H,

∥Da+a −Da∥1 ≤ L · ∥a∥+ η.

This fact is proven in Section 10.5.
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10.2. Preliminaries. The input of Algorithm 2 is given in terms of an ideal b and
an element y = Exp((bν)ν) ∈ K0

R with b ∈ H. In this section about properties
of this algorithm, it is cleaner to use an Arakelov divisor a = d0(b) + b as input
instead9.

Notation 10.1 (Output distribution). For a fixed number field K, with modulus
m, finite-index subgroup G ⊆ Pic0Km , element τ ∈ OK coprime with m0 and fixed
error parameter ε > 0, block size b, ω ∈ Q≥1 and a = d0(b) + b ∈ Div0Km (where b

is understood via the inclusion H ⊆ Div0Km), we denote

Da ∈ L1(K
∗)

for the output distribution of β from Algorithm 2 on input b (coprime with m0) and
y = Exp(b) ∈ K0

R. We will use the notation Da(α) for the probability of sampling
α ∈ K from Da.

Da(α) = P
x←Da

[x = α].

10.3. Shifting Property. In order to prove the shifting property of Algorithm 2,
we first start by the following lemma, that shows what impact multiplication by an
element α ∈ K∗ has on a (τ -equivalent) ideal lattice Exp(a)τ . This will then be
used to show that the output distribution of Algorithm 2 ‘shifts’ (i.e., multiplies)
by α if the input divisor is shifted by the principal divisor LαM in Lemma 10.3.

Lemma 10.2. For all a ∈ Div0Km , multiplication by α ∈ Km,1 gives an additive
group isomorphism

Exp(a)τ → Exp(a+ LαMf)τ , γ 7→ (σ(α))σ · γ
and additionally, restricted to rB∞, a bijection

Exp(a)τ ∩ rB∞ → Exp(a+ LαMf)τ ∩ Exp(−LαM∞) · rB∞.

Proof. Very similar as in Lemma 7.5 part (i), multiplication by (σ(α))σ ∈ KR
yields a bijection from Exp(a)τ to Exp(a + LαM)τ Exp(−LαM∞) = Exp(a + LαMf)τ .
Multiplication by an element is straightforwardly a group morphism, so the first
claim follows by the fact that bijective group morphisms are isomorphisms.

For the second part, observe that multiplication by (σ(α))σ transforms the box
rB∞ into (σ(α))σ · rB∞ = (|σ(α)|)σ · rB∞ = Exp∞(−LαM∞) · rB∞. □

Lemma 10.3. For all degree-zero Arakelov divisors a ∈ Div0Km , the distribution
Da satisfies the following shifting property for all α ∈ Km,1,

Da+LαM(− · α) = Da(−)

Proof. Take an arbitrary a ∈ Div0Km and write a = d0(b) + b ∈ Div0Km for an ideal
b and an b = (bν)ν ∈ H (where we see b ∈ H ⊆ Div0Km). To prove the statement it
is enough to show for every β ∈ Km

Da+LαM(β · α) = Da(β)

9This is interchangeable, as the ideal b = Exp(af) and element b = a − d0(b) are readily
retrieved (where b = Log(y)). It is important to note, however, that Exp(a) ̸= y · b. Instead,

Exp(a) · N (b)1/n = y · b. We chose for this convention to make a a degree-zero Arakelov divisor.
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As can be proved in the same fashion as in Lemma 9.8, the distribution Da is
the same as the distribution resulting from

α← Exp∞(−(a+ b)∞) · U(Exp(a+ b)τ ∩ rB∞) with b = d0(
∏
j

pj) + a,

where pj are sampled according to step 2 and a = Log((Aσ)σ) is sampled from a
discrete Gaussian, as in step 4. Note that this a is slightly distorted, due to the
computation of (Aσ)σ, but that is not problematic; the property used here is that
this a is distributed independently of the value of a. We write b = d0(

∏
j pj) + a.

This divisor corresponds to the ‘random walk part’ of the algorithm.
We seek to compare the distributions Da and Da+LαM. By the law of total prob-

ability, since the sampling of b = d0(
∏
j pj) + a is independent of a and LαM, it

is sufficient to consider a fixed sample b = d0(
∏
j pj) + a and compare the result-

ing distributions. These resulting distributions, for a fixed b, denoted Da|b and
Da+LαM|b, are

Da|b = Exp∞(−(b+ a)∞) · U(Exp(b+ a)τ ∩ rB∞) (82)

and

Da+LαM|b = Exp∞(−(b+ a+ LαM)∞) · U(Exp(b+ a+ LαM)τ ∩ rB∞) (83)

= Exp∞(−(b+ a)∞) · U(Exp(b+ a+ LαMf)τ ∩ Exp∞(−LαM∞) · rB∞)
(84)

= Exp∞(−(b+ a)∞) · U
(
(σ(α))σ · (Exp(b+ a)τ ∩ rB∞)

)
(85)

= (σ(α))σ · Da|b (86)

where the first equality holds by definition, the second equality follows from pulling
Exp∞(−LαM∞) into the uniform distribution and using the relation LαM = LαMf +
LαM∞, the third equality follows from Lemma 10.2 and the last equality by Lemma 9.8.

The result quickly follows from the law of total probability and the fact that
multiplying by (σ(α))σ and α is the same in KR. □

Lemma 10.4 (Post-selection shifting lemma). Let S be a set of ideals coprime with
m0 and let DSa be the distribution obtained by running Algorithm 2 on input a and
only outputting β if β/b̄ ∈ S and otherwise outputting ⊥.

Then, this distribution satisfies

DSa+LαM(− · α) = DSa (−),
for all α ∈ Km,1.

Proof. This uses the same proof structure as Lemma 10.3, again using Lemma 9.8.
Reusing the notation Da|b for b = d0(

∏
j pj)+a as in Lemma 10.3, we proved that,

for a fixed sample b, we have

Da|b(−) = Da+LαM|b(α · −). (87)

The ideal β/b̄ (where β, b̄ are from Algorithm 2 on input a) is distributed as10

Expf(−af) · γ with γ ← Da|b (on input a with fixed b).

10The distribution Da|b concerns the right part αExp∞(−a∞) of Lemma 9.8, whereas β/b̄

concerns αExp(−a) = αExp∞(−a∞)Expf(−af).
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But replacing a with a + LαM here yields that the distribution of β/b̄ of Algo-
rithm 2 on input a+ LαM is equal to (for a fixed sample b)

Expf(−(a+ LαM)f) · γ with γ ← Da+LαM|b

which is, by Equation (87), equal to

Expf(−(a+ LαM)f) · α · γ with γ ← Da|b

which is, by manipulation, equal to

Expf(−af) · γ with γ ← Da|b.

So, for a fixed sample of b = d0(
∏
j pj) + a the probabilities of obtaining β/b̄ are

the same, no matter whether the input was a or a+ LαM.
As a result, DSa|b = α · DSa+LαM|b, where DSa|b denotes the output distribution

of Algorithm 2 on input a with fixed sample b ← W(N,B, s) and the additional
post-selection (i.e., outputting β whenever β/b̄ ∈ S and ⊥ otherwise).

By the law of total probability the distributions of β/b̄ for a or a + LαM are
the same; and, thus the rejection of β/b̄ for not being in S happens for the same
occurrences. Therefore, DSa+LαM(− · α) = DSa (−) for all α ∈ Km,1. □

10.4. Boundedness Property. In this section we show that the output distribu-
tion Da is bounded, i.e., no arbitrarily large inputs occur. This can be seen by the
fact that the output is sampled from a distorted box, where the distortion is dis-
tributed as a truncated discrete Gaussian (a bounded distribution by itself). Thus,
the output must be confined to a certain box, slightly larger than the dimensions
of the original undistorted box. This is made more formal in the following text.

Recall the Euclidean distance notion on DivK in Section 2.8.

Lemma 10.5. Let a = d0(b) + b ∈ Div0Km with b ∈ IK and b = Log(y) ∈ H and
let B,N, s, r, ε be as defined in Algorithm 2. Then, we have, for β ← Da,

∥LβM∥ ≤ 5 log(BN · rn) + ∥a∥+ s ·
√
n log(8n2/ε).

Proof.
Bound on the norm of β.
We start with a bound on | N (β)|, which is of use for the rest of the proof. The
output of β ← Da with a = d0(b)+b lies in the box Exp(−a−b)·r·N (b̄)1/n·B∞ ⊆ KR
(see lines 6 and 7 in Algorithm 2), where a = (aν)ν = Log((Aσ)σ) ∈ H is an
approximation a sample of a (truncated) Gaussian distribution (see line 4 and 5
of Algorithm 2); and b = (bν)ν = Log(y). Hence, since a, b ∈ H do not change
the norm (we may assume this by Lemma 9.4), we obtain | N (β)| ≤ N (b̄) · rn ≤
BN · rn · N (b); a bound on the norm of β.
Split the bound on ∥LβM∥ into three parts.
We have, by the triangle inequality,

∥LβM∥ ≤ ∥LβM− a∥+ ∥a∥. (88)

We seek to bound ∥LβM∥. To do so, we concentrate on ∥LβM−a∥, which we can split
in a ‘finite part’, a ‘constant part’ and an ‘infinite part’.

LβM− a =
∑
p

mp · LpM︸ ︷︷ ︸
finite part f

−
∑
ν

nν logN (
∏

p p
mp)

n
LνM︸ ︷︷ ︸

constant part c

+
∑
ν

ινLνM︸ ︷︷ ︸
infinite part i

. (89)
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where nν = 2 if ν is complex and 1 otherwise.
Bounding the finite part f and constant part c.
Since β ∈ b̄ ⊆ b, we see that (β) = a · b for an integral ideal a (recall that
b = Exp(af)). Hence,

∑
pmp · d0(p) = d0(a), has only positive coefficients mp ≥ 0.

Since N (a) = | N (β)|/N (b) ≤ BN · rn by the norm bound on β in the very
beginning of this proof, we quickly deduce

BN · rn ≥ N (a) ≥
∏
p

N (p)mp ≥ 2
∑

p |mp| ≥ 2(
∑

p |mp|2)1/2 ,

which implies

∥f∥ ≤ (
∑
p

|mp|2)1/2 ≤ log(BN · rn)/ log(2) ≤ 2 log(BN · rn) (90)

Similarly, for the constant part c, using a =
∏

p p, we have,

∥c∥ ≤
√∑

ν

n2ν ·
log(N (a))

n
≤ log(N (a)) ≤ log(BN · rn) (91)

Bounding the infinite part i.
By definition (see Equation (89)), and by the inclusion of H ⊆ Div0Km we have

ιν = −nν log |σν(β)|+ nν
log(| N (β)|)

n
− bσ ∈ H (92)

since a = d0(b)+b. By the fact that β lies in the box Exp(−a−b) ·r ·N (b̄)1/n ·B∞,
we have log |σν(β)| ≤ −n−1ν aσ − n−1ν bσ + log r + log(N (b̄)1/n). Therefore,

− log |σ(β)| ≥ n−1ν aσ + n−1ν bσ − log r − log(N (b̄)1/n) (93)

Hence, substituting Equation (93) into Equation (92), and using that β ∈ b̄ (and
hence | N (β)| ≥ N (b̄)), we obtain

ιν ≥ aν + nν log(| N (β)|1/n · N (b̄)−1/n · r−1) ≥ aν − nν log(r).
So, writing ι− a ∈ H, it satisfies

∑
ν(ι− a)ν = 0 and ιν − aν ≥ −nν log(r) for all

ν. Then ∥ι− a∥ =
√∑

ν |ιν − aν |2 is bounded by11 2
√
n(n− 1) log(r) ≤ 2 log(rn).

Hence, writing i = (ιν)ν , we have

∥i∥ = ∥ι∥ ≤ ∥a∥+ 2 log(rn) ≤ ∥a∥+ 2 log(BN · rn). (94)

11Suppose a sequence (x1, . . . , xn) satisfies
∑n

j=1 xj = 0 and xj ≥ −t for all j ∈ {1, . . . , n}
for some t ∈ R>0. Then

∑n
j=1 x

2
j ≤ n(n − 1)t2. This maximum is attained by, for example,

x1 = (n− 1)t and xj = −t for 1 < j ≤ n.

We prove this by induction, where the case n = 1 is trivial (since then x2
1 = x1 = 0 ≤

n(n − 1)t2). For n > 1, we can assume that a non-zero sequence (x1, . . . , xn) has a positive

co-ordinate (by the zero-sum requirement). Moreover, we can assume it has only a single positive

co-ordinate. Indeed, if there are multiple positive coordinates, say x1, x2, then the sequence

(y1, . . . , yn−1) = (x1 + x2, x3, . . . , xn) satisfies
∑n−1

j=1 yj = 0 and yj ≥ −t. Hence,
∑n

j=1 x
2
j ≤∑n−1

j=1 y2j ≤ (n − 1)(n − 2)t2 ≤ n(n − 1)t2, by induction. For a single positive co-ordinate it is

clear that x1 = (n− 1)t and xj = −t for 1 < j ≤ n is the optimal solution.

Applying this to the sequence qσ = n−1
ν (ινσ − aνσ ), we see that ∥ι − a∥ ≤ 2∥(qσ)σ∥ ≤

2
√

n(n− 1) log(r).



RIGOROUS METHODS FOR COMPUTATIONAL NUMBER THEORY 63

Combining the bounds on ∥i∥ and ∥f∥.
Concluding, by combining Equations (88) to (91) and (94), we obtain

∥LβM∥ ≤ ∥LβM− a∥+ ∥a∥ ≤ ∥f∥+ ∥c∥+ ∥i∥+ ∥a∥ (95)

≤ 5 log(BN · rn) + ∥a∥+ ∥a∥. (96)

The final bound then comes from the fact that a = (aν)ν ∈ H is (an approximation
of a) discrete Gaussian distributed with deviation s computed according to the
algorithm in Lemma 2.22 with εG := ε/4 (see 4 of Algorithm 2). Hence, ∥a∥ ≤
s ·
√
n log(8n2/ε). □

10.5. (Almost)-Lipschitz Property. The almost-Lipschitz-continuous property
of the output distribution of Algorithm 2 implies that it does not matter too much
if the input parameter y = Exp(b) ∈ K0

R is slightly inaccurate or rounded to a
vector of rational numbers due to machine precision.

This is relevant for Part 2 of this paper, where we will feed Algorithm 2 y =
Exp((bν)ν) with a continuous Gaussian distributed b ∈ H. The Lipschitz-continuous
property in this subsection essentially implies that using a discrete Gaussian dis-
tribution instead for b ∈ H will only cause a very small error overhead.

Lemma 10.6. The output distribution of the sampling algorithm (Algorithm 2) is
ε-almost Lipschitz continuous in the input parameter b ∈ H with y = Exp(b). That
is, for a = d0(b) + b and a′ = d0(b) + b′ = a+ (b′ − b) we have

1
2∥Da −Da′∥1 ≤

n2

2
· ∥b− b′∥+ ε,

where 1
2∥Da −Da′∥1 is the total variation distance of the two distributions.

Proof. In this proof, like in the proof of Theorem 9.5, we will again assume that line
4 in Algorithm 2 is replaced by the line in Equation (63), and assume that y ∈ K0

R.
Again we will refer to this as the ‘continuous version of Algorithm 2’. This proof
will be structured as follows. First we will show that this ‘continuous version of
Algorithm 2’ is actually Lipschitz continuous with Lipschitz constant n2/2. After
that we will use Proposition 9.12 to show that the Lipschitz continuity also ‘almost’
holds for the ordinary version of Algorithm 2, with an additional error of ε.

In the following, we will reason about the ‘continuous version of Algorithm 2’.
The input b ∈ H is only used in Algorithm 2 (as b = Log(y)) in combination with
the variable a = (aν)ν ∈ H, which sampled according to a continuous Gaussian
distribution with deviation s = 1/n2. The sum a+ b is then used combined in the
rest of the algorithm.

So, for two different inputs b, b′ ∈ H, the only thing that differs in the algorithm
are the distributions of a+b and a′+b′, for which a, a′ are (independently) sampled
according to the same Gaussian distribution.

We denote the distributions respectively Gb and Gb′ ; these are Gaussian distri-
butions with deviation s = 1/n2 centered at b and b′ respectively (see Section 2.9).

Therefore, by the data processing inequality (Theorem 2.16), one immediately
deduces that the statistical distance between the output distribution of the ‘con-
tinuous version of Algorithm 2’ on input b, b and b, b′ is bounded above by

1
2∥GH,b − GH,b′∥1.



64 K. DE BOER, A. PELLET-MARY, B. WESOLOWSKI

The total variation distance of two continuous (multivariate) Gaussian distributions
with different centers can be bounded by the Kullback-Leibler divergence [61, Ch. 1,
Ex. 11],

1
2∥GH,b − GH,b′∥1 ≤ 1

2

√
1
2DKL(GH,b ∥ GH,b′)

≤ 1
2

√
1
4∥b− b′∥2/s2 =

∥b− b′∥
4 · s =

n2 · ∥b− b′∥
4

The last equality is obtained by instantiating s = 1/n2.
As sketched in the introduction of this proof, we use that the ordinary version

and the continuous version of Algorithm 2 only differ by ε/2, by the very same
argument as in the proof of Theorem 9.5. Hence, the statistical distance between

the ordinary version of Algorithm 2 input b, b and b, b′ is bounded by n2

2 ·∥b−b′∥+ε,
as required. □

In most use-cases, Algorithm 2 is repeated until success, for which the follow-
ing lemma is more useful: it shows that the output distribution of the algorithm
conditioned on a successful outcome is also almost-Lipschitz. This distribution
conditioned on a successful outcome is exactly the same as the output distribution
resulting from repeating the algorithm until success.

Lemma 10.7. The output distribution Dsuc
a , resulting from repeating the sampling

algorithm (Algorithm 2) until success, is ε
δS [rn] -almost Lipschitz continuous in the

input parameter b ∈ H with y = Exp(b). That is, for a = d0(b) + b and a′ =
d0(b) + b′ = a+ (b′ − b) we have

1
2∥Dsuc

a −Dsuc
a′ ∥1 ≤

n2

2δS [rn]
· ∥b− b′∥+ ε

δS [rn]
,

where 1
2∥Dsuc

a −Dsuc
a′ ∥1 is the total variation distance of the two distributions.

Proof. For this we apply the next Lemma 10.8 with the lower bound δS [r
n] on the

success probability. □

Lemma 10.8. Let A be a randomized algorithm that can have input y and y′. De-
note Ay respectively Ay′ for the algorithm using y respectively y′ as input. Assume
that both Ay and Ay′ have success probability at least p ∈ (0, 1].

Now denote By for the algorithm running Ay until it outputs a successful output,
and similarly denote By′ for the algorithm running Ay′ until success. By abuse of
notation, denote By, By, Ay, Ay′ for the output distributions of these algorithms.
Then the total variation distances are related by

1
2∥By − By′∥1 ≤

1
2∥Ay −Ay′∥1

p
.

Proof. Denote X ∪{⊥} for the output space of A, where ⊥ denotes failure (unsuc-
cessful output) and where x ∈ X are all successful outputs.

The output distribution Bx is the output distribution of Ax conditioned on a
successful output. Hence, denotingAsuccess

x (and similarly for x′) for this conditional
distribution, we have

∥Bx − Bx′∥1 = ∥Asuccess
x −Asuccess

x′ ∥1 =
∑
x∈X
|Asuccess

y [x]−Asuccess
y′ [x]|,
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where X is the probability space of the algorithm A. The conditional probability
of A outputting x conditioned on a successful output (which are all of x ∈ X) then

must equal
Ay [x]
p0

with p0 = P[Ay gives successful output]; and similarly for input

y′. Note that |p0 − p1| ≤ ∥Ay −Ay′∥1. Hence, writing p = min(p0, p1) and noting
that p1 =

∑
x∈X Ay′ [x],∑

x∈X
|Asuccess

y [x]−Asuccess
y′ [x]| =

∑
x∈X

∣∣∣∣Ay[x]p0
− Ay′ [x]

p1

∣∣∣∣
≤
∑
x∈X

∣∣∣∣Ay[x]p0
− Ay′ [x]

p0

∣∣∣∣+ ∑
x∈X

∣∣∣∣Ay′ [x]p0
− Ay′ [x]

p1

∣∣∣∣
≤ 1

p0

∑
x∈X
|Ay[x]−Ay′ [x]|+

1

p0
|p1 − p0| =

1

p0

∑
x∈X∪{⊥}

|Ay′ [x]−Ay′ [x]|

≤∥Ay −Ay′∥1
p

.

□

11. Estimation of the factor N (m0)/ϕ(m0)

Lemma 11.1. Let K be a number field and let m0 ⊆ OK be an integral ideal. Then
we have

N (m0)

ϕ(m0)
=
∏
p|m0

1

1−N (p)−1
.

where ϕ(m0) = |Km0/Km0,1| and where p ranges over the prime ideals of K dividing
m0.

Proof. If m0 = OK , we have ϕ(m0) = 1. Otherwise ϕ(m0) = |(OK/m0)
×|. Writing

m0 =
∏

p|m0
pvp(m0), we have, by multiplicativity of the norm N and the (general-

ized) Euler totient function ϕ (which follows from the Chinese remainder theorem),

N (m0) =
∏
p|m0

N (p)vp(m0) and ϕ(m0) =
∏
p|m0

N (p)vp(m0)−1(N (p)− 1)

The quotient N (m0)/ϕ(m0) then equals
∏

p|m0

N (p)
N (p)−1 =

∏
p|m0

1
1−N (p)−1 . □

Proposition 11.2 (ERH). Let K be a number field and let m0 =
∏
N (p)<x p be the

product of all prime ideals with norm below x ≥ 10. Then there exists c0 ∈ [−8, 8]
and c1 ∈ [0, 2] such that

N (m0)

ϕ(m0) · ρK
= log(x) · exp

(
c1 + c0 ·

log |∆K |+ n log x√
x

)
.

Proof. Write, as in Bach’s paper [5, §6],

A(x) :=
∏
p<x

1− p−1∏
p|p

N (p)<x

(1−N (p)−1)
, (97)
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for which we have the bound12 [5, Thm. 6.2 & Table 2]

| log(ρK)− logA(x)| ≤ 8 ·
(
log |∆|+ n log x√

x

)
, (98)

assuming the Riemann Hypothesis for the Dedekind zeta function of K.
By Lemma 11.1 and Equation (97), we have

N (m0)

ϕ(m0)
=
∏
p|m0

1

1−N (p)−1
=
∏
p<x

1

1− p−1 ·A(x) (99)

By taking logarithms of Equation (99) and subsequently applying Bach’s bound
(Equation (98)), we obtain

log
(N (m0)
ϕ(m0)

)
− log(ρK) = log(

∏
p<x

1

1− p−1 ) + logA(x)− log(ρK) (100)

= log(
∏
p<x

1

1− p−1 ) + c0 ·
(
log |∆|+ n log x√

x

)
, (101)

for some c0 ∈ [−8, 8], by Equation (98). Apply Lemma 11.3 for the left-hand
side of Equation (101), to obtain

∏
p<x

1
1−p−1 ∈ [e0, e2] · log x. Exponentiating the

expression yields the final result. □

Lemma 11.3. For x ≥ 2, we have

log x ≤
∏
p<x

1

1− p−1 ≤ 6 · log x,

where the product ranges over all prime numbers up to x.

Proof. By the Euler product formula, we certainly have∏
p<x

1

1− p−1 ≥
∑
n<x

1

n
≥ log x.

For the upper bound, we invoke an explicit version of Mertens’ third theorem of
Rosser and Schoenfeld [67, Corollary 1, Equation 3.30],∏

p<x

1

1− p−1 < log(x) · eγ · (1 + 1

log(x)2
).

Here, γ ≤ 0.578 is the Euler-Mascheroni constant. Instantiating with x = 2 and
explicitly computing eγ yields a bound of 6 · log(x). □

The following result is a simplified version of a result by Grenié–Molteni [37,
Cor. 1.4].

Lemma 11.4 (ERH, Grenié–Molteni). Let K be a number field, with degree n,
discriminant ∆K , and ring of integers OK . Let m0 =

∏
N (p)<x p be the product of

all prime ideals with norm below x > 100. We have

logN (m0) ≤ x+
√
x

((
log x

2π
+ 2

)
log |∆K |+

(
(log x)2

8π
+ 2

)
n

)
= x+O

(√
x log(x) (log |∆K |+ n log x)

)
.

12In his theorem, Bach writes ζK
ζ

(1) for the residue ρK at s = 1 of the Dedekind zeta function

ζK [5, Thm. 6.2].



PART 2

Rigorous computation of
class groups and unit groups

12. Introduction

In this second part of the article, we present the first algorithm for computing class
groups and unit groups of arbitrary number fields that provably runs in probabilis-
tic subexponential time, assuming the Extended Riemann Hypothesis. Let K be a
number field of degree n and discriminant ∆K . The determination of the structure
of its class group Cl(K), together with a system of fundamental units, is one of
the main problems of computational number theory [22, p. 217]. Previous subex-
ponential algorithms were either restricted to imaginary quadratic fields, or relied
on several heuristic assumptions that have long resisted rigorous analysis.

12.1. The Log-S-unit lattice. While we stated our main result as an algorithm
for computing units and class groups in Theorem 1.3, our algorithm actually does
slightly more than that: it computes the so-called Log-S-unit lattice for any finite
set S of prime ideals. For such a set S of prime ideals of K, we consider the group
DivK,S =

∏
p∈S Z×

∏
ν R, where ν ranges over all infinite places of K. The Log-S-

unit lattice LogS(O×K,S) is a lattice living in DivK,S generated by all vectors of the

form (v,−Log(α)) with Log : K× →∏
ν R the logarithmic embedding of K, where

α ∈ K and v = (vp)p∈S ∈ ZS are such that α · OK =
∏

p∈S p
vp . Such elements α

are called S-units, hence the name of the lattice. See Section 15 for more details.
The main result of this part is the following theorem.

Theorem 12.1 (ERH). There is a probabilistic algorithm which, on input a number
field K of degree n and discriminant ∆K , an LLL-reduced basis of its ring of integers
OK and a finite set of prime ideals S, computes the Log-S-unit lattice and runs in
expected time polynomial in the length of the input, in L|∆K |(1/2), in Lnn(2/3),
and in min(ρK , L|∆K |(2/3 + o(1))), where ρK is the residue at 1 of the Dedekind
zeta function ζK .

The Log-S-unit lattice computed by the algorithm is represented exactly by
elements αi ∈ K and vectors vi ∈ ZS such that the vectors ((vi,−Logαi))i form a
basis of LogS(O×K,S). These elements αi ∈ K are represented by a so-called compact

representation, i.e., as a product of smaller elements βj ∈ K (see Section 2.6). Even
though this is called a compact representation (and it is indeed more compact than
representing the αi in a basis of OK), the bit-size of this representation of the αi
might be about as large as the running time of the algorithm.

12.2. Previous work. Shanks proposed in 1968 the first algorithm to compute the
structure of the class group. His method, described for quadratic number fields, had
an exponential running time Oε(|∆K |1/4+ε) (or Oε(|∆K |1/5+ε) assuming ERH). In

67
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1989, Hafner and McCurley [38] proposed the first subexponential time probabilis-
tic algorithm to compute the class group of imaginary quadratic number fields.
Assuming ERH, they prove that the expected running time is L|∆K |(1/2,

√
2). The

case of imaginary quadratic number fields distinguishes itself by the finiteness of
the unit group, and the existence of a reduced ideal in each class, two properties
that proved helpful for a rigorous analysis of the algorithm.

In 1990, Buchmann [17] generalized this algorithm to fields of arbitrary degree.
The analysis proved much more delicate, requiring several heuristic assumptions,
notably on the distribution of smooth ideals. From these assumptions, Buchmann
argued that the expected running time is L|∆K |(1/2, 1.7) when the degree of the
field is constant. Practical improvements ensued, notably by Cohen, Diaz Y Diaz
and Olivier [25]. In 2014, Biasse and Fieker [10] proposed an algorithm capable
of dealing with fields of varying degree: under heuristic assumptions, they argue
that the algorithm computes class groups in subexponential time L|∆K |(2/3 + ε)
for arbitrary families of number fields, even with growing degree (and L|∆K |(1/2)

whenever n ≤ (log |∆K |)3/4−ε, matching Buchmann’s claimed complexity for fixed-
degree fields). In the meantime, no progress was made towards a rigorous analysis.

On the quantum computing side, a non-heuristic (assuming ERH) quantum poly-
nomial time algorithm for computing S-units and class groups was developed in
2016 by Biasse and Song [11], for any number field. The structure of this algorithm
is different from the classical algorithms mentioned above: it relies on a quan-
tum polynomial time algorithm solving the Continuous Hidden Subgroup Problem
over Rm [30, 13]. In the present article, we only consider classical algorithms.

12.3. The blueprint of a ‘classical’ Log-S-unit lattice algorithm. For the
sake of simplicity we limit ourselves in this overview to the computation of the
class group of a number field. The situation for the Log-S-unit lattice is, at this
high level, very similar.

Classical algorithms computing the class group proceed by generating many class
group relations of the shape [

∏
p p

ap ] = 1, where the prime factors p in the ideal∏
p p

ap have norm bounded by B, i.e., the product is a B-smooth ideal. Since there
are only finitely many generators p, enough ‘sufficiently independent’ relations of
this shape then yield a description of the (finite) class group.

Such a relation [
∏

p p
ap ] = 1 is generally found by taking a random smooth ideal

s =
∏

p p
bp , and repeatedly sampling random elements α ∈ s until (α)s−1 =

∏
p p

cp

is also a smooth ideal. This gives the relation 1 = [α] = [
∏

p p
ap ] with ap = bp+ cp.

Heuristics in previous work. The usual heuristics for class group algorithms (and
Log-S-unit lattice algorithms) are twofold. The first kind of heuristic assumption
concerns a lower bound on the probability of the random ideal (α)s−1 to be smooth,
see for instance [9, Heuristic 1, 2]. This allows one to bound the expected running
time of sampling a single relation of the shape [

∏
p p

ap ] = 1. This smoothness
probability is typically assumed to match the density of smooth ideals in the set of
all ideals, a somewhat well-understood quantity related to the Dickman function.

The second kind of heuristic assumption concerns the number of such relations
required in order to get the class group (rather than a larger group, of which the
class group would be a quotient), see for instance [9, Heuristic 3]. The heuristic
running time is then obtained as the product of the running time per relation and
the required number of relations.
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12.4. Why our algorithm is rigorous. We would like to stress that the following
overview of our proof makes substantial simplifications for expository purposes (in
particular, we ignore complex embeddings, which in the full proof play a similar
role to prime ideals).

To circumvent the first heuristic about the cost of finding one relation, we use a
special sampling algorithm (Algorithm 2) from Part 1 of this paper. This algorithm
samples an element α ∈ a in such a way that the success probability of (α)a−1 being
smooth is actually provably lower bounded by the density of smooth ideals in the
set of all ideals (up to a multiplicative constant). This yields an upper bound on
the expected cost of finding one class group relation. The sampling algorithm is
the object of Part 1; this algorithm, together with its properties is used here as a
black-box.

The remaining challenge addressed in the current part is circumventing the sec-
ond heuristic, concerning the number of sampled group relations [

∏
p p

ap ] = 1 re-

quired to compute the class group (rather than an extension). To achieve that goal,
we investigate the lattice of class group relations, which consists of those vectors
(ap)p for which [

∏
p p

ap ] = 1.

The class group lattice. Denoting S for the set of prime ideals with norm bounded by
B, we can construct the class group lattice LCl = {(ap)p∈S ∈ ZS | [∏p∈S p

ap ] = 1} ⊆
ZS. In this paper we will construct (here treated quite informally) a randomized
algorithm A : ZS → ZS which has the following two properties.

(i) For u← A(z), we have u+ z ∈ LCl and ∥v∥ < E for some bound E.
(ii) The distribution of A(z) only depends on the coset z + LCl, i.e., A(z′) and
A(z) have the same distribution for any z′ ∈ z + LCl.

This algorithm A uses the sampling algorithm from Part 1 mentioned above. We
will use algorithm A to sample vectors of LCl in such a way that we can prove that
they will generate the full lattice with sufficiently good probability.

Gaussians over the class group lattice. Let GX,s denote the discrete Gaussian dis-
tribution with parameter s over the discrete set X ⊆ RS. We will make use of the
following observation: when the deviation s is large enough, sampling from GZS,s

is indistinguishable from sampling first a uniform c ∈ ZS/LCl, then sampling from
c+ GLCl,s.

For such z ← c+GLCl,s for c ∈ ZS/LCl uniformly distributed, we see by property
(ii) of A that

A(z) + z ∼ A(c) + (c+ GLCl,s) = (A(c) + c) + GLCl,s

By property (i) of A, the distribution A(c)+c is bounded, i.e., for all z ← A(c)+c we
have ∥z∥ < E′ with overwhelming probability for some bounded E′ (which depends
on E and on the covering radius of the lattice LCl). Then the variable A(z) + z is
distributed as a Gaussian over LCl with some independent ‘noise’ of size E′ caused
by A(c)+c. By taking the standard deviation s (of all discrete Gaussians involved)
much larger than this ‘noise’ of size E′, one can deduce that, for z ← GZS,s,

A(z) + z ≈ GLCl,s.

Summarizing, sampling z ← GZS,s with large enough s and computing A(z) + z
allows to compute close to Gaussian samples from the class group lattice LCl. There
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are well-known bounds for the number of samples required to generate the entire
lattice LCl for such (close to) Gaussian samples.

The algorithm A. The algorithm A : ZS → ZS satisfying the properties (i) and
(ii), is defined as follows. For z ∈ ZS, compute a =

∏
p∈S p

zp . Sample α ∈ a

according to a not-too-wide discrete Gaussian and put b = (α) · a−1. Then, use the
sampling algorithm from Part 1 to find a representative

∏
p∈S p

up ∈ [b] = [a]−1 =

[
∏

p∈S p
−zp ], and output u ∈ ZS. We have that u+ z ∈ LCl and that u is bounded

(by properties of the sampling algorithm), so property (i) of algorithm A is true.
Property (ii) follows from the fact that the sample b = (α) · a−1 only depends

on the class [a] of a, and not of the representation thereof13. Therefore, the output
u only depends on the class, i.e., the coset z + LCl of the input z.

Technicalities involving the infinite places. In the general case of the Log-S-unit lat-
tice, there is also a continuous part involving the logarithmic unit lattice. Essen-
tially the same proof structure applies, with additional technicalities introduced by
the numerical approximation of the real numbers involved.

12.5. More algorithmic problems. Once we have an algorithm computing the
Log-S-unit lattice for any set of prime ideals S, it is well known that one can use it
to obtain other quantities, such as the units of the number field, or the structure
of the class group. Combined with Theorem 17.7, which allows to decompose any
integral ideal as an equivalent product of prime ideals in a sufficiently large set S,
this can also be used to solve other algorithmic problems, such as the principal
ideal problem, or the class group discrete logarithm problem.

Units. To obtain the units of a number field K, one computes the Log-S-unit lattice
with an empty set S. The output elements αi of the algorithm is then a fundamental
system of units of the number field. Note that these elements αi, even when they
are represented in compact representation (see Section 2.6), might have a large
bit-size (as large as the running time of the algorithm). Note also that computing
a fundamental system of units of K only describes the units modulo the roots of
unity of K. Computing the roots of unity of K can be done efficiently using, e.g.,
[22, Section 4.9.4], and is not related to the algorithm we describe here.

Class group. In order to obtain the structure of the class group, one chooses a
set S generating the class group. It is known that under the extended Riemann
hypothesis, there are such sets S of size polynomial in log |∆K | [4]. Given a basis
(αi, vi) of the Log-S-unit lattice, one then only keeps the rank |S| lattice L generated
by the vectors vi. The class group of K is then isomorphic to ZS/L. Note that L
is an integral lattice whose determinant is the class-number hk of K. Hence, the
HNF basis of L has bit-size polynomial in |S| and log hk, which is polynomial in
log |∆K |. This means that the output size of the algorithm computing the class
group is polynomially bounded in log |∆K |.

13This is actually false when considering the class group alone. To apply this ‘independence of

representation’ technique, the infinite places (i.e., complex embeddings) must be included in the
logarithmic embedding. The Log-S-unit lattice accounts for the infinite places, so this technique

applies.
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Class group discrete logarithm. The class group discrete logarithm problem asks,
given as input any integral ideal a and a set of prime ideals S, to compute α ∈ K
and v ∈ ZS such that a = α · OK ·

∏
p∈S p

−vp . Solving the class group discrete
logarithm problem is exactly what is done by Algorithm 3, provided that the set S
contains sufficiently many ideals of small norm. In order to solve the class group
discrete logarithm problem for smaller sets S, one can set S′ to be the minimal set
containing S and sufficiently many small prime ideals so that Theorem 17.7 applies.
One can then solve the class group discrete logarithm problem in S′ and compute
the log-S′-unit lattice. Solving the class group discrete logarithm in the smaller set
S can then be performed efficiently by linear algebra, using the knowledge of the
log-S′-unit lattice to replace primes of S′ \ S by a product of primes of S.

Principal ideal problem. The principal ideal problem is the problem of computing
a generator α of a principal integral ideal a (represented by an HNF basis). Again,
this can be solved by choosing a set S′ containing sufficiently many ideals of small
norm and solving the class group discrete logarithm problem with respect to a and
this set S′ using Algorithm 3. Then, computing the log-S′-unit lattice allows one
to solve the principal ideal problem by linear algebra. The size of the computed
generator α, even in compact representation (see Section 2.6), might be as large as
the running time of the algorithm.

12.6. Road map. We start in Section 13 by specializing the ideal sampling theo-
rem of Part 1 to our needs. Then, a lower bound is given on the density of smooth
ideals, by means of a combinatorial technique, in Section 14. After that, some
preliminaries on S-units are treated in Section 15, and useful properties of S-unit
lattices are analyzed in Section 16.

Applying both the specialized sampling theorem and the density of the smooth
ideals, we obtain an algorithm that samples a single S-unit in Section 17.

In order to have an algorithm that outputs sufficiently ‘random’ S-units, as to
generate the entire S-unit group, we combine two results. One is a bound on the
‘generating radius’ ϱ(LogS(O×K,S)) of the log-S-unit lattice that is polynomial in

log |∆K |, which is proven in Section 16. This is combined with the properties of
the sampling algorithm (see Section 10 in Part 1), to build an algorithm that indeed
outputs ‘sufficiently random’ S-units, as proved in Section 18.

After gathering many such S-units, we would like to compute a set of fundamental
S-units, which can be seen as the multiplicative analogue of a basis of the log-S-
unit lattice. This is done in Section 19 by ‘post-processing’ the many S-units, which
essentially consists in applying the Buchmann-Kessler-Pohst algorithm.

Part 2 is then concluded in Section 21 with the final theorem on the complexity
of the S-unit algorithm.

13. Specialized ideal sampling algorithm

In this section, we specialize the main result from Part 1 to G = Pic0Km .

Definition 13.1. We denote by SB the set of B-smooth ideals, i.e.,

SB = {a integral ideal of OK
∣∣ for any prime factor p of a we have N (p) ≤ B}

We also extend the notion of smoothness to sets S of prime ideals: we say that
a ⊆ OK is S-smooth if all its prime factors belong to S: SS is the set of S-smooth
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ideals. Recall that the local density of a set of ideals S is defined (Definition 2.11)
as

δS [x] = min
t∈[x/en,x]

|S(t)|
ρK · t

= min
t∈[x/en,x]

|{b ∈ S | N (b) ≤ t}|
ρK · t

,

where, ρK = lims→1(s− 1)ζK(s) (see Equation (4)).
Theorem 13.2 below is a specialization of Theorem 9.5 from Part 1, together

with the properties proved in Section 10. We will only use this specialization in
this part.

Theorem 13.2 (ERH). There is a randomized algorithm Sample such that the
following holds. Let K be a number field, with degree n, discriminant ∆K , and ring
of integers OK of which an LLL-reduced basis is given. Let m0 ⊆ OK be an ideal
modulus of which the prime ideal factorization is known, let a ∈ IK be an ideal
coprime to m0, and let y ∈ K×R be represented by rational numbers. Let b ≥ 2 be

an integer, let ω ∈ Q≥1, and let r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (m0)

1
n .

Given the above data, the algorithm Sample(a, y,m0, b, ω) outputs β ∈ a coprime to
m0 such that for any set S of ideals in OK coprime to m0, we have (β)·a−1 ∈ S·SBrw

with probability at least
N (m0)

ϕ(m0)

δS [r
n]

6
,

for some smoothness bound Brw = poly(log |∆K |, logN (m0)), and where ϕ(m0) =
|(OK/m0)

×|. Furthermore, the algorithm Sample runs in time

poly(size(a), size(y), log(N (m0)), b
b, log |∆K |, size(ω)).

Additionally, the output distribution Dy,a of Sample on input (y, a) ∈ (K×R , IK)
(with m0, b and ω implicit) satisfies the following properties.

(1) (Almost Lipschitz-continuous). For all y, y′ ∈ K×R ,

∥Dy,a −Dy′,a∥1 ≤
n2

2
∥Log(y)− Log(y′)∥+ 1

1200 · |∆K | · rn
.

(2) (Shifting property). For all β ∈ K and α ∈ Km0,1, we have the following
identity of distributions:

Dy,a[−] = Dy·(|σ(α)−1|)σ,a·(α)[α · −]
(3) (Bounded). Writing LβM ∈ Div0K and ∥·∥ for the norm on DivK , we have

∥LβM∥ ≤ ∥d(a) + Log(y)∥+O(log2 |∆K |+ logN (m0) + n log(ω))

(4) (Independent of | N (y)|). Dy,a = Dy0,a, where y0 = y/| N (y)|1/n.
Remark 13.3. In the case where m0 = OK , we get N (m0) = ϕ(m0) = 1, yielding
a lower bound δS[r

n]/6 on the success probability.

Proof. The algorithm Sample is Algorithm 2 from Part 1 instantiated with modulus
m := m0, subgroup G := Pic0Km (yielding [Pic0Km : G] = 1), ideal b := a, y := y ∈
K×R , block size b := b and element τ ∈ (OK/m0)

× uniformly random14 if m0 ̸= OK
and τ = 1 if m0 = OK (note that τKm,1 = Km,1 = K∗ if m = m0 = OK). We put

14Uniform sampling of τ ∈ (OK/m0)× can be done in time poly(logN (m0), log |∆K |) by sam-
pling uniformly in (OK/q)× for all prime power divisors q | m0 and using the Chinese Remainder

theorem. This uses that the factorization of m0 is assumed to be known.
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the error parameter ε := 1
1200·|∆K |rn ≤

1
6·|∆K |·rn ≤

1
6·ρK ·rn (see Equation (5)). We

will use Theorem 9.5.
Note that we may assume that δS [r

n] = mint∈[rn/en,rn]
|{b∈S | N (b)≤t}|

ρK ·t > 0,

since otherwise the statement of the theorem is inherently true, as any probability
is at least zero. Hence, the set {b ∈ S | N (b) ≤ rn/en} is nonempty, and we can
immediately deduce

δS [r
n] = min

t∈[rn/en,rn]

|{b ∈ S | N (b) ≤ t}|
ρK · t

≥ 1

ρK · rn
≥ 6 · ε. (102)

By Theorem 9.5, the success probability of Algorithm 2 with these parameters
is at least

N (m0)

ϕ(m0)

δS [r
n]

3
− ε ≥ N (m0)

ϕ(m0)

δS [r
n]

3
− δS [r

n]

6
≥ N (m0)

ϕ(m0)

δS [r
n]

6
.

where the first inequality holds by Equation (102) and the second one by the fact
that N (m0) ≥ ϕ(m0). This proves the lower bound on the success probability of
algorithm A in the theorem.

It remains to show the bound on Brw and the running time. Note that [Pic0Km :
G] = 1, size(τ) = 1, and that

log(1/ε) = O(log(|∆K |rn)) = O(log2 |∆K |+ logN (m0) + logω)

by direct computation. Hence

Brw = poly(log |∆K |, logN (m0), logω)

and we have a running time of

T = poly(bb, size(a), size(y), log(N (m0)), log |∆K |, size(ω)),
with no queries to any oracle, since G = Pic0Km .

The properties (1)-(3), directly follow from the almost-Lipschitz continuity (Lemma 10.6),
the shifting property (Lemma 10.3) and the boundedness property (Lemma 10.5)
of Algorithm 2, with the following extra remarks. For the almost-Lipschitz conti-
nuity, we use that ∥Log(y0)−Log(z0)∥ ≤ ∥Log(y)−Log(z)∥ for y0 = y

| N (y)|1/n and

z0 = z
| N (z)|1/n ∈ K0

R. For the Lipschitz error, we just substitute ε = 1
1200·|∆K |rn .

Here, Log(y),Log(z) ∈ Log(K×R ) ↪→ DivK inherit their ‘natural’ norm from the
norm on DivK (see Section 2.8).

For the boundedness property we use that

log(BNrn) = O(log2 |∆K |+ logN (m0) + n log(ω))

and s = 1/n2 for the parameters used in Algorithm 2. Additionally, with the
instantiation ε = 1

1200|∆K |rn we have

s
√
n log(8n2/ε) ≤ O(log |∆K |+ log(r)) ≤ O(log2 |∆K |+ logN (m0) + logω).

With these simplifications, Lemma 10.5 tells us that ∥LβM∥ ≤ ∥d0(a) + Log(y)∥ +
O(log2 |∆K | + logN (m0) + n log(ω)). In order to obtain the desired bound (i.e.,
with d(a) instead of d0(a)), we use property (4) and we replace the input (a, y) by
(b, z) := (a, y · N (a)1/n), so that d0(b) + Log(z) = d(a) + Log(y).

For the shifting property, we use the fact that d(a)+Log(y)+ LαM = d(a · (α))+
Log(y · (|σ(α)|−1)σ) ∈ DivK . For the last property, item (4), note that Sample does
not depend on | N (y)|, as follows from Lemma 9.4. □
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Remark 13.4. In the S-unit computation algorithm in this paper, we assume that
we are given an LLL-reduced basis of the ring of integers OK . In other words, we
take such a basis of OK as part of the input. We refer the reader to the discussion
in Section 2.6.

Remark 13.5. Looking into the details of Part 1, the part bb in the running time
of Theorem 9.5 is caused by a b-BKZ reduction on an ideal lattice a (see Section 9).
One may wonder whether, in the context of this section, using an ideal-SVP algo-
rithm specifically designed for ideals (e.g., [29, 63]), instead of the BKZ algorithm,
might lead to better results. This is unfortunately not the case at the moment, since
all current algorithms exploiting the special structure of ideal lattices are heuristic.
Additionally, they all use an algorithm computing the class group and the unit group
of K as a building block, which would be a circular requirement here.

Remark 13.6. Theorem 13.2 can also be made to work for arbitrary τ ∈ Km (with
an additional size(τ) in the running time). Even a random τ is possible (which
might be useful in certain use-cases), though then the factorization of m0 must be
known. Indeed, using this factorization, uniform sampling of τ ∈ (OK/m0)

× can
be done in time poly(logN (m0), log |∆K |) by sampling uniformly in (OK/q)× for
all prime power divisors q | m0 and using the Chinese Remainder theorem.

14. Density of smooth ideals

From the early work of Hafner and McCurley [38] for imaginary quadratic fields,
to the generalizations for larger degree fields [17, 10], the core of the strategy to
compute class groups as been to find random relations between classes involving
smooth ideals. The probability of a somewhat random ideal to be smooth thus
plays a key role in the analysis of such algorithms.

For any 0 < B ≤ x, let ΨK(x,B) be the number of B-smooth integral ideals
of K of norm at most x. It is well known [75] that whenever (log log x)5/3+ε ≤
logB ≤ log x, we have

ΨK(x,B) = x · ρK · ρ(u)
(
1 +Oε,K

(
log(u+ 1)

logB

))
, (103)

where ρ is the Dickman function, and u = log x
logB . One then needs to estimate

the dependence in K hidden in the big O error. Unfortunately, scrutinizing the
proof of [75], and using the best known uniform estimates of the ideal counting
function [73], one finds that the hidden constant is exponential in the degree n of
K. This means that for the estimate of Equation (103) to be non-vacuous, one
needs the smoothness bound B to be doubly exponential in n.

It is not clear at the time whether this issue is unavoidable (i.e., the estimate
ΨK(x,B) ∼ x ·ρK ·ρ(u) is truly only valid when B is large compared to the degree),
or is an artifact of the techniques not being precise enough. Therefore, instead of
this estimate, we rely on the following weaker but simpler combinatorial bound.

Lemma 14.1 (ERH). For any ε > 0, there exists a constant C such that the
following holds. Let B ≥ Bsm := C(n+ log |∆K |)2+ε, and let A ≤ B/(4 logB). Let
SA,B be the set of integral ideals of OK whose prime divisors have norm in (A,B].

Let x ≥ B · en, and u = log x
logB . Then the density at x of SA,B satisfies

δSA,B
[x] ≥ (4 logB)1−u

ρKB
u−u.
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Proof. Let y ∈ [x/en, x]. Note that, by the assumption x ≥ B · en, we have y ≥ B.
Let (pi)

N
i=1 be the list of all prime ideals in OK of norm in (A,B]. We have

|SA,B(y)| =
∣∣∣∣∣
{

N∏
i=1

peii

∣∣∣∣∣
N∑
i=1

ei log(N (pi)) ≤ log y

}∣∣∣∣∣ ≥
∣∣∣∣∣
{
(ei) ∈ ZN≥0

∣∣∣∣∣
N∑
i=1

ei ≤
log y

logB

}∣∣∣∣∣ .
Writing uy = log y

logB and v = ⌊uy⌋ ≥ 1 (since y ≥ B), we deduce

|SA,B(y)| ≥
(
v +N − 1

v

)
≥
(
v +N − 1

v

)v
≥ Nvv−v ≥ Nvu−uy

y .

There exists D > 0 depending only on ε such that for any X > D, we have
X1/(2+ε/2) < X1/2/(logX)2. Then, by a result of Lagarias and Odlyzko [47], there
is a constant15E (absolute) such that for any X ≥ max(D,E(n+log |∆K |)2+ε/2) =:
F , we have X

2 logX ≤ πK(X) ≤ X. Let A′ = max(A,F ). Recall that A ≤
B/(4 logB). If furthermore F ≤ B/(4 logB), then, A′ ≤ B/(4 logB), and we
get

N = πK(B)− πK(A) ≥ B

2 logB
− πK(A′) ≥ B

2 logB
−A′ ≥ B

4 logB
.

We now show that we can choose the constant C such that indeed F ≤ B/(4 logB)
(hence the conditions of the lemma do imply N ≥ B

4 logB ). There exists G > 0 de-

pending only on ε such that for any X > G, we have X
2+ε/2
2+ε < X/(4 logX).

Therefore, for any δ > 0 and B ≥ max(G,F δ), we have

B/(4 logB) ≥ B
2+ε/2
2+ε ≥ F δ

2+ε/2
2+ε .

Choosing δ = 2+ε
2+ε/2 , we get that B/(4 logB) ≥ F (as desired). Now, we have

F δ = max(Dδ, Eδ(n + log |∆K |)2+ε). One can therefore choose the constant C =
max(G,Dδ, Eδ), to enforce B/(4 logB) ≤ F .

We have just proved that N ≥ B
4 logB . Then, we have

Nv ≥ Nuy−1 ≥ (y/B)(4 logB)1−uy .

We obtain |SA,B(y)| ≥ (y/B)(4 logB)1−uyu
−uy
y , hence, writing u = ux, we have

|SA,B(y)|
ρK · y

≥ (4 logB)1−uy

ρKB
u−uy
y ≥ (4 logB)1−u

ρKB
u−u.

□

15. Background on S-unit lattices

15.1. S-units. In this section, we formally define S-units and the Log-S-unit lattice,
and recall some of its properties.

Definition 15.1 (S-units). Let S be a set of prime ideals of OK . An element
α ∈ K is an S-unit if and only if α · OK =

∏
p∈S p

vp for some (vp)p∈S ∈ ZS. We

write O×K,S ⊂ K for the set of S-units.

We will use the language of divisors introduced in Section 2.8.

15The original statement [47] (putting L = K and G = {1}) reads |πK(X) − Li(X)| =

O
(
X1/2 log(|∆K |Xn) + log |∆K |

)
, where the constants in the big-O are absolute, and Li is the

logarithmic integral.
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Definition 15.2 (S-Divisor group). Let S be a (finite) set of prime ideals of OK .
We define the S-divisor group DivK,S ⊆ DivK

DivK,S :=
⊕
p∈S

Z×
⊕
ν

R,

where ν ranges over the set of all infinite places (embeddings into the complex
numbers up to possible conjugation). Additionally, we define the degree-zero S-
divisor group Div0K,S = DivK,S ∩Div0K .

In the present part of the article, we often write elements of DivK,S as a vector
((ap)p∈S, (aν)ν) to emphasize that it has finite dimension and that these elements
are computationally represented as lists. We have the inclusion H ⊆ Log(K×R ) ⊆
DivK,S. This degree-zero S-divisor group serves as an ambient space for the Log-S-
unit lattice, which is defined as follows.

Definition 15.3 (Log-S-unit lattice). Let S be a set of prime ideals of OK . The
map LogS is defined over O×K,S by

LogS : O×K,S −→ Div0K,S

α 7−→ ((−vp)p∈S,Log(α)) = −LαM.

where the vp are such that α·OK =
∏

p∈S p
vp , and where Log(α) = (nν log |σν(α)|)ν ∈⊕

ν R, with nν = 2 if ν is complex and 1 otherwise, see Section 2.7.
The Log-S-unit lattice is defined as

LogS(O×K,S) = {LogS(α) |α ∈ O×K,S} ⊂ Div0K,S .

Remark 15.4. Note that the image of LogS on O×K,S is indeed in Div0K,S, since

this map LogS is just the negative of the ‘principal divisor’ map L·M : K → DivK
restricted to O×K,S, and principal divisors have degree zero (see Section 5.1).

The Log-S-unit lattice is a lattice in the real vector space

Div0K,S(R) :=
{
((xp)p∈S, (xν)ν) ∈

⊕
p∈S

R×
⊕
ν

R
∣∣∣ ∑

p∈S
xp · logN (p) +

∑
ν

xν = 0
}
.

(104)

Here the sum formula in above definition is a generalization of the degree function
to real xp ∈ R. This lattice LogS(O×K,S) has rank r + |S| where r = nR + nC − 1,

i.e., it is full rank in Div0K,S(R).
Note that LogS(O×K,S) ⊆ Div0K,S ⊆ DivK inherits a Euclidean length notion via

that of DivK (see Section 2.8). When S = ∅, the lattice LogS(O×K,S) ⊂ Rn coincides

with the Log-unit lattice Log(O×K).

Lemma 15.5. If S is a set of prime ideals generating the class group, then it holds
that 16 Vol(LogS(O×K,S)) = hK ·Vol(Log(O×K)) = hK ·RK ·

√
nR + nC, where hK is the

class number of K, RK is the regulator, nR is the number of real embedding and nC
is the number of complex pairs of embeddings. In particular, Vol(LogS(O×K,S)) does
not depend on the choice of S (as long as it generates the class group). Moreover,
we have

log(Vol(LogS(O×K,S))) ≤ log |∆K |.
16We understand Vol(LogS(O

×
K,S)) as the volume of the quotient Div0K,S(R)/LogS(O

×
K,S).
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Proof. The lemma follows from Lemma 5.1 and the observation that the group
Pic0K in [14] is isomorphic to Div0K,S /LogS(O×K,S), whenever S generates the class
group. □

A lower bound on the first minimum of the lattice LogS(O×K,S) can be derived from

Kessler’s lower bound on the first minimum of the Log-unit lattice (Lemma 2.14).

Lemma 15.6. For any set of prime ideals S, it holds that λ1(LogS(O×K,S)) ≥
1

1000·
√
n·log(n)3 .

Proof. Let α ∈ O×K,S be such that LogS(α) reaches the first minimum of LogS(O×K,S),
i.e., ∥LogS(α)∥ = λ1(LogS(O×K,S)). Let vp ∈ Z be such that α · OK =

∏
p∈S p

vp

(we know that they exist since α is an S-unit). Assume first that one of the vp is
non-zero (say vp0

), then ∥LogS(α)∥ ≥ |vp0
| ≥ 1 since vp0

is an integer. This gives
us λ1(LogS(O×K,S)) ≥ 1 ≥ 1

1000·
√
n·log(n)3 as desired.

Suppose now that all vp’s are zero. Then α ∈ O×K is a unit and ∥LogS(α)∥ =
∥Log(α)∥, and the bound follows from Lemma 2.14. □

Representation of the log-S-unit lattice. In the present part of this article, we
will compute a generating set of the Log-S-unit lattice by a collection of pairs

((v
(j)
p )p∈S, α

(j)) ∈ ZS ×K, which generate LogS(O×K,S) as a Z-module. How this is
done is explained more precisely in Section 18. Up to and including that section,
the elements α(j) in these pairs are represented by their coordinates with respect
to the basis of OK (as explained in Section 2.6).

In the sections after that, Section 19 and Section 21, instead of a generating set,
a basis of LogS(O×K,S) is computed. This will again lead to a collection of pairs

((wp)p∈S, β) ∈ LogS(O×K,S) but this time the β ∈ LogS(O×K,S) are written in a so-
called compact representation, see Section 2.6. Indeed, the elements β will be of the
form β =

∏
j(α

(j))Nj , where α(j) ∈ K come from the generating set, and Nj ∈ Z.
The product is not evaluated but rather stored as (α(j), Nj)j . Even in this compact
representation, the bit size of the final Nj can be as large as the running time of
the entire algorithm. For more details, see Section 2.6 and Section 21.

16. The generating and covering radius of the log-S-unit lattice

In this section, we give an upper bound on the generating radius ϱ(LogS(O×K,S)),
which is related to the covering radius of the Log-S-unit lattice (see Definition 2.2
and Lemma 2.3). Recall that ϱ(LogS(O×K,S)) is the smallest real number r > 0 such

that LogS(O×K,S) can be generated by vectors of Euclidean norm ≤ r. Having an
upper bound on this quantity r will be useful in Section 18. Indeed, we will first
see in Section 17 how to compute a single vector in LogS(O×K,S), and we will then

want, in Section 18, to compute a generating set of LogS(O×K,S). In order to do so,
we will need to know how short we can expect the vectors of this generating set to
be, which is exactly the generating radius ϱ(LogS(O×K,S)).

The first part of this section (until and including Lemma 16.8) is devoted to
computing an upper bound on the covering radius17 LogS′(O×K,S′) of the Log-S′-
unit lattice for a specific set S′ (of relatively small cardinality). This upper bound

17This covering radius makes sense when seeing LogS′ (O
×
K,S′ ) as a lattice in the real vector

space DivK,S(R), see Equation (104).
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is obtained due to the random walk result from [14, Theorem 3.3]. When rephrased
with our formalism, and with a bit of work, the random walk theorem from [14]
states that there exists a distribution WT outputting somewhat short vectors of
Div0K,S′ (the ambient space of LogS′(O×K,S′)) and such that WT mod LogS′(O×K,S′)
is close to uniform in Div0K,S′ mod LogS′(O×K,S′). The shortness bound on the out-

put vectors of WT is proven in Lemma 16.5, and the close to uniformity modulo
LogS′(O×K,S′) is obtained by combining Theorem 16.2 and Lemma 16.4. Intuitively,

this means that any vector from Div0K,S′ mod LogS′(O×K,S′) is somewhat close to a

vector in the support of the distributionWT , which are all somewhat short. Hence,
the covering radius of LogS′(O×K,S′) is somewhat small (see Lemma 16.8). In order

to formalize this intuition, and because our distribution WT is not perfectly uni-
form but only statistically close to uniform, we need to show that the volume of a
small ball in Div0K,S′ mod LogS′(O×K,S′) is not too small (it could happen that the

ball folded modulo LogS′(O×K,S′) becomes much smaller than the original unfolded

ball). This is what is done in Lemma 16.6.
Once we have an upper bound on cov(LogS′(O×K,S′)), we also have an upper

bound on ϱ(LogS′(O×K,S′)) by Lemma 2.3. We then need to extend this to larger sets

S ⊇ S′, which is done in Lemma 16.9. We could also extend directly the bound on
cov(LogS(O×K,S)) to larger sets S, but this would grow as

√
|S|, whereas our sharper

bound on the generating radius ϱ(LogS(O×K,S)) only grows as maxp∈S logN (p). Us-

ing the larger bound on cov(LogS(O×K,S)) would have no impact on the asymptotic
complexity of our algorithm, but we prefer to keep the intermediate results as
tight as possible, to facilitate reusability in other works. Overall, our upper bound
on ϱ(LogS(O×K,S)), which is the main result of this section, is stated in Proposi-
tion 16.10.

We start by rephrasing the random walk theorem from [14, Theorem 3.3] (see also
Definition 6.1) in S-unit terminology. As already mentioned in the preliminaries,
the quotient group Div0K,S /LogS(O×K,S) is isomorphic to the Arakelov class group

Pic0K , provided that S generates the class group.

Definition 16.1 (Random walk distribution, rephrased from [14, Definition 3.1]).
Let S be a set of prime ideals of K, N ∈ Z>0 and s > 0. The distributionW(S, N, s)
is a probability distribution over Div0K,S obtained by the following procedure.

(1) Set y = 0 ∈ DivK,S. The first |S| coordinates of y are denoted by yp (with
p ∈ S) and the last nR + nC coordinates of y are denoted by yν (with ν the
places associated with the (pairs of) embeddings σ : K → C).

(2) Sample x ∈ H from a continuous centered Gaussian distribution with stan-
dard deviation s, where H = spanR(Log(O×K)) (i.e., H = Log(K0

R) =
{(xν)ν ∈

⊕
ν R |

∑
ν xν = 0}). Set yν = xν for all places ν.

(3) For j from 1 to N , sample p uniformly at random in S and update yp = yp+1

and yν = yν − nν logN (p)
n for all places ν. Here nν = 2 if ν is complex and

1 otherwise.
(4) Return y

Observe that the distributionW(S, N, s) produces vectors in Div0K,S, (i.e., vectors
y ∈⊕p∈S Z×

⊕
ν R such that

∑
ν yν +

∑
p∈S yp · logN (p) = 0.
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Theorem 16.2 ([14, Theorem 3.3], ERH). Let ε > 0 and s > 0 be positive real

numbers and k ∈ Z>0. Let s
′ = min(

√
2 ·s, 1/η1(Log(O×K)∨)), where η1(Log(O×K)∨)

is the smoothing parameter of the dual lattice of the log-unit lattice Log(O×K).
Then there exists a bound

B = Õ(n2k[n2(log log(1/ε))2 + n2(log(1/s′))2 + (log |∆K |)2])
such that for any

N ≥
nR+nC−1

2 · log(1/s′) + 1
2 log(Vol(LogS(O×K,S))) + log(1/ε) + 1

k log n
,

the random walk distribution W(S, N, s) mod LogS(O×K,S) is within statistical dis-

tance at most ε/2 from uniform in Div0K,S /LogS(O×K,S), where S = {p prime ideal |
N (p) ≤ B}.
Proof. This theorem is a direct translation of [14, Theorem 3.3] (or Theorem 6.4)
with this section’s S-unit terminology: recall that if S generates the class group,
then Pic0K is isomorphic to Div0K,S /LogS(O×K,S). By a result of Bach [4], S indeed

generates the class group for B ≥ 12 log2 |∆K |, hence indeed the bound in the
theorem statement suffices. □

In order to prove Proposition 16.10, we will use a tail-cut random walk distribu-
tion.

Definition 16.3 (Tail-cut random walk distribution). Let S be a set of prime ideals
of K, N ∈ Z>0, s > 0 and ε ∈ (0, 1]. The distributionWT (S, N, s, ε) is a probability
distribution over Div0K,S obtained as in Definition 16.1, except that the Gaussian

distribution used to sample x is tail-cut at t := s ·
√
2 · n · log

(
4·n
ε

)
. In other words,

x is sampled from GH,s conditioned on ∥x∥ ≤ t.
Lemma 16.4. For any set of prime ideals S, N ∈ Z>0, s > 0 and ε ∈ (0, 1], the
statistical distance between W(S, N, s) and WT (S, N, s, ε) is upper bounded by ε/2.

Proof. By the data processing inequality (Theorem 2.16), it suffices to prove that
the statistical distance between GH,s and its tail-cut variant is bounded by ε/2.
This directly follows from Lemma 2.19. □

Lemma 16.5. Let S be a set of prime ideals, N ∈ Z>0, s > 0 and ε ∈ (0, 1]. Then
the support of the distributionWT (S, N, s, ε) is included in {x ∈ Div0K,S | ∥x∥ ≤ R},
where

R = s ·
√
2 · n · log

(
4 · n
ε

)
+N ·

(
1 + max

p∈S
logN (p)

)
.

Proof. Let y be output by WT (S, N, s, ε). By the definition of this distribution, we
have y ∈ Div0K,S. We want to show that ∥y∥ ≤ R.

Let us consider the components of y = ((yp)p∈S, (yν)ν) in
⊕

p∈S Z and
⊕

ν R
separately. The vector (yp)p∈S satisfies ∥(yp)p∈S∥ ≤ ∥(yp)p∈S∥1 ≤ N , by definition.
From the tail-cut definition of WT , we also know that (yν)ν is the sum of a vector
of norm ≤ t (where t is defined in Definition 16.3) and of N vectors of norm at

most
√
2n·maxp∈S logN (p)

n ≤ maxp∈S logN (p). Summing all these terms provides the
desired upper bound on ∥y∥. □
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We will also need the following auxiliary lemma, which lower bounds the prob-
ability that a uniform element modulo LogS(O×K,S) falls in a small ball. We denote

tB∞ := {((xp)p, (xν)ν) ∈ Div0K,S(R) | ∥((xp)p, (xν)ν)∥∞ ≤ t},

where Div0K,S(R) was defined in Equation (104) (note that this is the R-span, even
for the coordinates in S). Recall that U(Div0K,S /LogS(O×K,S)) is the uniform distri-

bution over the compact group Div0K,S /LogS(O×K,S).
Lemma 16.6. Let S be any set of prime ideals generating the class group and let
x ∈ Div0K,S(R) be fixed. Then, for t = 1 + 1

n ·
∑

p∈S logN (p),

Pr
y←U(Div0

K,S /LogS(O
×
K,S))

(
∃z ∈ tB∞ so that y = x+ z mod LogS(O×K,S)

)
≥ 1

(1000 · n · log(n)3)n · hK ·Vol(Log(O×K))
.

Remark 16.7. Note that in this lemma, the element y belongs to Div0K,S, hence
has its first coordinates in

⊕
p∈S Z, but x and z are only required to live in the larger

space spanR(LogS(O×K,S)) = Div0K,S(R), which means that their coordinates xp, zp
might be real.

Proof. We will start with writing the probability in terms of volumes in the quotient
XS = Div0K,S /LogS(O×K,S). For convenience, we will use the notation

FoldS : Div0K,S −→ XS.

We have

Pr
y←U(X)

(
∃z ∈ tB∞ so that y = x+ z mod LogS(O×K,S)

)
=

Vol(FoldS((tB∞ + x) ∩Div0K,S))

Vol(XS)

To address the semi-continuous nature of Div0K,S (as opposed to Div0K,S(R)), we
define x̄ ∈ Div0K,S by the rule x̄p := ⌈xp⌋ and x̄ν = xν − nν

n

∑
p(x̄p − xp) logN (p)

(for all p ∈ S and places ν; here nν = 2 if ν is complex and 1 otherwise). Then
x̄ ∈ Div0K,S and

∥x̄− x∥∞ ≤
1

2
+

1

n

∑
p∈S

logN (p). (105)

In particular, 1
2B∞ + x̄ ⊂ tB∞ + x. Since volumes in XS are invariant by

translation (by elements of Div0K,S), we get

Vol(FoldS((tB∞ + x) ∩Div0K,S)) ≥ Vol(FoldS((
1
2B∞ + x̄) ∩Div0K,S))

= Vol(FoldS(
1
2B∞ ∩Div0K,S))

We have 1
2B∞∩Div0K,S = {0}S×( 12B∅∞), where B∅∞ is the unit∞-ball in the R-vector

space Div0K,∅(R). We deduce

Vol(FoldS(((
1
2B∞) ∩Div0K,S)) = Vol(Fold∅(

1
2B∅∞)) ≥ Vol(Fold∅(rB∅∞))
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for any 0 < r ≤ 1/2. If furthermore n1/2r ≤ 1
2λ1(Log(O×K)), the restriction of Fold∅

to rB∅∞ ⊂ n1/2rB∅2 is injective, and we get

Vol(Fold∅(rB∅∞)) = Vol(rB∅∞) = (2r)nR+nC−1 ≥ (2r)n.

Composing all our volume (in)equalities, for r ≤ 1
2 min(1, λ1(Log(O×K))/

√
n) we

have
Vol(FoldS((tB∞ + x) ∩Div0K,S)) ≥ (2r)n.

From Lemma 2.14, we know that λ1(Log(O×K)) ≥ (1000 · √n · log(n)3)−1. Hence,
taking r = 1

2 · 1
1000n(logn)3 satisfies the above condition. Together with the identity

Vol(XS) = hK ·Vol(Log(O×K)) (see Lemma 15.5), we obtain the desired bound. □

From this, we can prove the following upper bound on the covering radius of
LogS(O×K,S) when |S| is sufficiently large.

Lemma 16.8 (ERH). There exist B1 = poly(log |∆K |) such that if S′ is the set of
all prime ideals of norm ≤ B1, then S′ generates the class group of K and we have

cov(LogS′(O×K,S′)) ≤ poly(log |∆K |).

Proof. Let us take k = 1, ε = 1
2·(1000·n·log(n)3)n·hK ·Vol(Log(O×

K))
and s = 1/n. Let B

and N be as in Theorem 16.2, for these choices of k, ε and s, with N minimal.
We will prove that the lemma holds for B1 = B. We have already seen that the

B from Theorem 16.2 is such that all prime ideals of norm ≤ B generates the class
group, which proves the first part of the lemma.

Let us now prove the second part of the lemma. Let x ∈ spanR(LogS′(O×K,S′)) =
Div0K,S′(R). We would like to show that there exists a vector y in the support of

the tail-cut random walk distribution WT (S′, N, s, ε) that is not too far away from
x mod LogS′(O×K,S′).

From Lemma 16.6 and by definition of ε, we know that

Pr
y←U(Div0

K,S′ /LogS′ (O
×
K,S′ ))

(
∃z ∈ tB∞ such that y = x+ z mod LogS′(O×K,S′)

)
≥ 2ε,

where B∞ := {((xp)p, (xν)ν) ∈ Div0K,S(R) | ∥((xp)p, (xν)ν)∥∞ ≤ t} and t = 1 +∑
p∈S′ logN (p).
Moreover, combining Lemma 16.4 and Theorem 16.2, we get that the statistical

distance betweenWT (S′, N, s, ε) and the uniform distribution over Div0K,S /LogS′(O×K,S′)
is at most ε. Hence, we obtain that

Pr
y←WT (S′,N,s,ε)

(
∃z ∈ tB∞ such that y = x+ z mod LogS′(O×K,S′)

)
≥ 2ε− ε > 0.

This proves the existence of some y in the support of WT (S′, N, s, ε) and some
z ∈ Div0K,S(R) = spanR(LogS(O×K,S)) with ∥z∥∞ ≤ 1 +

∑
p∈S′ logN (p) such that

x+ z − y ∈ LogS′(O×K,S′). This means in particular that

min
v∈LogS′ (O

×
K,S′ )
∥x− v∥ ≤ ∥z∥+ ∥y∥.

We know that the number of prime ideals of norm bounded by B is at most
B ·n (since there are at most n prime ideals above any prime integer in Z). Hence,∑

p∈S′ logN (p) ≤ B · n · logB and we have ∥z∥ ≤
√

r+ 1 + |S′| · (1 + nB logB) ≤
poly(B, log |∆K |).
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Since y belongs to the support of WT (S′, N, s, ε), we know from Lemma 16.5

that ∥y∥ ≤ s ·
√

2 · n · log
(
4·n
ε

)
+N ·

(
1 + logB

)
.

Let us upper bound the terms log(1/ε), B and N appearing in the two upper
bounds. Recall from Lemma 15.5 that log(hK · Vol(Log(O×K))) ≤ log |∆K |. From
this, we see that log(1/ε) = poly(log |∆K |). It was shown in [14] (in the proof
of Corollary 3.4) that η1(Log(O×K)∨)) ≤ poly(n). Hence, by choice of s, we have
1/s′ = poly(n). From this, Lemma 15.5, and the choice of k = 1, we obtain that
B = poly(log |∆K |) and N = poly(log |∆K |).

We conclude that for any x ∈ spanR(LogS′(O×K,S′)), we have

min
v∈LogS′ (O

×
K,S′ )
∥x− v∥ ≤ poly(log |∆K |),

hence cov(LogS′(O×K,S′)) ≤ poly(log |∆K |). □

Only one last lemma remains to be proven before being able to prove Proposi-
tion 16.10. This lemma relates the generating radii ϱ(LogS(O×K,S)) and ϱ(LogS′(O×K,S′))
when S′ is a subset of S.

Lemma 16.9. Let S and S′ be finite sets of prime ideals in OK satisfying S′ ⊆ S.
Let S′ generate the class group. Then we have

ϱ(LogS(O×K,S)) ≤ (n+ |S′|) · ϱ(LogS′(O×K,S′)) + max
p∈S

logN (p) + 1.

Proof. In order to show an upper bound on the generating radius ϱ(LogS(O×K,S)),
we will construct short vectors that generate the lattice LogS(O×K,S), using the

short vectors that generate the lattice LogS′(O×K,S′). In this way, we relate the

generating radii of LogS(O×K,S) and LogS′(O×K,S′). We will first show that these

vectors that we construct span a lattice of rank nR + nC + |S| − 1 (the same as the
rank of LogS(O×K,S)) included in LogS(O×K,S). We then conclude that both lattices
are equal by a volumetric argument.

Let us order the elements of S = {p1, . . . , p|S|} such that S′ = {p1, . . . , p|S′|}.
By definition of LogS(O×K,S) and LogS′(O×K,S′), we know that every vector v ∈
LogS′(O×K,S′) padded with |S|−|S′| zeros (at the ‘prime places’) belongs to LogS(O×K,S).

Let us fix some b1, · · · , br (for some r > 0) generating LogS′(O×K,S′) with ∥bi∥ ≤
ϱ(LogS′(O×K,S′)) for all i’s, and let us consider the associated vectors b̄1, · · · , b̄r ∈
LogS(O×K,S) obtained by padding them with zeros. Since padding with zeros does

not change the euclidean norm, we still have ∥b̄i∥ ≤ ϱ(LogS′(O×K,S′)) for all i’s.

Moreover, the vectors b̄i span a lattice of rank nR + nC + |S′| − 1, included in
Div0K,S.

Let us now construct |S| − |S′| other vectors c|S′+1|, · · · , c|S| in LogS′(O×K,S′). Let
us fix some i with |S′| < i ≤ |S| and consider the prime ideal pi ∈ S \ S′. Since S′
generates the class group, we know that there exists αi ∈ K and v(i) ∈ ZS′ such

that αi · OK = pi ·
∏
j≤|S′| p

v
(i)
j

j . For j > |S′|, let us define v
(i)
j = 1 if j = i and 0

otherwise. Then, the vector ci :=
(
(v

(i)
j )j≤|S|,−Log(αi)

)
belongs to LogS(O×K,S).

By definition, we know that we can decompose ci = di + ei where di belongs

to spanR(b̄1, · · · , b̄r) and ei = ((0, . . . , 1, . . . , 0), (−nν logN (pi)
n )ν) ∈ DivK,S (with

the last coefficients (associated with the infinite places) equal to nν logN (pi)
n and
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the 1 in position of the prime pi). We can reduce the vector di by using the
vectors b̄1, · · · , b̄r to ensure that ∥di∥ ≤ (n+ |S′|) ·maxi ∥b̄i∥ (for example, by taking
nR+nC+|S′|−1 linearly independent vectors among the b̄i’s and performing Babai’s
round-off algorithm).

Hence, without loss of generality, we can assume that

∥ci∥ ≤ (n+ |S′|) · ϱ(LogS′(O×K,S′)) + max
p∈S

logN (p) + 1.

So if we can show that the b̄i’s and ci’s generate LogS(O×K,S), we have ϱ(LogS(O×K,S)) ≤
(n+ |S′|) · ϱ(LogS′(O×K,S′)) + maxp∈S logN (p) + 1.

So, it remains to show that the vectors b̄i’s and ci’s generate LogS(O×K,S). Let L
be the lattice generated by the b̄i’s and the ci’s. By construction, L ⊆ LogS(O×K,S).
Moreover, from the structure of the ci’s, we know that L has rank nR+nC+|S′|−1+
(|S|−|S′|), i.e., the same rank as LogS(O×K,S). Finally, by choice of the ci’s, we know

that Vol(L) = Vol(LogS′(O×K,S′)) = Vol(LogS(O×K,S)), where the last equality comes

from Lemma 15.5. From this, we conclude that L = LogS(O×K,S), as desired. □

Combining everything, we can now prove Proposition 16.10.

Proposition 16.10 (ERH). There exists some B1 = poly(log |∆K |) such that for
any set S containing all prime ideals of OK of norm ≤ B1, it holds that

ϱ(LogS(O×K,S)) ≤ poly(log |∆K |,max
p∈S

logN (p)).

Moreover, B1 is such that the prime ideals of norm ≤ B1 generate the class group
of K.

Proof of Proposition 16.10. We prove that the lemma holds for the same bound B1

as in Lemma 16.8. We already know from Lemma 16.8 that this bound B1 is such
that all prime ideals of norm ≤ B1 generates the class group.

Let us call S′ the set of prime ideals of norm ≤ B1. From Lemma 16.8 and
Lemma 2.3, we know that ϱ(LogS′(O×K,S′)) ≤ 2·cov(LogS′(O×K,S′)) ≤ poly(log |∆K |).

From Lemma 16.9, we conclude that

ϱ(LogS(O×K,S)) ≤
√
n+ |S′| · ϱ(LogS′(O×K,S′)) + max

p∈S
logN (p) + 1

≤ poly
(
log |∆K |,max

p∈S
logN (p)

)
,

where we used the fact that |S′| ≤ nB1 = poly(B1, log |∆K |) (see the proof of
Lemma 16.8). □

17. Generating a single S-unit

In this section, we describe an algorithm that computes in subexponential time a
vector in the Log-S-unit lattice when the set S is sufficiently large. Our algorithm
even does slightly more than that, namely given as input an integral ideal a, the
algorithm computes a relation between the ideal a and the ideals of S, that is, it
outputs α ∈ K and (vp)p∈S such that a = α · OK ·

∏
p∈S p

−vp .
Running the algorithm with a = OK provides a vector in the Log-S-unit lattice.

However, in Section 18 we will use the fact that the algorithm can take as input
any integral ideal a and not just OK . Indeed, in Section 18, we want to generate
many independent vectors in the Log-S-unit lattice (so that they generate the full
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lattice with good probability once we have enough of them). In order to ensure
independence of the vectors, we will crucially rely on the fact that we can choose
as input any ideal a.

Another place where we need to take as input an ideal a is when we want to
recover a generator of a principal ideal or compute a class group discrete logarithm
(as explained in the introduction). In these cases, which correspond to the descent
phase of the sieving algorithm, we need to find a relation between any input ideal
a and the prime ideals of S for which we computed the Log-S-unit lattice.

Given as input an integral ideal a, Algorithm 3 uses Theorem 1.1 to sample
elements α ∈ a until the relative ideal α ·a−1 is S-smooth. Any such smooth relative
ideal provides a relation between a and the ideals of S. By Theorem 1.1, the success
probability of this procedure is related to the local density of smooth ideals, which
we computed in Section 14. As will be discussed later (see Section 21.1) there are
certain regimes, depending intricately on ρK , n and log |∆K | where the sampling
algorithm’s success probability increases when the first small primes are omitted
from the computation, thus introducing a modulus m0 consisting of the product
of small primes. This is the main reason why Algorithm 3 starts with computing
an approximation of ρK and chooses different avenues depending on the value of
ρK , leading to either a modulus m0 consisting of small primes (if ρK is large) or an
empty modulus m0 = OK (if ρK is small).

17.1. The algorithm that generates a single S-unit relation. The following
definition of ω will be used in Algorithm 3.

Definition 17.1. For a given number field K of degree n, a modulus m0, and real
numbers x, b ≥ 1, we define ω ∈ Z>0 as the smallest positive integer such that

r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (m0)

1
n satisfies rn ≥ enmax(Bsm, Brw, 10x

2),
where Bsm is defined in Lemma 14.1 (with ε := 1 loc. cit.), and Brw is defined in
Theorem 13.2.

Note that using the fact that Bsm = poly(log |∆K |) and Brw := poly(log |∆K |,
logN (m0)), we can see that ω = O(1) is a constant (and so in particular size(ω) =
O(1) since it is an integer).

We can now describe Algorithm 3, which computes one relation.

Notation 17.2. Throughout the following lemmas, we will use the following nota-
tion:

• We put Bmax = max(exp(
√
log(rn) log log(rn)), Bsm, Brw, 10x

2). Note that

this instantiation implies x < 10x2

4 log(10x2) < Bmax/(4 logBmax) (in the first

inequality we used x ≥ 1 and for the second one we used the fact that
y 7→ y/(4 log(y)) is increasing for y > 3).

• u = log(rn)
log(Bmax)

;

Note that, since r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (m0)

1
n ≥ 48, we certainly have

rn ≥ en · exp(
√
log(rn) log log(rn)) and hence rn ≥ enBmax.

In order to analyze the running time of Algorithm 3, we need to get a lower bound
on the success probability psuccess that the repeat...until loop from lines 10-
12 terminate. This is what we compute in the next four lemmas. In order to
improve readability, we decomposed the computation into small lemmas, the most
interesting one being the last one (Lemma 17.6).
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Algorithm 3 Computing one relation

Require:

(i) An LLL-reduced basis of OK ,
(ii) an ideal a ∈ IK ,
(iii) a set of prime ideals S of K,
(iv) y ∈ K×R .

Ensure: α ∈ a and (vp)p∈S ∈ ZS
≥0 such that a = αOK ·

∏
p∈S p

−vp

1: define b = n
2
3

2: compute an approximation ρ̃K of ρK such that ρ̃K ≤ ρK < 2ρ̃K (see Proposi-
tion 2.9)

3: define x = max
(

log2/3 |∆K |
log4/3 log |∆K |

, n2/3

log2/3(n)

)
4: if ρ̃K ≤ exp(x log2(x)) then
5: define m0 = (1)
6: else
7: define m0 =

∏
N (p)<x p

8: end if
9: Define ω as in Definition 17.1

10: repeat
11: α← Sample(a, y,m0, b, ω) (see Theorem 13.2)
12: until αOK · a−1 is S-smooth
13: compute (vp)p∈S ∈ ZS

≥0 such that αOK · a−1 =
∏

p∈S p
vp

14: return (α, (vp)p∈S).

Lemma 17.3 (ERH). Put r,Bmax, u ∈ R>0 as in Notation 17.2. Assume that S
contains all prime ideals not dividing m0 of norm ≤ Bmax, and that a is coprime
with m0. Then the success probability psuccess of αOKa−1 being S-smooth in the
repeat-loop (lines 10-12) of Algorithm 3 satisfies

psuccess ≥
1

6

N (m0)

ϕ(m0) · ρK
(4 log(Bmax))

1−u · u−u
Bmax

. (106)

Proof. We denote SS for the S-smooth integral ideals. Since S contains all prime
ideals (coprime to m0) of norm ≤ Bmax per assumption, and Bmax ≥ Brw by
definition, we have SSSBrw

= SS (where we considered only prime ideals coprime
to m0 in SBrw

).
In line 11 of Algorithm 3, we use Sample from Theorem 13.2. According to that

theorem,18 the probability psuccess of αOK · a−1 lying in SS · SBrw = SS is at least

psuccess ≥
N (m0)

ϕ(m0)

δSS [r
n]

6
≥ 1

6

N (m0)

ϕ(m0) · ρK
(4 log(Bmax))

1−u · u−u
Bmax

.

Here, the last inequality comes from computing the density of smooth numbers
as in Lemma 14.1. We instantiate that lemma with A := x if m0 ̸= OK and
A := 1 otherwise (this is to take into account that the prime dividing m0 are
omitted, see lines 7 and 5), ε := 1, and B := Bmax. These parameters indeed
satisfy the constraints of Lemma 14.1 since Bmax ≥ Bsm, r

n ≥ enBmax, and A ≤
Bmax/(4 logBmax) (see Notation 17.2). □

18We can apply the theorem because a is assumed to be coprime with m0.
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Lemma 17.4. Keeping the notations from Lemma 17.3, it holds that

(4 log(Bmax))
1−u · u−u

Bmax
≥ 1

(Bmax)3
. (107)

Proof. Taking negative logarithms, and writing R = log(rn), β = log(Bmax) and
u = R/β, we obtain

− log

(
(4 log(Bmax))

1−u · u−u
Bmax

)
= β +

(
R

β
− 1

)
log(4β) +

R

β
log(R/β). (108)

It suffices to show that the two right-most summands of Equation (108) are upper
bounded by β. Note that, by Notation 17.2, we have that β ≥ √R logR. Hence, we
immediately see R/β · log(R/β) ≤ √R logR ≤ β. For the middle summand, note
that (Rβ −1) log(4β) ≤ β is equivalent to R ≤ β2/ log(4β)+β. The latter inequality

is true because β 7→ β2/ log(4β) + β is an increasing function for β ≥ 1/2 and, for
R ≥ 3 (which is clearly satisfied since r ≥ 16),

R ≤ (
√
R logR)2

log(4
√
R logR)

+
√
R logR ≤ β2/ log(4β) + β,

where the first inequality follows by graphical inspection and the second by the
monotonicity of the function β 7→ β2/ log(4β) + β. □

Lemma 17.5. Keeping the notations from Lemma 17.3, it holds that

Bmax ∈ poly(L|∆K |(
1
2 ), LN (m0)(

1
2 ), Lnn( 23 )).

Proof. From the definition of Bmax in Notation 17.2, we have that

Bmax ∈ poly(exp(
√
log(rn) log log(rn)), log |∆K |, logN (m0)) (109)

= poly(L|∆K |(
1
2 ), LN (m0)(

1
2 ), Lnn( 23 )). (110)

Indeed, by the definition of r and the definition of b, and using that ω = O(1)

log(rn) ≤ O
(n2 log b

b
+log |∆K |+logN (m0)

)
= O(n4/3 log n, log |∆K |, logN (m0)).

And hence

exp(
√
log(rn) log log(rn)) ≤ poly(L|∆K |(

1
2 ), LN (m0)(

1
2 ), Lnn( 23 )). (111)

□

Lemma 17.6. Keep the notations from Lemma 17.3 and define

ρcutK = min
(
ρK ,max(elog

2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 log

4
3 (n))

)
.

Then it holds that Bmax and p−1success are both in poly(L|∆K |(
1
2 ), Lnn( 23 ), ρ

cut
K ).

Proof. Combining Lemma 17.3, Lemma 17.4 we obtain that

p−1success ∈ poly(ϕ(m0)·ρK
N (m0)

, Bmax).

Moreover, Lemma 17.5 gives us Bmax ∈ poly(L|∆K |(
1
2 ), Lnn( 23 ), LN (m0)(

1
2 )). To

prove the result, it then suffices to show that

poly(LN (m0)(
1
2 ),

ϕ(m0)·ρK
N (m0)

) = poly(ρcutK ).
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We write x = max
(

log2/3 |∆K |
log4/3 log |∆K |

, n2/3

log2/3(n)

)
as in line 3 of Algorithm 3. Note that

ρcutK = min
(
ρK , exp(Θ(x log2(x)))

)
. We distinguish two cases.

Case 1: ρ̃K ≤ exp(x log2(x)).
By line 4 and 5, we then have ρK < 2ρ̃K ≤ 2 · exp(x log2(x)) (in particular,
ρK = poly(ρcutK )) and m0 = (1). Hence N (m0) = ϕ(m0) = 1 and thus

poly(LN (m0)(
1
2 ),

ϕ(m0)·ρK
N (m0)

) = poly(ρK) = poly(ρcutK ).

Case 2: ρ̃K > exp(x log2(x)).
In this case, it holds that x log(x)2 = O(log ρK) and have m0 =

∏
N (p)<x p (by lines

4 and 7). On one hand, by Proposition 11.2 we have

− log

( N (m0)

ϕ(m0) · ρK

)
≤ 8 log |∆K |√

x
+

8n log x√
x

≤ O(x log2(x)) = O(log ρcutK ). (112)

This follows from the fact that log |∆K | ≤ O(x
3
2 · log2(x)) and n ≤ O(x

3
2 log x),

since x = max

((
log |∆K |

log2 log |∆K |

) 2
3

,
(

n
logn

) 2
3

)
. On the other hand, using the same

bounds on log |∆K | and n, we have, by Lemma 11.4

logN (m0) ≤ O(x+
√
x log(x) log |∆K |+

√
x log2(x) · n)

≤ O
(
x2 log3(x)

)
. (113)

We deduce that

logLN (m0)(
1
2 ) ≤ O(

√
logN (m0) log logN (m0)) ≤ O(x log2(x)) = O(log ρcutK ).

(114)

Combining Equations (112) and (114), we thus obtain

poly(LN (m0)(
1
2 ),

ϕ(m0)·ρK
N (m0)

) = poly(ρcutK ).

□

Theorem 17.7 (ERH). There exists some Bmax = poly(L|∆K |(1/2), Lnn(2/3), ρcutK ),
where

ρcutK = min
(
ρK ,max(elog

2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 log

4
3 (n))

)
,

such that the following holds. Assume that S contains all prime ideals coprime to
m0 of norm ≤ Bmax. Then, on input an integral ideal a coprime with m0, the set S
and y ∈ H = Log(K0

R), Algorithm 3 outputs (α, (vp)p∈S) ∈ a× Z|S|≥0 such that

a = αOK ·
∏
p∈S

p−vp .

Furthermore, Algorithm 3 runs in expected time

poly(L|∆K |(
1
2 ), Lnn( 23 ), size(S), ρ

cut
K , size(a), size(y), log |∆K |).

Proof. Thanks to the repeat...until loop from lines 10 to 12, the output of Algo-
rithm 3 is correct whenever it terminates. The fact that Bmax = poly(L|∆K |(1/2),
Lnn(2/3), ρcutK ) follows from Lemma 17.6. Hence, the main focus of this proof is
the expected running time of the algorithm.
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Since lines 1 up to 10 do not significantly contribute to the running time, it
suffices to concentrate on the expected running time of lines 11 up to 14.

For this time analysis we will use that logN (m0) ≤ poly(log |∆K |), by Lemma 11.4
and the definition of x on line 3. Also, we will use that bb ≤ Lnn( 23 ), from the def-

inition of b = n2/3.

• (Line 11) The sampling algorithm Sample takes (by Theorem 13.2) time
poly(log |∆K |, size(a), log(N (m0)), size(y), b

b) = poly(log |∆K |, size(a), size(y),
Lnn( 23 )). Here we use that size(ω) = O(1) (see Definition 17.1).

• (Line 12 and 13) Checking for αOK · a−1 being S-smooth (line 12), as well
as writing down the decomposition (line 13) if the ideal indeed is smooth
can be done with poly(size(S)) division of ideals.
• (Line 14) This is the return statement.

Hence, denoting psuccess for the probability of αOK · a−1 being S-smooth in line 12,
we obtain an expected running time of

p−1success · poly(Lnn( 23 ), size(S), size(a), size(y), log |∆K |). (115)

Using Lemma 17.6 provides an upper bound on p−1success and concludes the proof. □

17.2. Properties of the output distribution of Algorithm 3. From now on,
we assume that the input ideal a is S-smooth, since this will be the case when we
will call Algorithm 3 in the next section (this ensures in particular that a is co-
prime with m0, which is needed to apply Theorem 17.7). We describe the input of
Algorithm 3 as a divisor a = d(a) + Log(y) ∈ DivK,S (we recover a = Expf(af) and
y = Exp∞(a∞) ∈ K×R ). The following properties of Algorithm 3 are required in
the later proof that Algorithm 4 (which is essentially Algorithm 3 with a Gaussian
distributed input) has an evenly distributed and concentrated output distribution
(see Lemmas 18.10 and 18.11). These two properties of this last output distribu-
tion are indispensable to show that sufficiently many samples from this algorithm
eventually generate the log-S-unit lattice LogS(O×K,S).

We denote the output distribution of α ∈ K in Algorithm 3 with input a ∈ DivK,S
by19 D̄a. By abuse of notation, we denote by the same symbol D̄a the distribution
over LogS(O×K,S) defined by sampling α ← D̄a and taking the log-S-unit map20

LogS(α). Note that this map is well-defined, as Algorithm 3 only outputs α ∈ K∗
whose prime divisors lie in S, i.e., S-units (by line 12 and because a is S-smooth).
This yields a distribution D̄a ∈ L1(LogS(O×K,S)) for each a ∈ DivK,S. Note that

Algorithm 3 and hence the distribution D̄a is independent on the degree of a (as
in Equation (10)), as Sample from Theorem 13.2 is independent on the norm.

Lemma 17.8. For all a ∈ DivK,S, the output distribution D̄a of Algorithm 3 (where
we consider the divisor a = d(a)+Log(y) as input, which is equivalent to the input
(a, y)) satisfies the following three properties.

(i) We have D̄a[LogS(O×K,S)] = 1.

(ii) For all α ∈ Km0,1 and all x ∈ LogS(O×K,S)
D̄a[x] = D̄a−LogS(α)

[x+ LogS(α)].

19Note the difference in notation compared to D in Section 10; the bar signifies that the

distribution is from Algorithm 3.
20This sends the roots of unity to the zero-vector, but that is not troublesome, as elements

α, ζα ∈ K∗ for a root of unity ζ have equal probability to be sampled.
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(iii) There exists some R = O(log2 |∆K |) + ∥a∥ such that

D̄a

[
LogS(O×K,S)\(R · B2)

]
= 0

where R · B2 = {a ∈ DivK,S | ∥a∥ ≤ R}.
(iv) For a,a′ ∈ DivK,S with a′ = a+

∑
ν bνLνM, we have

∥D̄a − D̄a′∥1 ≤ 3 · |∆K | · rn · n2 · ∥b∥+ 1/200.

with r = 48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (m0)

1
n .

Proof. Statement (i) follows from the fact that Algorithm 3 outputs α only if αOK ·
a−1 is S-smooth. Together with the fact that a itself is assumed to be S-smooth
(it is made out of a ∈ DivK,S), we deduce that α is S-smooth, thus an S-unit.
Therefore, D̄a only has support on LogS(O×K,S) ⊆ Div0K,S.

Statement (ii) follows from property (2) of Theorem 13.2. Let a = d(a)+Log(y)
for a = Expf(af) and y = Exp∞(a∞). By definition of LogS(α), we have that
a−LogS(α) = d(a · (α)) + Log(y ·α−1). Property (2) of Theorem 13.2 tells us that
Dy,a[−] = Dy·α−1,a·(α)[α · −] (note the different distribution, this is the distribution
from Theorem 13.2). As the exit criterion of the repeat loop (line 12 of Algorithm 3)
happens at the same occurrences, the output distribution function D̄a satisfies
D̄a[x] = D̄a−LogS(α)

[x+ LogS(α)] for all x ∈ LogS(O×K,S).
The statement (iii) follows from property (3) of Theorem 13.2, ω = O(1) (see Def-

inition 17.1) and the fact that logN (m0) = O(x · log2(x) · log |∆K |) = O(log2 |∆K |)
(see Equation (113) in the proof of Theorem 17.7, and see the definition of x in line
3 of Algorithm 3). Note that here the correspondence between (y, a) ∈ K×R × IK
and a = d(a) + Log(y) is used.

Statement (iv) follows from Lemma 10.8 and Theorem 13.2 (property (1), Lipschitz-
property), with the fact that the success probability of a single loop of Theorem 17.7
is lower bounded by δS [r

n]/6 ≥ 1
6·|∆K |·rn (see Equation (102) in the proof of The-

orem 13.2). Hence we have (applying Lemma 10.8 with p−1 ≤ 6 · |∆K | · rn)
∥D̄a − D̄a′∥1 ≤ 3 · |∆K | · rn · n2 · ∥Log(y)∥+ 1/200.

□

18. Obtaining a generating set of S-units

18.1. Introduction. In Section 17 a probabilistic algorithm is described that com-
putes a single S-unit (or a logarithmic S-unit lattice point). But to actually obtain
the entire S-unit group O×K,S, one needs a generating set of S-units. Or, equivalently,

a Z-generating set of lattice points for the Log-S-unit lattice LogS(O×K,S).
A ‘good’ output distribution. One could hope that such a generating set will even-
tually be formed by repeating the probabilistic algorithm (Algorithm 3) many times
and joining the outputs. The chance for this approach to succeed strongly depends
on the output distribution of the mentioned probabilistic algorithm. Indeed, one
could imagine cases where the output distribution is, for example, only being sup-
ported on a strict sublattice of the logarithmic S-unit lattice. In such instances one
never obtains a generating set of the full logarithmic S-unit lattice.

It turns out that, for the repeated sampling approach to succeed, it is sufficient
for the output distribution to have the following two properties: ‘evenly distributed’,
meaning not having too much weight on a strict sublattice, and ‘concentrated’,
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meaning that most of the weight is reasonably centered around the origin. These
two properties are made more precise in Section 18.2, as well as the consequences
of these properties to the number of samples needed to generate the whole lattice.

The output distribution of the sampling algorithm. It remains to be shown that
the output distribution of the sampling algorithm (Algorithm 3) is indeed actually
‘good’, i.e., evenly distributed and concentrated.

It turns out that the output distribution of Algorithm 3 for a fixed input (a, y) ∈
IK ×K×R is hard to analyze; and it seems very difficult to show that it satisfies
these properties. Fortunately, one can feed the algorithm different inputs, causing
to gain more control of the output distribution.

More specifically, in our approach we randomly sample a Gaussian distributed
point from the space DivK,S, which can be considered as an ‘ambient space’ of
the logarithmic S-units. This randomly sampled point is then transformed into an
element (a, y) ∈ IK ×K×R (a from the finite places and y from the infinite places),
which is then given as an input to the S-unit sampling algorithm (Algorithm 3).

We show that this ‘compound’ distribution, taking into account both the ran-
domness of the Gaussian over DivK,S and the randomness of the S-unit sampling
algorithm, indeed satisfies the ‘evenly distributed’ property (see Lemma 18.11) and
‘concentrated’ property (see Lemma 18.10). Thus, repeating the S-unit sampling
algorithm with Gaussian distributed inputs lets us indeed obtain a generating set
of the logarithmic S-unit lattice with high probability; this final statement is the
object of Theorem 18.14.

Intuition. The intuition why this approach (of letting the input be Gaussian dis-
tributed) works is already sketched in Section 12.4. Another way of looking at it is
by seeing Algorithm 3 as a specific CVP-algorithm for the logarithmic S-unit lattice
LogS(O×K,S), given an input vector a in DivK,S.

As a CVP-algorithm, Algorithm 3 outputs a LogS(α) ‘close’ to a ∈ DivK,S, so
one can imagine that the output only differs slightly from the input. If then the
input element a ∈ DivK,S is distributed according to a sufficiently wide Gaussian,
and this specific CVP output of Algorithm 3 is sufficiently close to a, this CVP
output distribution must be close to a Gaussian as well, but instead its support
is on LogS(O×K,S). For such Gaussian distributions over lattices one can show that

sufficiently many samples thereof generate the entire lattice (see Proposition 18.2).

18.2. Obtaining a generating set of a lattice. Given a certain distribution ψ
on a lattice Λ, this section is about how many samples one has to draw from ψ to
obtain a generating set of the lattice Λ. Of course, this depends on the distribution
at hand: for example, the distribution that always outputs 0 ∈ Λ would never yield
a generating set of the lattice Λ, no matter how many samples one takes.

For a distribution on a lattice Λ it it is sufficient to consider two particular
properties to analyze the number of samples required to draw in order to obtain a
generating set of Λ. Those two properties are evenly distributedness, which measures
the maximum weight of the distribution ψ on strict sublattices of Λ, and concen-
tratedness, which measures how much weight of the distribution ψ is (relatively)
close to the origin. This is formalized in the following definition and proposition.
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Definition 18.1. Let Λ ⊂ Rn be a full-rank lattice, and ψ be a distribution on
Λ. The distribution ψ is called p-evenly distributed if Prx←ψ[x ∈ Λ′] ≤ p for any
proper sublattice Λ′ ⊊ Λ. It is called (R, q)-concentrated if Prx←ψ[∥v∥ ≥ R] ≤ q.

Proposition 18.2 ([13, Lemma 5]). Let Λ ⊂ Rn be a full-rank lattice, and ψ be
a distribution on Λ. Suppose that ψ is p-evenly distributed and (R, q)-concentrated
for R ≥ Vol(Λ)1/n. Denote by S the random variable defined as the number of
samples drawn from ψ until these samples generate Λ. Then, for any α > 0,

Pr

[
S > (2 + α)

t+ n

1− p− q

]
≤ e−α(t+n)/2,

where t = n log2(R)− log2(Vol Λ) ≥ 0.

18.3. The discrete Gaussian over a lattice is evenly distributed. In the
following two lemmas, we show that a Gaussian distribution over a lattice with an
arbitrary center point is p-evenly distributed. This fact is used to show that the
output of the sampling algorithm with a (continuous) Gaussian input is p-evenly
distributed as well (see Lemma 18.11).

Recall that gς(x) := e−π∥x∥
2/ς2 is the Gaussian function, whereas GX,ς is the

Gaussian distribution overX (where the definition depends on whetherX is discrete
or continuous, see Section 2.9).

Lemma 18.3. For any lattice Λ ⊆ V (where V is a Euclidean space) any ς > 0
and any t, w ∈ V , we have

gς(Λ + t+ w) + gς(Λ + t− w) ≥ 2gς(w)gς(Λ + t).

Proof. This lemma is a simple generalization of [41, Claim 2.10], and we follow the
same strategy:

gς(Λ + t+ w) + gς(Λ + t− w) =
∑
x∈Λ+t

(
e−π∥x+w∥

2/ς2 + e−π∥x−w∥
2/ς2

)
= 2e−π∥w∥

2/ς2
∑
x∈Λ+t

(
e−π∥x∥

2/ς2 cosh(2π⟨x,w⟩/ς2)
)

≥ 2gς(w)gς(Λ + t),

where the last inequality follows from cosh(α) ≥ 1 for any real α. □

Lemma 18.4. Let Λ ⊆ V be a lattice and V an Euclidean space, t ∈ V and
ς ≥ c · ϱ(Λ) for some c > 0 (see Definition 2.2). Then the discrete Gaussian
distribution on Λ with parameter ς and centered at t is p-evenly distributed with
p = 1

1+e−πc−2 . Concretely, for any strict sublattice Λ′ ⊊ Λ

gς(Λ
′ + t)

gς(Λ + t)
≤ 1

1 + e−πc−2 .

Proof. Let Λ′ ⊊ Λ be a sub-lattice of Λ and let w ∈ Λ \ Λ′. Then, by Lemma 18.3,

gς(Λ + t) ≥ gς(Λ′ + t) +
gς(Λ

′ + t+ w) + gς(Λ
′ + t− w)

2
≥ (1 + gς(w))gς(Λ

′ + t).
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Writing GΛ+t,ς for the Gaussian distribution on Λ + t with parameter ς, we have,

Pr
x←GΛ+t,ς

[x ∈ Λ′ + t] =
gς(Λ

′ + t)

gς(Λ + t)
≤ 1

1 + gς(w)
.

Since Λ′ ⊊ Λ, we know from the definition of ϱ(Λ) that there exists w ∈ Λ\Λ′ such
that ∥w∥ ≤ ϱ(Λ) ≤ ς/c, hence gς(w) ≥ exp

(
−πc−2

)
, proving the lemma. □

18.4. The (semi-)discrete Gaussian over DivK,S. We introduce the following
notation for the discretization of the S-divisor group as in Definition 15.2. It is
needed in Algorithm 4, as this algorithm samples a Gaussian over DivK,S and feeds
it to Algorithm 3. As DivK,S is partially continuous (for which a finite computer
cannot sample), we thus need this discretized DivK,S,N version of DivK,S.

Notation 18.5 (Discretized S-divisor group). For a set of prime ideals S, we
denote by DivK,S,N ⊆ DivK,S the discrete subgroup of the restricted divisor group,
for which xν ∈ 1

NZ for all places ν. In other words, any element of DivK,S,N can
be written as

a =
∑
p∈S

apLpM +
∑
ν

xνLνM (with xν ∈ 1
NZ)

Remark 18.6. In Algorithm 4, we need to compute an approximation of the dis-
crete Gaussian over the group DivK,S,N (see Lemma 2.22). For this we need a Z-
basis of DivK,S,N , which is naturally given by {eν

N | ν places of K} ∪ {ep | p ∈ S},
where ex is one on the coordinate x and zero elsewhere (where x can be a place or
a prime). We call this basis B(DivK,S,N ).

In order to define a Gaussian distribution over DivK,S, we recall the distance
notion on this space (see Section 2.8). Since the group DivK,S is partially discrete,
namely, at the finite places, the Gaussian over this group is semi-discrete as well.

Definition 18.7 (The semi-discrete Gaussian over DivK,S). The semi-discrete
Gaussian distribution GDivK,S,ς ∈ L1(DivK,S) is the distribution defined by

GDivK,S,ς [a] := gς(a) ·
(∫

b∈DivK,S

gς(b)db

)−1
where gς(a) = exp(−π∥a∥2/ς2) (with the distance notion from Section 2.8) and
where we use the shorthand notation∫

b∈DivK,S

gς(b)db :=
∑

(ap)∈ZS

∫
(bν)ν∈Log(K×

R )

gς

(∑
p∈S

apLpM +
∑
ν

bνLνM
)
db

Definition 18.8 (The discrete Gaussian over DivK,S,N ). For N ∈ N>0 we define
the discrete Gaussian over DivK,S,N by the rule

GDivK,S,N ,ς := gς(a) ·

 ∑
b∈DivK,S,N

gς(b)

−1

where gς(a) = exp(−π∥a∥2/ς2) (with the distance notion from Section 2.8).

18.5. Sampling a set of generators for the Log-S-unit lattice.
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Algorithm 4 Computing a random relation of S-units
Require: A number field K , an LLL-reduced basis of OK , and a set S of prime

ideals of K.
Ensure: An random element of LogS(O×K,S).
1: Let ω ∈ Z≥1 be as in Definition 17.1 (with m0, b, and x as in Algorithm 3).
2: Let ϱ̃ = poly(log |∆K |,maxp∈S logN (p)) the bound from Proposition 16.10,

such that ϱ(LogS(O×K,S)) ≤ ϱ̃.
3: Put ς = 3 · max(

√
log(nR + nC + |S|), ϱ̃), and put N := ωn · exp(11 +

16 log2 |∆K |+ 9n2).
4: Sample, using Lemma 2.22 with εG := 1/100, and the basis B(DivK,S,N ) de-

scribed in Remark 18.6,

a =
∑
p∈S

apLpM +
∑
ν

bνLνM← ĜB(DivK,S,N ),εG ,ς,0, (116)

put z = Exp∞(a∞) and compute a rational y ∈ K×R such that ∥y − z∥∞ ≤
minν zν/N .

5: Put a =
∏

p∈S p
ap = Expf(af).

6: Apply Algorithm 3 with a ∈ IK , y ∈ K×R , and S, yielding (α, (vp)p∈S).
7: return (−(vp + ap)p∈S,Log(α)) where the ap are from line 4.

18.5.1. Algorithm 4: Algorithm 3 with Gaussian input. In this section, we prove
that the output distribution of Algorithm 4 (which is essentially Algorithm 3 with
input a ∈ DivK,S,N following a (discrete) Gaussian distribution), is evenly dis-
tributed and concentrated on the Log-S-unit lattice (for certain adequate param-
eters). Hence, by repeating Algorithm 4 sufficiently many times, one obtains a
generating set of the Log-S-unit lattice, which is made precise in the later Theo-
rem 18.14.

Lemma 18.9. Assume that S contains all prime ideals coprime to m0 of norm
≤ Bmax (where Bmax is defined as in Theorem 17.7). Then, on input S, Algorithm 4
runs in expected time

poly(log |∆K |, ς, size(S)) + T,

where T is an upper bound on the expected time of Algorithm 3 on input a and y
of size size(a) ≤ poly(ς, size(S), log |∆K |) and size(y) ≤ O(ςn · (size(S)+ log |∆K |)).

Proof. Apart from the line 6, in which Algorithm 3 is called, Algorithm 4 only re-
quires computation power during the sampling of the approximate discrete Gaussian
and the computation of y ∈ K×R . By Lemma 2.22, and denoting n0 = |S|+ r+1 =
|S|+nR +nC = dim(DivK,S,N ), the sampling of the approximate discrete Gaussian
takes time (since εG := 1/100) polynomial in the size of the input, which can be
given by the size of the lattice basis of DivK,S,N , which is poly(n0). Note that

maxb∈B(DivK,S,N ) ∥b∥ = 1, so, by choice of ς, we have ς ≥
√

log(1/εG)+2 log(n0)+3
π ·

maxb∈B(DivK,S,N ) ∥b∥ as required to apply Lemma 2.22. The run time of the com-

putation of y ∈ K×R depends on the minimum of zν/N and the maximum of zν . We

have that |bν | ≤ ς
√
n0 log(2n20/εG) by Lemma 2.22 (with εG := 1/100). Hence, in

the worst case, we must approximate y ≈ z = Exp∞(a∞) = (ebν )ν up to precision
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exp(−ς ·
√
n0 · log(2n20/εG))/N . For the maximum of zν , a similar reasoning tells

us that maxν zν ≤ exp(ς ·
√
n0 · log(2n20/εG)).

Since we have logN = O(log |∆K |) and
√
n0 log(2n20/εG) = O(size(S)+log |∆K |),

the approximation y ≈ z required in line 4 can be computed within time poly(ς,
size(S), log |∆K |). This reasoning also shows that size(y) ≤ O(ςn · (size(S) +
log |∆K |)). Additionally, using the same bound of Lemma 2.22, the size of a must
also be bounded by poly(ς, size(S), log |∆K |). □

18.5.2. The output distribution of Algorithm 4 is concentrated. In the next lemma,
we prove that the output distribution of Algorithm 4 is concentrated.

Lemma 18.10. The output distribution D̄ of Algorithm 4 is (R0, 0)-concentrated
for some

R0 = O(log2 |∆K |) + 3 · ς · (|S|+ nR + nC).

Proof. The output distribution of Algorithm 4 depends on an approximate discrete
Gaussian from line 4, which is computed using Lemma 2.22. From that lemma,
denoting n0 = |S|+ nR + nC = dim(DivK,S,N ) follows that

∥a∥ ≤ ς ·
√
n0 log(2n20/εG)) ≤ 3ςn0

with ς from line 3 and εG = 1/100 (see line 4 of Algorithm 4). Here we use that√
x log(2x2/εG) ≤ 3x for x ≥ 1 and εG = 1/100.
But since Algorithm 3 satisfies property (iii) from Lemma 17.8, we know that

∥LogS(α)∥ ≤ O(log2 |∆K |) + ∥a∥ ≤ O(log2 |∆K |) + 3 · ς · n0.
Hence, there exists a R0 = O(log2 |∆K |)+3 · ς · (|S|+nR+nC) for which no α with
∥LogS(α)∥ > R0 can be the output of Algorithm 4. □

18.5.3. The output distribution of Algorithm 4 is evenly distributed. We now prove
that the output distribution of Algorithm 4 is evenly distributed on the logarithmic
S-unit lattice.

The strategy to show evenly distributedness is more convoluted than was con-
centratedness. We start with defining the ‘continuous version of Algorithm 4’, in
which in line 4 is used a semi-discrete Gaussian (as in Definition 18.7) instead of
a fully discrete Gaussian (as in Definition 18.8). More precisely, the ‘continuous
version of Algorithm 4’ is Algorithm 4 in which line 4 is replaced with

a =
∑
p∈S

apLpM +
∑
ν

bνLνM← GDivK,S,ς , and put y = Exp∞(a∞).

We will show in Lemma 18.13 that the output distribution of the ‘continuous ver-
sion’ and the ordinary version of Algorithm 4 are close in statistical distance.

In the present section, we focus on the following step: proving that the output
distribution of ‘continuous version of Algorithm 4’ is evenly distributed for certain
parameters. By the closeness of the ‘continuous version’ and the ordinary version
of Algorithm 4, the ordinary must then also be evenly distributed.

Lemma 18.11. Assume that S generates the ray class group Clm0

K of K and does
not contain any prime dividing m0. Then the output distribution of Algorithm 4 is
2/3-evenly distributed on LogS(O×K,S).
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Proof. We will later show, in Lemma 18.13, that Algorithm 4 is 1/50-close in sta-
tistical distance to the ‘continuous version of Algorithm 4’. We show in the current
proof that this ‘continuous version’ is 6/10-evenly distributed on LogS(O×K,S), and
hence the ordinary version is then 2/3-evenly distributed on LogS(O×K,S), since

6/10 + 1/50 < 2/3.
The remainder of this proof is then devoted to showing that the ‘continuous

version of Algorithm 4’ is 6/10-evenly distributed on LogS(O×K,S).
The output distribution D̄ of the ‘continuous version of Algorithm 4’ is supported

on LogS(O×K,S) and given by the rule, for α ∈ O×K,S,

D̄[LogS(α)] =
∫
a∈DivK,S

D̄a[LogS(α)] · Gς(a)da.

To prove that this distribution is p-evenly distributed (with p = 6/10), we need to
show that D̄[M ] =

∑
m∈M D̄[m] ≤ p for every strict sublattice M ⊊ LogS(O×K,S).

We first prove this for the simpler case where the modulus is trivial, i.e., m0 =
OK ; in which case we have Km0,1 = K∗, and the shifting property (Property (ii)
of Lemma 17.8) holds for any α ∈ K∗, so in particular for α ∈ O×K,S.

So, pick any strict sublattice M ⊊ LogS(O×K,S). Then, by Property (ii) of
Lemma 17.8, and, subsequently, by change of variables, we have∑

LogS(µ)∈M

D̄[LogS(µ)] =
∫
a∈DivK,S

∑
LogS(µ)∈M

D̄a[LogS(µ)] · Gς(a)da

=

∫
a∈DivK,S

∑
LogS(µ)∈M

D̄a+LogS(µ)
[0] · Gς(a)da

=

∫
a∈DivK,S

∑
LogS(µ)∈M

D̄a[0] · Gς(a− LogS(µ))da

=

∫
a∈DivK,S

D̄a[0] · Gς(a+M)da (117)

Using the assumption that S generates the full class group, we take a fundamen-
tal domain F of LogS(O×K,S) in Div0K,S, in order to decompose DivK,S = R · 1 +

LogS(O×K,S) + F , where 1 =
∑
ν nν · LνM ∈ Log(K×R ) is the vector consisting nν ,

which equals 2 if ν is complex and 1 otherwise. This vector corresponds to the
freedom of the norm (or rather, degree) in the space DivK,S, compared to Div0K,S.

We can then rewrite any integral over DivK,S with integrand h(a) as∫
a∈DivK,S

h(a)da =

∫
t∈R

∫
a∈F

∑
LogS(β)∈LogS(O

×
K,S)

h(a+ LogS(β) + t · 1)dadt

We apply this to Equation (117), we use again Lemma 17.8(ii) to write D̄a+LogS(β)
[0] =

D̄a[LogS(β)] and we use the fact that D̄a+t1 = D̄a, since Algorithm 3 does not de-
pend on the norm of the input (since Sample does not, see Theorem 13.2). Then,
Equation (117) equals

=

∫
t∈R

∫
a∈F

∑
LogS(β)∈LogS(O

×
K,S)

D̄a[LogS(β)] · Gς(a+ t1+ LogS(β) +M)dadt (118)
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By Hölder’s inequality, the positivity of all arguments and the fact that (by Lemma 17.8(i))∑
LogS(β)∈LogS(O

×
K,S)

D̄a[LogS(β)] = 1,

we can bound Equation (118) by

≤
∫
t∈R

∫
a∈F

max
LogS(β)∈LogS(O

×
K,S)
Gς(a+ t1+ LogS(β) +M)dadt (119)

≤
∫
t∈R

∫
a∈F

Gς(a+ t1+ LogS(O×K,S))
1 + e−π/c2

dadt ≤ 1

1 + e−π/c2
. (120)

whenever ς ≥ c · ϱ(LogS(O×K,S)). Here we apply Lemma 18.4, which gives us

Gς(a+ t1+ LogS(β) +M) ≤ Gς(a+t1+LogS(β)+LogS(O
×
K,S))

1+e−π/c2
=
Gς(a+t1+LogS(O

×
K,S))

1+e−π/c2
.

By picking c = 3, it holds that ς ≥ c · ϱ(LogS(O×K,S)) (see line 3 of Algorithm 4)

and that (1 + e−π/c
2

)−1 ≤ 6/10.
We now explain how to amend the proof for the case where m0 ̸= OK , i.e., a non-

trivial modulus. In this case, the shifting property (Property (ii) of Lemma 17.8)
holds for α ∈ Km0,1 only.

Write Mm0
= LogS(K

m0,1) ∩M and put {LogS(µ1), . . . ,LogS(µw)} ⊆ M for a
set of representatives ofM/Mm0

(which is finite by the fact that K/Km0,1 is finite).
By similar computations as in Equation (117), we obtain∑
LogS(µ)∈M

D̄[LogS(µ)] =
∫
a∈DivK,S

∑
LogS(µ)∈Mm0

w∑
i=1

D̄a[LogS(µi) + LogS(µ)] · Gς(a)da

=

∫
a∈DivK,S

∑
LogS(µ)∈Mm0

w∑
i=1

D̄a+LogS(µ)
[LogS(µi)] · Gς(a)da

=

∫
a∈DivK,S

∑
LogS(µ)∈Mm0

w∑
i=1

D̄a[LogS(µi)] · Gς(a− LogS(µ))da

=

∫
a∈DivK,S

w∑
i=1

D̄a[LogS(µi)] · Gς(a+Mm0
)da (121)

Now we use that S and m0 do not share primes, and that S generates the ray class
group Clm0

K , so that we can split up the space

DivK,S = R · 1+ LogS(O×K,S) ∩ LogS(K
m0,1) + Fm0

, (122)

with a compact Fm0
. The set S and m0 not sharing primes is essential for the

fundamental domain Fm0
to be compact (which is required for the current proof);

indeed, if S and m0 would share a prime, LogS(O×K,S) ∩ LogS(K
m0,1) would be of

rank stictly less than that of DivK,S, resulting in a Fm0
in Equation (122) of infinite

volume.
For S and m0 not sharing a prime divisor, one could construct Fm0

as follows.
Pick a set of ideals A = {a1, . . . , aw} (with all prime factors in S) that are represen-
tatives of the ray class group Clm0

K . Next, define V to be the Voronoi fundamental

domain of Log(Km0,1 ∩ O×K) ⊆ H. Then Fm0
= {LaM + x | a ∈ A and x ∈ V } is an

example of a fundamental domain satisfying Equation (122).
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Similar computations as in Equation (118) then show that Equation (121) equals
(where LogS(β) sums over LogS(O×K,S ∩Km0,1))

=

∫
t∈R

∫
a∈Fm0

∑
LogS(β)

w∑
i=1

D̄a[LogS(β) + LogS(µi)] · Gς(a+ t1+ LogS(β) +Mm0
)dadt

(123)

Since {LogS(µ1), . . . ,LogS(µw)} are different representatives in LogS(O×K,S)/LogS(O×K,S∩
Km0,1) (indeed, if LogS(µ1)−LogS(µ2) ∈ LogS(K

m0,1), we have LogS(µ1)−LogS(µ2) ∈
LogS(K

m0,1) ∩M , contradiction), we can apply Hölders inequality again, yielding
an upper bound of∫

t∈R

∫
a∈F

max
LogS(β)∈LogS(O

×
K,S∩Km0,1)

Gς(a+ t1+ LogS(β) +Mm0
)dadt ≤ 1

1 + eπ/c2

whenever ς ≥ c · ϱ(LogS(O×K,S)), since Mm0
+ LogS(O×K,S ∩ Km0,1) is a lattice in

LogS(O×K,S). □

18.5.4. About the closeness of the ‘continuous version of Algorithm 4’. In this part,
we show that the ‘continuous version of Algorithm 4’ and the ordinary one are close
in statistical distance. Before we do that, we first need a lemma that shows that
N , the discretization parameter in DivK,S,N in Algorithm 4 satisfies some bound.

Lemma 18.12. Let r = 48·ω ·b2n/b ·n7/2 ·|∆K |
3
2n ·N (m0)

1
n as used in Algorithm 3.

Then we have

40000 · |∆K | · rn · n5/2 ≤ ωn · exp(11 + 16 log2 |∆K |+ 9n2) = N,

where N is as in line 3 in Algorithm 4.

Proof. Let r = 48 ·ω · b2n/b ·n7/2 · |∆K |
3
2n · N (m0)

1
n , where m0 and b are as chosen

in Algorithm 3. The largest value N (m0) can have is whenever m0 is the product
of the prime ideals of norm smaller than x ≤ 3

2 log |∆K | (by line 3 of Algorithm 3
and Minkowski’s theorem, which tells that log |∆K | ≥ log(π/2)n ≥ 0.4n). Hence,
using Lemma 11.4 with x ≤ 3

2 log |∆K |, using that
√
x(log(x)/(2π) + 2) ≤ 3x and√

x(log(x)2/(8π) + 2 ≤ 3x (for x > 0.5),

logN (m0) ≤ x+
√
x

((
log x

2π
+ 2

)
log |∆K |+

(
(log x)2

8π
+ 2

)
n

)
(124)

≤ x︸︷︷︸
≤ 3

2 log |∆K |

+3x log |∆K |︸ ︷︷ ︸
≤ 9

2 log2 |∆K |

+ 3xn︸︷︷︸
≤ 9

2 log |∆K |·
3
2 log |∆K |

≤ 13 log2 |∆K |. (125)

By taking logarithms and using that logN (m0) ≤ 13 log2 |∆K |, that log(b2n
2/b) ≤

n2, that n7n/2 ≤ e3n2

, and that 48n ≤ e4n2

, we have that

rn = (48 · ω · b2n/b · n7/2 · |∆K |
3
2n · N (m0)

1
n )n

≤ ωn · e4n2+n2+3n2 · e 3
2 log |∆K |+13 log2 |∆K | ≤ ωn · e8n2

e15 log2 |∆K |.

Hence, using 40000 ≤ e11 and n5/2 ≤ en2

, we obtain

40000 · |∆K | · rn · n5/2 ≤ ωn · exp(11 + 16 log2 |∆K |+ 9n2) = N.

□



98 K. DE BOER, A. PELLET-MARY, B. WESOLOWSKI

Recall that the ‘continuous version of Algorithm 4’ means: Algorithm 4 in which
line 4 is replaced by

a =
∑
p∈S

apLpM +
∑
ν

bνLνM← GDivK,S,ς , and put y = Exp∞(a∞).

Lemma 18.13. The statistical distance of the output distributions of Algorithm 4
and the ‘continuous version of Algorithm 4’ is at most 1/50.

Proof. The output distribution of the ‘continuous version of Algorithm 4’ can be
written as ∫

a∈DivK,S

D̄a[−]GDivK,S,ς(a)da (126)

whereas the output distribution of the ordinary one can be written as∑
ä∈DivK,S,N

D̄˜̈a[−]ĜDivK,S,N ,ς(ä),

which is εG-close (see Lemma 2.22, with εG = 1/100) to∑
ä∈DivK,S,N

D̄˜̈a[−]GDivK,S,N ,ς(ä), (127)

where the approximation ˜̈a ≈ ä is caused by the computation of y in line 4. Writing
F for a fundamental domain of DivK,S,N ⊆ DivK,S (i.e., F +DivK,S,N = DivK,S is
a tiling), and taking into account the error of εG = 1/100 caused by the Gaussian
approximation (Lemma 2.22), the statistical distance between the continuous and
ordinary variant of the algorithm can be estimated by (writing |F | for the volume
of F )

εG +
1

2
·

∥∥∥∥∥∥
∫
a∈F

∑
ä∈DivK,S,N

D̄ä+a[−]GDivK,S,ς(ä+ a)− |F |−1D̄˜̈a[−]GDivK,S,N ,ς(ä)da

∥∥∥∥∥∥
1

By the trick ab− a′b′ = b(a− a′)− a′(b′ − b), the triangle inequality, and the fact
that the ℓ1 norm of a distribution is equal to 1, the quantity above can be bounded
by

εG +
1

2
·
∫
a∈F

∑
ä∈DivK,S,N

∥D̄ä+a − D̄˜̈a∥1 · GDivK,S,ς(ä+ a)da

︸ ︷︷ ︸
(A)

(128)

+
1

2
·
∫
a∈F

∑
ä∈DivK,S,N

|GDivK,S,ς(ä+ a)− |F |−1GDivK,S,N ,ς(ä)|da︸ ︷︷ ︸
(B)

(129)

By property Lemma 17.8(iv), we have that D̄a is almost Lipschitz-continuous in a,

∥D̄ä+a − D̄˜̈a∥1 ≤ 3 · |∆K | · rn · n2 · ∥ä+ a− ˜̈a∥+ 1
200 ,

and ∥ä+ a− ˜̈a∥ ≤ ∥˜̈a− ä∥+ ∥a∥ ≤ 2
√
n/N by construction21 of ˜̈a = Log(y/z) + ä

on line 4 and since maxa∈F ∥a∥ =
√
n/N for F = {∑ν xνLνM ∈ DivK,S | xν ∈

21We have ∥Log(y · z−1)∥ ≤
√
nmaxν log(yνz

−1
ν ) ≤

√
nmaxν |yνz−1

ν − 1| ≤
√
n(minν zν)−1 ·

maxν |yν − zν | ≤
√
n/N , by line 4 of Algorithm 4.
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[−1/2, 1/2)}. Therefore, we can bound part (A) of Equation (128) by (using
Lemma 18.12)

(A) ≤ 6 · |∆K | · rn · n5/2
N︸ ︷︷ ︸

≤1/200

+1/200 < 1/100.

For the bound on Equation (129), note that the sole continuity is on the Log(K×R )-
part of DivK,S. Hence, part (B) in Equation (129) is equal to

(B) =

∫
a∈F

∑
ä∈ 1

N

∏
ν Z

|GLog(K×
R ),ς(ä+ a)− |F |−1G 1

N

∏
ν Z,ς(ä)|da, (130)

where we understand the inclusion 1
N

∏
ν Z ↪→ Log(KR). Instantiating Lemma 9.13

with ε = 1/700 (loc. cit.), we can bound (B) via Equation (130) by 7ε = 1/100.
Here we use that ς > 1, that λn(

1
N

∏
ν Z) = 1

N , and that (by Lemma 18.12)

N ≥ 40000n2 ≥ 5π
√
n log(4n/ε)ε−1n, hence the assumptions of Lemma 9.13 are

satisfied.
Concluding, the statistical distance between the continuous and ordinary variant

of Algorithm 4, by using that εG = 1/100, is at most 1/100 + 1/200 + 1/200 =
1/50, since the respective summands in Equations (128) and (129) are bounded by
1/100, 1/200, 1/200 respectively. □

18.6. Conclusion: the number of samples that generate the full S-unit
lattice. The concluding theorem of this section quantifies how many samples of
the output distribution D̄ of Algorithm 4 one needs to draw in order to get a
generating set of the logarithmic unit lattice with high probability. The proof of
the theorem uses the fact that this output distribution is evenly distributed and
concentrated and applies Proposition 18.2 on distributions over lattices.

Theorem 18.14. There exists an absolute constant C > 0 and some Bmax =
poly(L|∆K |(1/2), Lnn(2/3), ρcutK ), where

ρcutK = min
(
ρK ,max(elog

2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 log

4
3 (n))

)
,

such that the following holds. For every number field K, for every k ∈ Z>0, and for
every set of primes S that generates the ray class group Clm0

K of K, does not contain
primes dividing m0 and contains all primes (coprime with m0) of norm ≤ Bmax,
the probability that

6 · k + 6 · (|S|+ r) ·
[
log((|S|+ r) · ς) + C log log |∆K |

]
samples from Algorithm 4 generate the entire logarithmic S-unit lattice LogS(O×K,S)
is at least 1− e−k. Here, |S|+ r = dim(LogS(O×K,S)) (with r = dim(Log(O×K))) and
ς is from line 3 of Algorithm 4.

Proof. By Lemma 18.11 and Lemma 18.10 the output distribution of Algorithm 4 on
LogS(O×K,S) is 2/3-evenly distributed and (R0, 0)-concentrated forR0 = O(log2 |∆K |)+
3ς ·n0, where ς is the deviation of the Gaussian distribution as in Algorithm 4, and
where n0 = |S|+ nR + nC = dim(LogS(O×K,S)) + 1.

So, one can apply Proposition 18.2 with p = 2
3 and q = 0 (using (1−p−q)−1 = 3)

to deduce that the number of samples S required from the output distribution of
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Algorithm 4 to generate the entire log-S-unit lattice satisfies, for any α > 0,

Pr [S > 3 · (2 + α)(t+ n1)] ≤ e−α(t+n1)/2, (131)

where n1 = |S|+ r = dim(LogS(O×K,S)) = n0 − 1 and22

t = n1 · log2(R0)− log2(Vol(LogS(O×K,S)))
≤ n1 · log2(R0) + 2

≤ n1[log(n0ς) +O(log log |∆K |)].
Taking α = 2k/(t+ n1), we have α(t+ n1)/2 = k, and

3 · (2 + α)(t+ n1) = 6(t+ n1) + 3α(t+ n1) = 6(t+ n1) + 6k.

Hence, replacing the above formula into Equation (131), we obtain

Pr [S > 6(t+ n1) + 6k] ≤ e−k.
Therefore, the probability that 6(t+n1)+6k samples from the output distribution
of Algorithm 4 generate the entire logarithmic S-unit lattice LogS(O×K,S) is at least
1 − e−k. Replacing t + n1 by the larger n1[log(n1ς) + C(log log |∆K |)] (for some
absolute constant, and hiding n1 under this constant by increasing the constant
slightly if needed), yields the final claim. □

This theorem roughly states that the number of samples drawn from D̄ (the
output distribution of Algorithm 4) for the sampled vectors to generate the log-S-
unit lattice LogS(O×K,S) (with high probability) only needs to exceed a small multiple

of the dimension of LogS(O×K,S). In other words, if one assembles sufficiently many of

such samples (quasi-linearly in the dimension), they generate the log-S-unit lattice
except for an exponentially small probability.

In almost all applications involving S-units, a generating set with high probability
is not sufficient. Instead, often a basis of the logarithmic S-units is demanded (or,
equivalently, a fundamental set of S-units, see Section 19.1); and, additionally, no
probabilistic error is allowed (i.e., one wants to be sure that the basis at hand truly
is a basis of the full log-S-unit lattice).

To resolve these issues, one needs to post-process the set of generators by lattice
reduction techniques. This is the subject of Section 19.

19. Post-processing phase

19.1. Introduction. Up to now, the algorithm of this paper allows to provably
sample S-units in O×K,S with a certain probability. Furthermore, a sufficient number

of these S-units samples will generate the entire O×K,S with overwhelming probabil-
ity. To complete the entire algorithm, two tasks remain to be done.

(I) An algorithm to verify that the sampled elements truly generate all of O×K,S
and not a subgroup thereof23.

22We use here that Vol(LogS(O
×
K,S)) = hK ·RK ·

√
nR + nC ≥ RK ≥ 0.206, since RK ≥ 0.206

uniformly for all number fields [32, Theorem B].
23One could say that this algorithm changes the probabilistic algorithm of this paper from

a Monte Carlo algorithm (a randomized algorithm whose output may be incorrect with a small
probability, but with bounded running time) to a Las Vegas algorithm (a randomized algorithm

that always gives correct results, but whose running time is a random variable)
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(II) An algorithm to compute a fundamental system of S-units of O×K,S out

of these generators, i.e., a sequence of elements (ηj)j ∈ O×K,S with j ∈
{1, . . . , rank(O×K,S)} such that every element η ∈ O×K,S is a power product

of these elements (and a possible root of unity): η = τK
∏rank(O×

K,S)

j=1 η
mj

j for

some mj ∈ Z; where τK ∈ OK is some root of unity24.

19.2. Solving both (I) and (II) by computing bases. Let G ⊆ O×K,S be a
finite set of S-units. Then its associated lattice

LG :=
∑
η∈G

LogS(η) · Z = {LogS(η′) | η′ ∈ ⟨G⟩}

satisfies LG ⊆ LogS(O×K,S), i.e., it is a sublattice of LogS(O×K,S).
An immediate observation is now that both the tasks (I) and (II) can be solved25

if one is able to compute a basis of the lattice LG. Indeed, such a basis allows to
retrieve the rank and the determinant of LG. If rank(LG) = rank(LogS(O×K,S)) =
nC + nR + |S| − 1 and Vol(LG) = Vol(LogS(O×K,S)) = RK · hK ·

√
nR + nC (see

Equation (9)), we deduce that LG = LogS(O×K,S) (solving (I)) and that the basis of

LG is a basis for LogS(O×K,S) (solving (II)).
So, the naive approach would be to create the matrix G whose rows consist of

LogS(η) with η ∈ G; the rows of this matrix then generate LogS(LG). Apply LLL-
reduction toG to obtain a basis of LogS(LG) and compute its rank and determinant.
Unfortunately, this approach is not directly applicable.

19.3. The challenge of approximate matrices. The challenge lies in the fact
that the infinite places of LogS(η) for η ∈ O×K,S can only be approximated. Indeed,
these infinite places consists of logarithms of algebraic numbers, whose can only be
computed with a certain precision.

This has as a consequence that the row-oriented matrix G consisting of the
(exact) elements LogS(η) for η ∈ G is computationally out of reach. Instead one is

forced to work with G̃, an approximation of G. This rational matrix G̃ consists of
elements LogS(η) + ϵη for η ∈ G and ∥ϵη∥1 < ϵ. Given the set G, we can compute

G̃ in time |G| · poly(log(ϵ)). Of course, we have

∥G− G̃∥∞ ≤ ϵ.
where ∥ · ∥∞ is the induced ∞-norm on matrices26.

19.4. The Buchmann-Kessler-Pohst algorithm. For sufficiently (but still fea-
sibly) small ϵ ∈ (0, 1), an algorithm by Buchmann, Pohst and Kessler [18, 19] allows

to compute an integer matrix M such that B̃ = MG̃ is an approximate basis that
satisfies

∥B̃−B∥∞ ≤ C · ϵ and ∥M∥∞ ≤ C
for some very large, but sufficiently bounded C (depending on ∥G∥∞ and invariants
of the lattice LogS(O×K,S)) and where B = MG is a well-conditioned basis for the
lattice LG generated by G.

24As roots of unity vanish under the Logarithmic embedding into H and are easily computed,

we omit them often in discussions.
25Note that we assume that the primes in S generate the ideal class group.
26We have ∥A∥∞ = maxj ∥aj∥1 where aj are the rows of A.
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Though this algorithm is analyzed well [18], its analysis can only be applied
whenever the rank of the lattice LG is known. A slight variation of this analysis,
in which the rank of LG is not required to be known beforehand, is described
in Section 23. Note that this analysis proves that the Buchmann-Kessler-Pohst
algorithm actually computes the rank of LG.

19.5. Computing the determinant. So, the Buchmann-Kessler-Pohst algorithm
allows to compute a B̃ = B+ϵ′X close to a well-conditioned basisB; say, ∥X∥∞ ≤ 1
and ϵ′ < 1 is small.

Then, by a bound of Ipsen and Rehman [43, Corollary 2.14], for sufficiently (but
feasibly) small ϵ′ < 1, one has

det(B̃⊤B̃) ∈ [ 78 ,
9
8 ] · det(B⊤B).

The determinant Vol(LogS(O×K,S)) of the full log-S-unit lattice can be (multiplica-

tively) approximated by means of Euler products (e.g., [5] or Proposition 2.9). In
other words, we can efficiently compute a D ∈ R>0 such that

D ∈ [ 34 ,
5
4 ] ·Vol(LogS(O×K,S)).

The index [LogS(O×K,S) : LG] can then be approximated by computing
√
det(B̃⊤B̃)/D,

and satisfies27 √
det(B̃⊤B̃)/D ∈ (0.74, 1.42) · [LogS(O×K,S) : LG].

One deduces that if [LogS(O×K,S) : LG] ≥ 2, then
√
det(B̃⊤B̃)/D > 1.48. Con-

trarily, if [LogS(O×K,S) : LG] = 1, then
√
det(B̃⊤B̃)/D < 1.42, which allows us to

distinguish the two cases. Additionally, in the second case B̃ is an approximate
basis of LogS(O×K,S).

19.6. Assembling a fundamental set of S-units. Recall thatG = {η1, . . . , ηk} ⊆
O×K,S is a set of S-units and G = (LogS(ηj))j∈{1,...,k} its associated matrix of log-

arithmic images. Assume that (by means of the algorithm in the text above) one
has deduced that G indeed generates O×K,S, i.e., ⟨G⟩ = O×K,S.

By the algorithm of Buchmann-Kessler-Pohst in Section 19.4, we can find an
M = (mij)ij for which B = MG is a basis of LogS(O×K,S). In other words, for

j = 1, . . . , rank(O×K,S),

bj =

k∑
i=1

mji LogS(ηi) = LogS(βj) form a basis of LogS(O×K,S).

As a consequence, by taking exponentials, for j = 1, . . . , rank(O×K,S),

βj =

k∏
i=1

η
mji

i form a system of fundamental units of O×K,S. (132)

27We have
√

det(B⊤B) · c1 =
√

det(B̃⊤B̃) for c1 ∈ [
√

7
8
,
√

9
8
] and D = c2 ·Vol(LogS(O

×
K,S))

with c2 ∈ [ 3
4
, 5
4
]. Therefore,

√
det(B̃⊤B̃)/D = (c1/c2) ·

√
det(B⊤B)/Vol(LogS(O

×
K,S)), with

(c1/c2) ∈ [
√

7
8
· 4
5
,
√

9
8
· 4
3
] ⊆ (0.74, 1.42).
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Note that the expression in Equation (132) is in exact arithmetic (i.e., no pre-
cision issues). Namely, the elements ηi ∈ G are written in the basis of the number
ring and the exponents mji are integers from the integer matrix M.

19.7. A fundamental set of S-units by means of compact representation.
Note that actually representing βj in terms of basis elements ofOK orK is generally
computationally out of reach. Indeed, since the coefficients mij are rather large,
the computation of βj (i.e., expanding the product in Equation (132)) suffers from
coefficient explosion.

This is the reason why the computation of a system of fundamental (S)-units
is generally given in ‘compact representation’ (e.g., [10], [26, §5.8.3]). That just
means that, instead of giving the βj in Equation (132) by expanding its product
and writing βj in the basis of the number ring, one represents βj by the formal
product consisting of mji-th powers of ηi.

In other words, a compact representation of (βj)j=1,...,rank(O×
K,S)

is just given by

the pair (M, G) withM = (mij)ij ∈ Zk×(rank(O
×
K,S)) and G = {η1, . . . , ηk}, by which

we represent, for j ∈ {1, . . . , rank(O×K,S)},

βj =

k∏
i=1

η
mij

i .

The final output of the log-S-unit algorithm of this paper is thus the pair (M, G).

19.8. Final post-processing theorem. A rigorous treatment of the post-processing
phase can be found in Sections 23 to 25, as well as the proof of the following the-
orem. The techniques used in that treatment generally involve well-known lattice
reductions and computations, though for their rigorousness there is a heavy em-
phasis on numerical stability. For now, to stay close to the current subject manner,
those numerical stability computations are thus deferred to Part 3.

Theorem 19.1. Let K be a number field with degree n, and let G = {η1, . . . , ηk} ⊆
O×K,S a finite set of S-units. There exists an algorithm that takes as input the

set G28 and computes a system of fundamental S-units for the subgroup ⟨G⟩ ⊆ O×K,S
generated by G in compact representation, i.e., a pair (N, G) with N ∈ Zr×k such

that υj =
∏k
i=1 η

Nji

i for j ∈ {1, . . . , r} form a system of fundamental S-units for
⟨G⟩.

Additionally, this algorithm decides whether ⟨G⟩ = O×K,S or not, and runs in

time polynomial in k, log |∆K |, |S|, log
(
maxj∥LogS(ηj)∥

)
and maxj(size(ηj)).

20. Generating the exceptional S-units

20.1. Introduction. In Theorem 18.14, the main result of Section 18, the set of
primes S is assumed to contain no primes dividing the modulus m0. This modulus
m0 is defined in lines 2 - 8 of Algorithm 3, and only depends on the Dedekind
residue ρK , the degree n = [K : Q] and the absolute discriminant |∆K |.

In our end result, we would like to be able to compute S′-units for any set of
primes S′, without any restrictions. Indeed, we do want to allow S′ to contain
primes dividing m0. Hence, in this section we aim, for any p | m0, for computing

28The elements ηi ∈ K are represented as vectors of rational coordinates in a fixed OK -basis,
as explained in Section 2.6.
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an (S ∪ {p})-unit ηp ∈ O×K,S∪{p} that additionally satisfies ordp(ηp) = 1. Such an

(S ∪ {p})-unit we will then call an exceptional S-unit.
By adding these exceptional S-units ηp (for p | m0) to a fundamental system of

S-units, one gets a fundamental system of (S ∪ {p | p divides m0})-units. Hence
computing these ηp allows for computing a S′ unit group without any restrictions
on the prime ideals. Note that, if m0 = (1) is trivial, no exceptional S-units exist,
and the algorithm of this section can be omitted. Hence, throughout this section
we will assume that m0 ̸= (1).

20.2. Algorithm for generating exceptional S-units. In Algorithm 5, we de-
scribe how to compute an exceptional S-unit in the case of m0 ̸= (1). The following
lemma shows that the running time of this algorithm is the same as the running
time of sampling a single S-unit as in Theorem 17.7.

Algorithm 5 Computing an exceptional S-unit
Require:

(i) An LLL-reduced basis of OK ,
(ii) a prime ideal q | m0, (we assume m0 ̸= (1))
(iii) a set of prime ideals S of K, that does not contain the primes dividing

m0.

Ensure: α ∈ q and (vp)p∈S ∈ Z|S|≥0 such that αOK = q ·∏p∈S p
vp

1: define b, ω as in Algorithm 3.
2: repeat
3: α← Sample(q, y = 1,m0 · q−1, b, ω) (see Theorem 13.2)
4: until αOK · q−1 is S-smooth
5: compute (vp)p∈S ∈ ZS

≥0 such that αOK · q−1 =
∏

p∈S p
vp

6: return (α, (vp)p∈S).

Proposition 20.1. There exists some Bmax = poly(L|∆K |(1/2), Lnn(2/3), ρcutK ),
where

ρcutK = min
(
ρK ,max(elog

2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 log

4
3 (n))

)
,

such that the following holds. Assume that S contains all prime ideals coprime to
m0 of norm ≤ Bmax (where m0 is defined as in lines 2 - 8 of Algorithm 3).

Then, on input q | m0 and the set S, Algorithm 5 outputs (α, (vp)p∈S) ∈ q×Z|S|≥0
such that

αOK = q
∏
p∈S

pvp .

Furthermore, Algorithm 3 runs in expected time

poly(L|∆K |(
1
2 ), Lnn( 23 ), size(S), ρ

cut
K , log |∆K |).

Proof. The proof can be copied from that of Theorem 17.7. The sole differences are
the instantiation m0 ·q−1 instead of m0, and the instantiations a = q and y = 1. The
latter instantiations do not impact the proof, and since size(q) ≤ poly(log |∆K |)·x ≤
poly(log |∆K |) by the definition of x in line 3 of Algorithm 3, the size of q can be
omitted in the running time.
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Note that in Theorem 17.7, the input ideal a is required to be coprime to m0. In
the context of the current theorem, q is coprime to m0 · q−1 by construction, and
hence the same reasoning as in Theorem 17.7 applies.

The instantiation m0 · q−1 instead of m0 does impact the value of N(m0)/ϕ(m0),

but only by a factor N(q)
N(q)−1 ∈ [1, 2], which only impacts the success probability

by a factor in [1, 2] and hence does not impact the final running time. Therefore,
the running time of Proposition 20.1 equals that of Theorem 17.7, with size(a) and
size(y) deleted. □

21. Full algorithm, final theorem and discussion

Algorithm 6 Computing a fundamental system of S-units
Require: A number field K , an LLL-reduced basis of OK , and a set S of prime

ideals of K.
Ensure: A pair (M, G) with M = (mij)ij ∈ Zk×rank(O

×
K,S) and G = {η1, . . . ηk} ⊆

O×K,S such that {β1, . . . , βrank(O×
K,S)
} is a fundamental set of S-units, where

βj =

k∏
i=1

η
mji

i .

1: Put G = ∅
2: Define m0 as in lines 2 - 8 of Algorithm 3.
3: Define T = S\{p | p | m0}.
4: repeat
5: Apply Algorithm 4 with input T, yielding (α, (ap)p∈T).
6: Add the output α (and its factorization) to G′.
7: until the Buchmann-Kessler-Pohst algorithm as in Section 19 finds that G′

generates O×K,T.
8: Let (M′, G′) be the output of the Buchmann-Kessler-Pohst algorithm, as in

Theorem 19.1. Write G′ = {η1, . . . , ηk′} and M′ = (m′ij)ij ∈ Zk
′×rank(O×

K,S).

9: Compute for any q | m0, an exceptional T-unit ηq ∈ O×K,T∪{q}, using Algo-

rithm 5.
10: Order {ηq | q | m0} = {ηk′+1, . . . , ηk} and extend the set G′ to G =
{η1, . . . , ηk′ , ηk′+1, . . . , ηk}. Put mji = m′ji for i ∈ {1, . . . , k′} and j ∈
{1, . . . , rank(O×K,T)}, put mji = δji (Kronecker delta) for i ∈ {k′ + 1, . . . , k}.
Set M = (mij)ij ∈ Zk×rank(O

×
K,S)

11: return (M, G).

Proposition 21.1 (ERH). There is a randomized algorithm A (Algorithm 6) for
which the following holds. Let K be a number field and let

ρcutK = min(ρK ,max(elog
2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 ·log

4
3 (n))).

Note that ρcutK ≤ L|∆K |(2/3 + o(1)).
Then there exists a bound

B = poly(L|∆K |(1/2), Lnn(2/3), ρcutK ).
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such that if the algorithm A is given a set of primes S of K containing all primes
with norm bounded by B and generating the ray class group Clm0

K of K, the algorithm

A computes a fundamental system of S-units of O×K,S in compact representation, in
expected time

poly(L|∆K |(1/2), Lnn(2/3), ρcutK , size(S)).

Proof. The correctness of the algorithm follows from the following two arguments.
By the ‘until’ criterion in step 7, that requires G′ to generate the T-unit group,
where T = S\{p | p | m0}. Since the exceptional T-units ηq satisfy ordq(ηq) = 1
and ηq ∈ O×K,S, adding these indeed result in a fundamental set of S-units.

The running time of the algorithm is dominated by the repeat loop and the
computation of the exceptional units. We will use that size(T) ≤ size(S).

In the repeat loop, Algorithm 4 and the ‘post-processing’ Buchmann-Kessler-
Pohst algorithm take expected time poly(L|∆K |(1/2), Lnn(2/3), ρcutK , size(S)) (see
Lemma 18.9, Theorem 17.7, Theorem 19.1, and the bound

ς ≤ 3max(
√

log(nR + nC + |S|), ϱ̃) ≤ poly(log |∆K |, size(S))
from Proposition 16.10). The number of repetitions is expected to be within

Õ(|S| log log |∆K |) = poly(size(S)) (see Theorem 18.14).
The run time of computing all exceptional units is, by Proposition 20.1, at

most poly(L|∆K |(
1
2 ), Lnn( 23 ), size(S), ρ

cut
K , log |∆K |), where we use that the number

of prime ideals dividing m0 can be at most O(log(N (m0))) = poly(log |∆K |) (see
Equation (113)).

Therefore, the expected running time of the overall computation is poly(L|∆K |(1/2),
Lnn(2/3), ρcutK , size(S)) as well. □

The following theorem is the same as Proposition 21.1 except that the set of
primes S can now be arbitrary.

Theorem 21.2 (ERH). There is a probabilistic algorithm which, on input a number
field K and a set of primes S of K, computes a fundamental system of S-units of
O×K,S in compact representation, in expected time

poly(L|∆K |(1/2), Lnn(2/3), ρcutK , size(S)).

where ρcutK = min(ρK ,max(elog
2
3 |∆K |·log

2
3 (log |∆K |), en

2
3 ·log

4
3 (n))). Note that ρcutK ≤

L|∆K |(2/3 + o(1)).

Proof. Extend S to a set S′ ⊃ S of primes, containing all primes with norm below
B = poly(max(L|∆K |(1/2, 1), Lnn(2/3, 1), ρcutK )) and generating the ray class group

Clm0

K of K, as in Proposition 21.1. Note that, since log(N (m0)) = O(log2 |∆K |) (see
Equation (113)) and by Bach’s bound O(log(|∆K |2N(m0))) for ray class groups [4]
this is asymptotically clearly satisfied.

Then, apply Algorithm 6 to get the pair (M, G) representing a fundamental sys-
tem of S′-units. This costs expected time poly(L|∆K |(1/2), Lnn(2/3), ρcutK , size(S)),
since size(S′) = poly(B, size(S)).

As a preparation for the Hermite normal form algorithm, we put the infinite
primes and the primes of S to the very left in the representation of LogS′(γ), i.e.,

LogS′(γ) :=
(

Log(γ)︸ ︷︷ ︸
infinite places

, (− ordp(γ))p∈S︸ ︷︷ ︸
places in S

, (− ordp(γ))p∈S′\S

)
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Put G̃ for the row-matrix consisting of the approximations of LogS′(γj) for j =

1, . . . , |G|, where G = {γ1, . . . , γ|G|}. We then can write B̃ = MG̃ for an approx-
imate basis for the log-S′-unit lattice (with the infinite places and the places of S
at the very left).

We now apply a Hermite normal form algorithm to B̃, leading to H̃ = UB̃
that is in a lower-triangular shape. Hence, the first |S| + nR + nC − 1 rows must
then represent the Log-S-units, as it is the dimension of S plus the dimension of
the logarithmic unit lattice Log(O×K). Hence, the S-units can be given in compact
representation (N, G) with N being the first |S|+ nR + nC − 1 rows of UM. I.e., a
fundamental set of S-units is

ηk =

|G|∏
j=1

γ
Nkj

j for k ∈ {1, . . . , |S|+ nR + nC − 1}.

Since the running time of the Hermite normal form is polynomial in the dimensions
of the input matrix and the maximum size(cij) of the coefficients29 [72], we simply
deduce that computing this Hermite normal form also takes time poly(L|∆K |(1/2),
Lnn(2/3), ρcutK , size(S)). This concludes the proof. □

21.1. On the complexity of the S-unit computation algorithm. Now that we
have proved the main result of this part of the article, we turn to its meta-analysis,
comparing it with former heuristic claims. Both the provable and the heuristic run-
ning time of the S-unit computation algorithm depend heavily and quite intricately
on both the parameters log(|∆K |) and the degree n of the number field K at hand
(see Figure 2). We will explain here the origin of the various changes in the running
times, starting with that of the heuristic algorithm in Section 21.3 and ending with
the running time of the provable algorithm of this paper in Section 21.4.

In this explanation of the running times, we will only discuss the the running

time in terms of their ‘dominant part’, which are of the shape exp(Õ(logδ |∆K |)) or
exp(Õ(nδ)) for some δ ∈ [0, 1]. Also, in Figure 2 only this ‘dominant part’ is shown.

It is useful to think of, for example, exp(Õ(logδ |∆K |)) of being of ‘approximately
the same magnitude’ as L|∆K |(δ, 1), while keeping in mind that L|∆K |(δ, 1) is a much
more precise way of estimating complexities. For the the more intricate analysis,
we refer to the proof of Theorem 17.7.

21.2. A general formula for the complexity of the S-unit computation
algorithm. At the very core, most S-unit computation algorithms consist of the
following two steps (in which S = {p prime ideal | N (p) ≤ B}):

(I) Assemble R ‘relations’ in the shape of B-smooth elements of norm ≤ M .
Those are just elements of O×K,S.

(II) Post-process these R ‘relations’ to get a system of fundamental S-units using
lattice reduction techniques. Such a system of fundamental S-units can be
seen as a (multiplicative) ‘basis’ of O×K,S.

29We might have to scale up the coefficients of the infinite places to integers (column-wise),
but that does not impact significantly the size of the coefficients.
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Figure 2. A depiction of the (dominant part of the) provable
running time compared to the (dominant part of the) heuristic
running time for number fields K, depending on log(ρK) and the
value of log(|∆K |) compared to the degree n.
The blue line corresponds to the heuristic running time claimed
in [10].
The provable running time of the S-unit algorithm of the present
work varies between the blue and red lines, depending on log(ρK).
The running time can be found in this graph by first searching the
point log |∆K | (in terms of powers of the degree n) on the x-axis,
and then read off, depending on the size of log(ρK), where between
the blue and red line the (logarithm of the) run time must be. For
number fields with log(ρK) ≤ n2/3, the running time is dictated
by the blue line, and when log(ρK) ≥ n, the complexity is dictated
by the red line.

21.2.1. Part (I). The B-smooth elements are sampled in a probabilistic way, by
‘picking an element of norm ≤ M at random and hoping it will be smooth’. One
such attempt costs 1 sampling of a norm ≤M element (denoted SM ) and 1 check for
being B-smooth (denoted CB). Let us denote pM,B for the probability of success,
namely that such sampling indeed yields a B-smooth element. Then, the running
time for sampling a single B-smooth element (a ‘relation’) with constant success
probability takes time (SM + CB) · p−1M,B . To obtain R such relations, one obtains

for part (I) an expected complexity of

poly
(
R(SM + CB) · p−1M,B

)
.

21.2.2. Part (II). The post-processing step consists of lattice reduction on a sort-of
‘valuation matrix’ of the gathered relations (elements in O×K,S). Namely, each of
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these R elements η ∈ O×K,S are decomposed as[
Log(η), (vp(η))p∈S

]
∈ RnR+nC−1 × ZS,

where each vector entry is bounded by30 poly(log(M)), where M is the maximum
norm of the elements. Reducing an R × (S + nR + nC − 1)-matrix like this costs,
roughly said, time at most poly(R · B · log(M)) (where we use B ≈ |S|). Here we
assume that the decomposition of the elements into prime ideals has already be
done in the ‘check for being smooth’ step in Part (I).

21.2.3. The general formula for the complexity. Adding the complexities, using that
R ≥ B and assuming that log(M) is negligible compared to B, we obtain a general
formula for the complexity, by effectively ignoring the costs of Part (II):

poly
(
R · (SM + CB) · p−1M,B

)
, (133)

where SM is the cost of sampling a random element in OK of norm ≤ M , where
CB is the costs of checking whether an element is B-smooth, where pM,B is the
probability that a randomly sampled norm ≤M element in OK is B-smooth, and
where R is the (average) number of relations (elements in O×K,S) needed to generate

O×K,S.

21.3. Heuristic running time of Biasse & Fieker [10]. For the heuristic run-
ning time [10], there are essentially two ‘regimes’ of number fields. Namely, ‘regime
A’, the fields for which n ≤ log |∆K | ≤ n4/3 and ‘regime B’ the fields for which
n4/3 ≤ log |∆K | < ∞ (see the blue ‘Heuristic’ line in Figure 2). We will explain,
with the general formula of Equation (133) and the heuristic assumptions of [10],
why these regimes pop up.

Heuristic 1 (and 2) of [10] roughly state that they assume that the probability
pM,B of a random element of norm ≤M being B-smooth equals

pM,B = exp
(
− Õ

( log(M)

log(B)

))
(heuristic)

Additionally, Heuristic 3 of [10], roughly states that the number of elements (‘re-
lations’) R required to generate the full S-unit group O×K,S, is only slightly larger
than B, i.e.,

R = Õ(B) (heuristic)

Using trivial trial division for B-smooth checking yields CB = O(B). One of the
main improvements of [10] is the use of stronger lattice reduction techniques (BKZ-
b) to sample small norm elements. More precisely, in their paper, they roughly take

M = en
2/b · |∆K | and SM = Õ(bb); where b is the block size parameter of BKZ.

Filling in these parameters into the formula of Equation (133) and simplifying
adequately, we obtain

poly
(
bb ·B · pM,B

)
= exp

(
Õ
(
b+ log(B) +

n2/b+ log |∆K |
log(B)

))
30This is not the case per se, a fixed norm element can have arbitrarily large entries of the

logarithmic embedding. Though, here, in this quick explanation, we assume that this is the case.
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Optimizing the parametersB and b, we quickly arrive at a complexity31 of exp(Õ(log1/2 |∆K |))
whenever n4/3 ≤ log |∆K | and exp(Õ(n2/3)) whenever n4/3 ≥ log |∆K |. This ex-
plains the differences in complexity in the two regimes.

Remark 21.3. Intuitively, these two regimes can be explained by the hardness of
sampling small-norm elements in OK . Recall that for a sample of an element of

maximum norm M = en
2/b|∆K | one has to pay bb.

For |∆K | large compared to the degree (regime B), the extra factor en
2/b in M

does not impact the asymptotic size of M . Contrarily, if the discriminant is small

(regime A), the factor en
2/b in M becomes dominant. Therefore, the block size b

needs to be increased, resulting in a larger complexity.
To summarize, for large discriminants, it is the probability of sampling smooth

elements that is the bottleneck of the algorithm, whereas for small discriminants it
is the run time of BKZ.

21.4. Provable running time of this paper. We revisit the running time of the
S-unit group computing algorithm, but now without heuristics and only assuming
the Generalized Riemann hypothesis. The provable running time depends again
on the parameters n and log |∆K | and fall into three regimes. Regime A are the
number fields for which n ≤ log |∆K | ≤ n3/2, regime B the number fields satisfying
n3/2 ≤ log |∆K | ≤ n2 and regime C the number fields for which n2 ≤ log |∆K | <∞
(see the red ‘Provable’ line in Figure 2). In the following we show how these different
regimes arise.

In the algorithm of this paper the sampling probability for smooth elements has
a provable lower bound from Part 1 (see Theorem 9.5)

pM,B ≥
1

ρK
· e−Õ( log M

log B ) (provable)

where ρK = lims→1(s − 1)ζK(s) is the residue of the Dedekind zeta function at
s = 1. Additionally, in Part 2, we prove that taking

R = Õ(B) (provable)

is indeed sufficient to generate the full S-unit group. Instantiating the rest of the
parameters like in the heuristic version (Section 21.3), we obtain the same running
time, with an extra factor ρK .

exp
(
Õ
(
b+ log(B) + log(ρK) +

n2/b+ log |∆K |
log(B)

))
Regime C. As we have log(ρK) ≤ n log(log(|∆K |)/n) [53], we can deduce, with the

same reasoning as in Section 21.3 that the run time is bounded by exp(log1/2 |∆K |)
whenever log |∆K | ≥ n2. Then, namely, log ρK ≤ Õ(log1/2 |∆K |) and therefore
ρK has essentially no significant influence on the running time. This explains the

complexity of exp(Õ(log1/2 |∆K |)) for regime C in Figure 2.

31A lower bound of this complexity is exp(Õ(log1/2 |∆K |)) , which is achieved when logB =

b = log1/2 |∆K | and n2/b ≤ log |∆K |, i.e., n2 ≤ log3/2 |∆K |. This explains the running time for

‘regime B’, in which n4/3 ≤ log |∆K |.
In ‘regime A’, we have n4/3 ≥ log |∆K |, for which a lower bound for the complexity is

exp(Õ(n2/3)) which is achieved by taking log(B) = b = n2/3.
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Regime B. When log |∆K | ≤ n2, the running time of the provable algorithm possi-
bly depends on ρK . As ρK can be exponentially large in n, the worst-case running
time for this regime is exp(O(n)). Note, however, that for this regime, depending
on the magnitude of ρK , the running time can lie anywhere in the gray area of
Figure 2.

Regime A. Whenever the discriminant is sufficiently small, namely, log |∆K | ≤
n3/2, one can apply a trick to significantly diminish the influence of the residue ρK
on the running time.

Instead of sampling random elements in OK , one samples random elements co-
prime with some modulus ideal m0 ⊆ OK that is the product of all primes below
some bound X. This sampling is done in a specific way, namely, by first sampling
τ ∈ (OK/m0)

× and then sampling a random element equivalent to τ modulo m0.
This causes the sampling probability of smooth elements (coprime with m0) to in-
crease by a factor N (m0)/ϕ(m0), but it also causes the maximum norm M of the
sampled elements to increase32 by a factor N (m0), i.e.,

pM,B ≥
N (m0)

ϕ(m0) · ρK
· e−Õ

(
log M+log N(m0)

log B

)
(provable) (134)

with M = 2n
2/b|∆K |. Using the fact that N (m0)

ϕ(m0)·ρK ≥ exp(−Õ(log |∆K |/
√
X)) (see

Proposition 11.2), and N (m0) ≈ exp(Õ(X + log |∆K | ·
√
X)) (see Lemma 11.4), we

can rewrite Equation (134):

pM,B ≥ e
−Õ
(

log |∆K |√
X

+
n2/b+log |∆K |+X+log |∆K |·

√
X

log B

)
(provable). (135)

Plugging in this probability lower bound into the general formula, the logarithm of
the running time becomes, asymptotically,

Õ

(
b+ log(B) +

n2/b+ log |∆K | ·
√
X

log(B)
+

log |∆K |√
X

)
. (136)

This has as asymptotic lower bound Õ(log2/3 |∆K |), attained whenX = log2/3 |∆K |
and log(B) = log2/3 |∆K |. Note that this trick is only useful whenever log2/3 |∆K | ≤
log ρK ≤ n log(log |∆K |/n), otherwise the approach as in regime B (whose running

time depends on ρK) would be faster. So, surely whenever log2/3 |∆K | ≤ n, i.e.,
log |∆K | ≤ n3/2, this trick could outperform regime B (if ρK is large), which ex-
plains regime A of the provable running time (see Figure 2).

21.5. Discussion.

Is the dependency of the running time on ρK innate? The (dominant parts of the)
provable expected running time of our S-unit computation algorithm is depicted
in Figure 2 depending on the parameters log(ρK) and log |∆K | compared to the
degree n. For a fixed number field with log |∆K | = nδ for δ ∈ [1, 2] the provable
expected running time can be anywhere where the line x = nδ intersects the shaded
area, depending on the size of ρK . For small ρK , this running time can be equal to
the heuristic one (the bottom blue line), whereas for large ρK , it might be equal to

32Because, instead of sampling in OK , we now have to sample in the shifted lattice τ + m0,
which has covolume N (m0) times the covolume of OK .
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the worst-case provable one (the top red line). As this quantity ρK is computable
by Euler products.

The main question in this discussion is: does ρK really have this influence on
the running time or is it merely an artifact of the lack of tight bounds on
smooth ideal densities?

Namely, there are asymptotic formulae [75] (see also Equation (103)) indicating
that, for u = log(x)/ log(B),

δSB [x] ≥ u−u
but, generally, nothing is said about what the smallest x ∈ R>0 is for which this
holds. For our purposes, we would like this smallest x to be at most O(|∆K |)
(and B = exp(O(log1/2(|∆K |)))). This is not something we could deduce from
asymptotic results. Therefore, we chose to use a combinatorial result (Lemma 14.1),
which shows that, for every x > log(B) ≥ 2 log log |∆K |,

δSB [x] ≥
1

ρK ·B · (4 log(B))u
u−u.

This lower bound has as an advantage that it is explicit and holds for small values
of x (in particular the range around |∆K | we need). The disadvantage is the extra
factor 1

ρK
, which increases, for large ρK , the provable running time of our algorithm

drastically.
We could ask the main question of this discussion differently:

Are there bounds B = exp(O(log1/2(|∆K |))), X = O(|∆K |), and C−1 =

poly(B, exp(log1/2 |∆K |)) such that for all x ≥ X, and for u = log(x)/ log(B),
the inequality

δSB [x] =
|{a ∈ SB | N (a) ≤ x}|

ρK · x
≥ C · u−u

holds?

If the answer is yes, our algorithm would reach the heuristic running time proposed
by [10]. If the answer is no, it is likely that the heuristic algorithm of [10] does not
achieve its claimed running time, and instead has the same dependence on ρK as
our algorithm.

The use of variants of the Riemann Hypothesis. An interesting follow-up question
would be how the algorithms in this paper would perform without assuming variants
of the Riemann Hypothesis. To aid such research we now identify which type of
Riemann Hypothesis is used for which task and discuss the possible impact of letting
go of these hypotheses.

(1) Random Walk Theorem. In Theorem 6.4, the Riemann Hypothesis for
all Hecke L-functions associated with a Hecke-character over a number field
K (with fixed modulus m) is assumed. The Riemann Hypothesis in this
form here seems indispensable for this proof, due to its influence on the
bound on the Hecke eigenvalues (see Equation (171)).

Without the Riemann Hypothesis, one might have to resort to an alter-
native, weaker bound, optimistically maybe of the following form, inspired
by bounds [74, 31] for the prime counting function:

λχ = O
(
cK,m · e−

√
log(B)

)
. (137)
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Here, cK,m is some constant depending on K and m, and the big-O is, as it
is throughout the entire present work, absolute. A bound as Equation (137)
for all eigenvalues of Hecke characters under Hecke operators, of which we
do not know a proof and what the constant cK,m then might be, implies
then that we are required to choose

B = O(elog
2(cK,m)),

which might or might not be useful, depending on the value of cK,m.
(2) Estimation of the factor N (m0)/ϕ(m0). In Section 11, the Riemann

hypothesis for the Dedekind zeta function of K is assumed to estimate
the factor N (m0)/ϕ(m0). This estimation is used to diminish the impact
of ρK on the running time of the S-unit computation algorithm. To be
more precise, this estimate on this factor allows for making the running
time depend on ρcutK instead of ρK (see Theorem 21.2, also the left-hand
down-sloping part of the red graph in Figure 2).

Not assuming the Riemann hypothesis for the Dedekind zeta function
of K might impact the bound in Proposition 11.2 as well as the bound in
Lemma 11.4. Hence, the precise implications of letting go of the Riemann
hypothesis is not totally clear, but might heavily impact the dependency of
the provable running time on ρK .

(3) Density of smooth ideals. In Section 14, a combinatorial bound is given
for the density of smooth ideals, in which bounds on the number of prime
ideals in a number field are used. Letting go of the Riemann Hypothesis
here might have as a consequence that heavier restrictions on the numbers
Bsm and A are required.

(4) Computation of an approximation of ρK . In multiple parts of the
S-unit computation algorithm an approximation of the Dedekind zeta func-
tion residue ρK is required. In Algorithm 3, one uses this approximation
whenever ρK is large, to apply the ‘modulus trick’ in order to diminish the
influence of ρK on the running time. In the full algorithm, Algorithm 6,
an approximation of ρK (or equivalently, of RK · hK) is needed to decide
whether the algorithm indeed found the full logarithmic S-unit lattice (see
Section 19.5). The knowledge of an approximation of ρK thus allows to
change the full algorithm from a Las Vegas algorithm (i.e., the run time is
a random variable but the answer of the algorithm is always correct) into a
Monte Carlo algorithm (i.e., the run time is bounded but the answer might
be wrong or inconclusive with a certain fixed small probability).

If the Riemann hypothesis for the Dedekind zeta function of K is not
assumed, longer Euler products are required to approximate ρK . Depending
on the length of these Euler products compared to the running time of the
rest of the entire algorithm (which is already at least L|∆K |(1/2)), letting
go of the Riemann hypothesis might or might not influence the running
time of the algorithm.



PART 3

Provable lattice reduction techniques

22. Introduction

Roughly, this last part of the current paper can be divided into two main subjects:
The post-processing part, which is about processing the generators of the log-S-
unit lattice into a basis thereof (Sections 23 to 25); and the BKZ-algorithm part on
approximate bases, which is needed to find short vectors in ideal lattices (Sections 26
to 28).

22.1. Post-processing. The first subject is the post-processing of the generating
matrix of the log-S-unit lattice in order to get a basis (and hence a fundamental
set of S-units) of this log-S-unit lattice, see also Section 19.

In this post-processing stage, one consecutively computes the rank, the deter-
minant and a well-conditioned basis of the lattice generated by the (approximate)
generating matrix. The rank and determinant are computed first in order to check
if the generating matrix indeed generates the entire log-S-unit lattice (and not a
sublattice thereof).

This post-processing makes use of the Buchmann-Kessler-Pohst algorithm, an
algorithm that, roughly said, LLL-reduces a real-valued basis of one which only
knows a sufficiently good approximation of. Though, in the work of Buchmann,
Kessler and Pohst [18], it is assumed that the rank and the determinant of the
generated lattice is known. In our application, though, these quantities are not
known but instead need to be computed.

Hence, a slight modification of the analysis of Buchmann, Kessler and Pohst is
treated in Section 23 in order to show that one can indeed compute the rank and a
‘relatively well conditioned’ approximate basis of the generated lattice with use of
the Buchmann-Kessler-Pohst algorithm. This relatively well conditioned approxi-
mate basis can then be used to compute an approximation of the determinant (see
Section 24)

The entire compound result with the exact precision needed, applied to our
S-unit computation algorithm of Part 2, is then treated in Section 25.

22.2. The BKZ-algorithm on ideal lattices. As we aim for a provable running
time in this paper, we use a variant of the BKZ-algorithm [39] with a proven upper
bound on the run time. The challenge with the lattices occurring in this paper,
is that only an approximate basis of them are known. Hence, to make use of this
variant of the BKZ-algorithm, we have to prove that this variant behaves well on
small changes of the input.

In order to do so, a preliminary section about lattices is required (Section 26). Af-
ter that, the running time of the variant of the BKZ-algorithm [39] on integer bases
is analyzed, following a sketch of [39, Section 3, Cost of BKZ’] (Section 27). Lastly,

114
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this BKZ-variant is applied on an approximate basis, with use of the Buchmann-
Kessler-Pohst algorithm (Section 28).

23. Buchmann-Kessler-Pohst algorithm

23.1. Introduction. In this section, we will treat a slightly modified analysis of the
algorithm of Buchmann, Pohst and Kessler [18, 19]. The original algorithm allows
to compute an approximate basis of a lattice Λ from an approximate generating
matrix of a lattice (i.e., a matrix whose rows generate the lattice), provided that the
approximation of this generating matrix is good enough. In this original algorithm
the rank and the determinant of the lattice generated by the generating matrix are
assumed to be known.

In our case, computing (a fundamental system of) S-units, the rank and the
determinant of the lattice of the exact generating matrix are not known. Rather, we
would like to approximately compute these quantities, in order to deduce whether
the generating matrix generates the entire logarithmic S-unit lattice or not.

Exactly this lack of knowing the rank and determinant of the lattice (spanned
by the exact generating matrix) requires us to slightly modify the analysis of Buch-
mann, Pohst and Kessler. In this modified analysis, the algorithm of Buchmann,
Pohst and Kessler is actually applied twice (this was already suggested in [18, p. 9,
remark after Theorem 4.2]). These two applications of the same algorithm serve
two different goals.

During the first application of the Buchmann-Kessler-Pohst algorithm, one com-
putes an (approximate) basis of the lattice at hand. From this approximate basis
one can directly obtain the rank of the lattice. This first (approximate) basis,
though, might have bad conditioning properties and too long vectors. It is exactly
the purpose of the second application of the Buchmann-Kessler-Pohst algorithm
to transform this approximate basis in a well-conditioned approximate basis, with
reasonably short vectors (close to what LLL can achieve).

This well-conditioning of the (approximate) basis allows to approximate the de-
terminant of this basis within reasonable precision. This will be the subject of
Section 24. Knowing the determinant and the rank of the resulting basis allows to
verify whether the basis is an actual basis of the logarithmic S-unit lattice or not
(as there are formulas to compute the rank and the covolume of the logarithmic
S-unit lattice).

23.2. Preliminaries.

23.2.1. On the quasi-norm ∥A∥2,∞. In order to phrase the results of [18] more
succinctly, we introduce the following norm-like function on matrices. It is just the
maximum over the 2-norms of the rows of the matrix.

Definition 23.1. For any k ×m-matrix A, we denote

∥A∥2,∞ := max
1≤j≤k

∥aj∥,

where aj are the rows of A, and where ∥ · ∥ is the Euclidean norm on the row
vectors.

This is not a matrix norm as it is not submultiplicative, but it is almost submul-
tiplicative:
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Lemma 23.2. For a real m× ℓ-matrix M′ and a real ℓ× k-matrix M, we have

∥M′M∥2,∞ ≤
√
ℓ · ∥M′∥2,∞∥M∥2,∞

Proof. Take the 2-norm of the t-th row in M′M, which equals

∥
ℓ∑
j=1

m′tjMj∥ ≤
ℓ∑
j=1

|m′tj |∥Mj∥ ≤ ∥M′t∥ ·
( ℓ∑
j=1

∥Mj∥2
)1/2

≤ ∥M′t∥ ·
√
ℓ · ∥M∥2,∞

where m′tj is the tj-th entry in M′, Mj is the j-th row of M and M′t is the t-th row
of M′. The first inequality is the triangle inequality, the second inequality follows
from the Cauchy-Schwarz inequality and the third from the inequality between
2-norms and infinity norms. As this holds for any row in M′M, we conclude that

∥M′M∥2,∞ ≤
√
ℓ · ∥M′∥2,∞∥M∥2,∞.

□

23.2.2. Rounding in the Buchmann-Kessler-Pohst algorithm. In the original analy-
sis of the Buchmann-Kessler-Pohst algorithm [18], the input approximate generat-
ing matrix A ∈ Rk×n (consisting of rows aj ∈ Rn) is scaled up by 2q and rounded

entry-wise to the nearest integer, thus obtaining an integer matrix Â ∈ Zk×n (con-
sisting of rows âj ∈ Zn) [18, Section 2]. This is done this way because then the

LLL-algorithm can be applied to Â (the LLL-algorithm is generally only applied

on integer (or rational) matrices). As a result, such an integer matrix Â satisfies

∥Â− 2qA∥2,∞ ≤
√
n/2 [18, Equation (1)].

In our analysis, we deviate from this. Going over the result of Buchmann and
Kessler [18], one can verify that the only requirements on Â for their algorithm to
work is:

• Closeness to 2qA, i.e., ∥Â − 2qA∥2,∞ ≤
√
n/2 for some sufficiently large

q ∈ N, see [18, Equation (1)].

• Being able to call LLL on Â; so, in fact Â is allowed be a rational matrix,
as long as the denominators not too large.

By choosing, for example, Â ∈ 1
2Z

k×n, the inequality ∥Â − 2qA∥2,∞ ≤
√
n/2 can

be easily achieved, using a sufficiently good approximation of A to construct Â.
Summarizing, for our purposes it is not required that Â is integral (rationals with

small common denominators will suffice, too) nor that Â is obtained by rounding
2qA. For this reason, the following notation turns out to be useful.

Notation 23.3 (Binary approximation). A matrix Ã ∈ Qk×n is called a binary

approximation of A ∈ Rk×n with precision ε0 if 2q · Ã ∈ Zk×n for some q ∈ N and
∥A− Ã∥2,∞ ≤ ε0.

Note that we can choose q = log2(ε0 · n) in above notation, as that precision is

sufficient to obtain the approximation ∥A− Ã∥2,∞ ≤ ε0. As a result, there always

exists such a matrix Ã ∈ Qk×n whose bit-size is bounded by q2 ·k ·n · log(∥A∥2,∞) =

log2(ε0n)
2 · k · n · log(∥A∥2,∞) (each coefficient of Ã is a rational number with

numerator bounded by 2q · ∥A∥2,∞ and denominator bounded by 2q). Moreover,

from any rational matrix Ã′ satisfying ∥A − Ã′∥2,∞ ≤ ε0/2, one can compute in

polynomial time a matrix Ã with bit-size as above (polynomial in n, k, log(1/ε0)

and such that log∥A∥2,∞) and ∥A− Ã∥2,∞ ≤ ε0.
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23.3. The algorithm of Buchmann, Pohst and Kessler. In the following
lemma, we start by updating slightly the analysis of [18, Theorem 4.1], to make it
compatible with our matrix norm, and also take into account the fact that the rank
and determinant of our lattice are not known. In the later theorem (Theorem 23.5)
we will apply this lemma twice, first to obtain just any basis of the lattice, and
the second time to obtain a well-conditioned basis consisting of reasonably short
vectors.

Lemma 23.4. Let Λ ⊆ Zn1 × Rn2 be a lattice with λ1(Λ) ≥ µ and rank(Λ) ≤ r0.
Let A be a k× (n1+n2)-matrix whose rows generate the lattice Λ with k ≥ n2 ≥ 1,
let

C := 24k ·
(
r0 · ∥A∥2,∞

µ

)r0+1

,

and let Ã be a binary approximation of A satisfying ∥Ã−A∥2,∞ < 1
4µ · C−1.

Then there exists an algorithm that, on input Ã, µ, r0, computes a matrix M ∈
Zk×r with r = rank(Λ) in time polynomial in k, n1, n2, log∥A∥2,∞, log(1/µ) and
the bit-size of its input, and such that

(i) MA = B is a basis of Λ.

(ii) ∥M∥2,∞ ≤ C/
√
k ≤ C,

(iii) ∥B∥2,∞ ≤ 4k · ∥A∥2,∞.

(iv) Writing B̃ = MÃ, we have ∥B̃−B∥2,∞ ≤ C · ∥Ã−A∥2,∞.

Additionally, if A happened itself to be a basis of Λ, i.e., k = r = rank(Λ), we have,
for all j ∈ {1, . . . , r},

∥bj∥ ≤ (
√
rn2 + 2)2

r−1
2 · λj(Λ),

where bj are the rows of B = (b1, . . . ,br).

Proof. Constructing the matrix Â from Ã. Using the discussion after No-
tation 23.3, we can also replace the matrix Ã by a matrix with bounded bit-size
(in time polynomial in the bit-size of Ã). Hence, in the rest of the proof, we will

assume without loss of generality that the bit-size of Ã is polynomial in k, n1, n2,
log∥A∥2,∞, log(1/µ), and Ã satisfies ∥A− Ã∥2,∞ ≤ 1/4 · µ · C−1.

The algorithm first creates the matrix Â defined by Âij =
1
2⌊2q+1Ãij⌉ with q =

⌊log2(T )⌋, where ⌊·⌉ denotes rounding to the nearest integer, ⌊·⌋ denotes rounding
down, and

T =
23k

µ
·
(
r0 · ∥A∥2,∞

µ

)r0
=

2−k

µ

(
r0 · ∥A∥2,∞

µ

)−1
· C ≤ C/(2µ). (138)

Note that computing Â can be done in time polynomial in q and in the bit-size of
Ã. The entries of Â lie in 1

2Z, and the matrix Â satisfies

∥Â− 2qA∥2,∞ ≤ ∥Â− 2qÃ∥2,∞︸ ︷︷ ︸
≤√n2/4

+ ∥2qÃ− 2qA∥2,∞︸ ︷︷ ︸
≤2q· 12 ·µ/C≤1/4

≤ √n2/2.

According to the discussion in Section 23.2.2 this is sufficient to apply the Buchmann-
Kessler-Pohst algorithm.
Applying Buchmann-Kessler-Pohst to [I | Â]. This Buchmann-Kessler-Pohst
algorithm [18, Theorem 4.1] essentially consists of applying LLL-reduction to the
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matrix [I | Â] consisting of the horizontal concatenation of Â and I, the k × k
identity matrix.

Put,33 in order to satisfy the prerequisites of [18, Proposition 3.2],

λ := 2k ·
(
r0∥A∥2,∞

µ

)r0
≥ ( 12k

√
n2 +

√
k) · ∥A∥

r
2,∞

Vol(Λ)
. (139)

where r = rank(Λ) ≤ r0; in the inequality we made use of Minkowski’s inequality34

and the fact that 2k ≥ 1
2k
√
n2 +

√
k (since we assumed k ≥ n2).

Note that q = ⌊log2(T )⌋ satisfies [18, Equation 7], since we have

2q ≥ 1
2 ·

23k

µ
·
(
r0 · ∥A∥2,∞

µ

)r0
= 1

2 ·
22k

µ
· λ

> (
√
n2k + 2) · 2 k−3

2 · λ
µ
,

by Equation (139) and because 1
2 · 22k > (

√
n2k + 2)2

k−3
2 for all k ≥ n2 ≥ 1.

With these parameters λ and q, one can apply [18, Theorem 4.1]: LLL-reducing

[I | Â] yields an integral matrix (R⊤,M⊤)⊤ such that[
R
M

]
·
[
I Â

]
=

[
R RÂ

M MÂ

]
=

[
R Ê

M B̂

]
(140)

for which holds RA = 0, and MA = B, a basis of Λ. Furthermore, every row ê of
Ê satisfies ([18, Theorem 4.1, first equation on page 8])

∥ê∥ ≤ 2
k−1
2 λ

and every row b̂ of B̂ satisfies ([18, Proposition 3.1])

∥b̂∥ > 2
k−1
2 λ.

Identifying M and B̂, proving (i). This gives means to distinguish where in

the output matrix of Equation (140) the approximate basis elements B̂ are. Also,

this gives us a way to identify M, as it shares the same rows as B̂. Therefore, we
can compute an M that satisfies part (i) of the lemma.

33We replaced α in [18, Proposition 3.2] here by ∥A∥2,∞. As α ∈ R>0 is required to be an

upper bound on the 2-norms of the rows of A, ∥A∥2,∞ = maxj ∥gj∥ clearly suffices.
34Minkowski’s inequality states that 1/Vol(Λ) ≤ (r/λ1(Λ))r ≤ (r/µ)r with r = rank(Λ). By

the fact that ∥A∥2,∞/µ ≥ 1 and r0 ≥ r, we can conclude that

(
r0∥A∥2,∞

µ

)r0

≥
(
r∥A∥2,∞

µ

)r

≥
∥A∥r2,∞
Vol(Λ)
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Bounds on M, B and ∥B − B̃∥2,∞. By [18, Theorem 4.1, Equation 9, bottom
inequality], we have,35 since 2q ≤ T (see Equation (138)),

∥m∥ ≤ 2
k−1
2 +q+1 · ∥A∥2,∞ = 2

k+1
2 · ∥A∥2,∞ · T (141)

≤ 2
k+1
2 · ∥A∥2,∞ ·

23k

µ
·
(
r0 · ∥A∥2,∞

µ

)r0
(142)

≤ 24k√
k
·
(
r0 · ∥A∥2,∞

µ

)r0+1

(143)

≤ C√
k
≤ C for all rows m of M, (144)

where we used 2
k+1
2 ≤ 2k/

√
k for all k ∈ Z>0. Additionally, by [18, Theorem 4.1,

Equation 10], we have,

∥b∥ ≤ (
√
kn2 + 2)2

k−1
2 · ∥A∥2,∞ (145)

≤ 22k · ∥A∥2,∞ for all rows b of B, (146)

which prove (ii) and (iii), as ∥M∥2,∞ and ∥B∥2,∞ are just the maximum 2-norm of
the rows of the respective matrices.

For part (iv) use the ‘almost submultiplicativity’ of ∥·∥2,∞ (Lemma 23.2) and
Equation (144), to obtain

∥B̃−B∥2,∞ = ∥M(Ã−A)∥2,∞ ≤
√
k · ∥M∥2,∞ · ∥Ã−A∥2,∞ ≤ C · ∥Ã−A∥2,∞.

LLL-alike bounds for B when A is itself a basis of Λ. In the case that A
itself happens to be a basis, sharper bounds on B can be established, as can be
deduced36 from [18, Theorem 4.1, Equation 10]. Applying this bound yields, for all
j ∈ {1, . . . , r},

∥bj∥ ≤ (
√
kn2 + 2)2

k−1
2 · λj(Λ)

where bj is the j-th row of B.
Running time. For the running time, note that the most costly part of the
algorithm is to run the LLL algorithm on the matrix [I | Â]. This can be done
in polynomial time in the bit-size of the matrix, which is polynomial in k, n1, n2,
log∥A∥2,∞ and log(1/µ), as desired. □

Theorem 23.5 (Buchmann-Kessler-Pohst). Let Λ ⊆ Zn1 × Rn2 be a lattice with
λ1(Λ) ≥ µ and rank(Λ) ≤ r0. Let A be a k× (n1+n2)-matrix whose rows generate
the lattice Λ with k ≥ n2 ≥ 1, let

C0 = 28k ·
(
r0 · 4k · ∥A∥2,∞

µ

)2(r0+1)

,

and let Ã be a binary approximation of A that satisfies ∥Ã−A∥2,∞ < 1
4 · µ ·C−10 .

35In [18, Eq. 10], the lattice successive minima λj(Lr) of the lattice Lr are used; this lattice
Lr is any lattice spanned by r rows of A. So these successive minima λj(Lr) are trivially bounded

by α, the uniform bound on the lengths of the rows of A. Additionally, we replaced α by ∥A∥2,∞
again.

36We substitute k = r (as B consists of r rows) and Lr = Λ. Here Lr is defined as any lattice
defined by any r row vectors from B. As B consists of only r row vectors and is a basis of Λ, we
have Lr = λ.
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Then, there exists an algorithm that, on input Ã, µ, r0, computes in time poly-
nomial in k, n1, n2, log∥A∥2,∞, log(1/µ) and the bit-size of its input, a matrix
N ∈ Zr×k with r = rank(Λ) such that

(i) ∥N∥2,∞ ≤ C0

(ii) B = NA is a basis of Λ, whose rows satisfy, for j ∈ {1, . . . , r},
∥bj∥ ≤ (

√
rn2 + 2) · 2 r−1

2 · λj(Λ)
(iii) The approximate basis B̃ = NÃ satisfies ∥B̃−B∥2,∞ ≤ C0 · ∥Ã−A∥2,∞.
Proof. We will apply the Buchmann-Kessler-Pohst algorithm as in Lemma 23.4
twice: the first time we apply it to Ã to obtain an approximate basis B̃0 of Λ, and
the second time we apply it to B̃0 to obtain an approximate good basis B̃ of Λ.
This basis B̃ is called ‘good’ because it is an approximation of a basis B with a
guarantee on the shortness of its basis vectors.

First application of Lemma 23.4.

We have that C0 > 24k ·
(
r0·∥A∥2,∞

µ

)r0+1

= C from Lemma 23.4. Therefore, the

approximation Ã of A is sufficiently good to apply Lemma 23.4, and compute
M ∈ Zk×r such that MA = B0 is a basis of Λ. Additionally, this M and B0 satisfy

∥M∥2,∞ ≤ C and ∥B0∥2,∞ ≤ 4k · ∥A∥2,∞, (147)

and B̃0 := MÃ satisfies

∥B̃0 −B0∥2,∞ ≤ C · ∥Ã−A∥2,∞ ≤ C · µ · C−10 (148)

Moreover, the bit-size of B̃0 is polynomially bounded by the bit-size of Ã, and the
bit-size of M, the later being polynomially bounded by k, n1, n2, log∥A∥2,∞ and
log(1/µ).

Second application of Lemma 23.4.
By Equation (148) we deduce that ∥B̃0 −B0∥2,∞ < µ(C0/C)

−1; since B̃0 = MÃ,

this matrix B̃0 is a binary approximation of B0. In order to apply Lemma 23.4,

we need to show that C0/C ≥ 24r ·
(
r·∥B0∥2,∞

µ

)r+1

=: C ′, i.e., that the precision

of B̃0 is good enough . By the choice of C0, the bound 4k · ∥A∥2,∞ ≥ ∥B0∥2,∞
(Equation (147)), r0 ≥ r and k ≥ r, we have

C0

C
=

28k ·
(
r0·4k·∥A∥2,∞

µ

)2(r0+1)

24k ·
(
r0·∥A∥2,∞

µ

)r0+1 ≥ 24k ·
(
r0 · 4k · ∥A∥2,∞

µ

)r0+1

(149)

≥ 24k ·
(
r0 · ∥B0∥2,∞

µ

)r0+1

≥ 24r ·
(
r · ∥B0∥2,∞

µ

)r+1

=: C ′ (150)

Therefore, we can apply Lemma 23.4 again, but now with k = r and C ′ as in
Equation (150), and with input (B̃0, µ, r) (note that r is now known, and we still
have µ ≤ λ1(Λ)). This yields M′ such that M′B0 = B is a basis of Λ,

∥M′∥2,∞ ≤ C ′/
√
r (151)

and for all j ∈ {1, . . . , r} we have

∥b′j∥ ≤ (
√
rn2 + 2) · 2 r−1

2 · λj(Λ),
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which proves (ii), putting N = M′M.
For (i), we apply the ‘almost submultiplicativity’ (Lemma 23.2) to N = M′M,

which yields, by Equation (151) and Equation (150) (C0/C ≥ C ′),
∥N∥2,∞ ≤

√
r∥M′∥2,∞∥M∥2,∞ ≤ C ′ · C ≤ C0.

For (iii), we note that, by the results of Lemma 23.4,

∥B̃−B∥2,∞ ≤ C ′ · ∥B̃0 −B0∥2,∞ ≤ C ′ · C · ∥Ã−A∥2,∞ ≤ C0 · ∥Ã−A∥2,∞
For the running time of the algorithm, note that we applied the algorithm of
Lemma 23.4 twice, once with (A, µ, r0) and once with (B0, µ, r). Recall that the
bit-size of B0 is polynomially bounded by k, n1, n2, log∥A∥2,∞ and log(1/µ) and

by the bit-size of Ã. Using Lemma 23.4 gives the desired upper bound on the total
running time of the algorithm. □

24. Computing the determinant of an approximate basis

24.1. Preliminaries. In this section we will use the induced 2-norm on matrices,
which is defined (for m× n-matrices A) by the rule,

∥A∥2 := sup{∥Ax∥ | x ∈ Cn with ∥x∥ = 1}.
It satisfies the following inequalities

∥A∥2 ≤ ∥A∥F := (
∑
i,j

|Aij |2)1/2,

where ∥A∥F is the Frobenius norm. As a result, a m × n matrix E with Eij ≤ ε
for all i, j, satisfies

∥E∥2 ≤ ∥E∥F ≤
√
nm · ε.

We will use the fact that ∥A∥2 corresponds to the largest singular value of A, which
gives us

∥A⊤∥2 = ∥A∥2. (152)

24.2. The main result of this section. This section is about the following prob-
lem. Suppose we have a rank-n lattice Λ ⊆ Rm of which we can approximate the
determinant, say D ≈ Vol(Λ). Suppose furthermore that we have an approximate

basis B̃′ ≈ B′ of a sublattice Λ′ ⊆ Λ (with the same rank n). The task is to decide

whether Λ′ = Λ, using only the approximations B̃′ and D.

A straightforward way is to compute
√

det((B̃′)⊤B̃′) ≈ Vol(Λ′) and compare

it with D ≈ Vol(Λ). If the approximations are sufficiently good and D and√
det((B̃′)⊤B̃′) are sufficiently close, we can conclude Λ′ = Λ. If they are not

close, we can conclude Λ′ ̸= Λ.
This section treats how well B̃′ needs to approximate B′ (the exact basis of

Λ′) and how well D needs to approximate Vol(Λ) in order to make this reasoning
correct. The main result of this section is the following statement.

Theorem 24.1. Let Λ ⊂ Rm be a rank-n lattice (for some m ≥ n ≥ 1). Let

B′ ∈ Rm×n be a basis of a rank-n sublattice Λ′ ⊆ Λ ⊆ Rm and let B̃′ ∈ Qm×n be
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an approximation of B′ where the entry-wise error is less than

ε = 2−6 · n−(n+4) ·m−1 ·

∏
j

∥b′j∥
λj(Λ′)

−2 · λ1(Λ′)2/∥B′∥2,
and let D ∈ [ 34 ,

5
4 ] Vol(Λ) ∩Q.

Then we can decide whether Λ′ = Λ or not, using only B̃′ and D, in time
polynomial in the bit-sizes of B̃′ and D.

24.3. Some preliminary lemmas. Before proving Theorem 24.1, we will prove
some intermediary lemmas. The first lemma gives an upper bound on the size of
the inverse of a square matrix A that is the basis of a lattice (the upper bound
depends on some quantities related to A, which quantify how well-conditioned A
is). This will be used in the second lemma to prove that if two rectangular matrices

B and B̃ are close coefficient-wise, then the determinants of the square matrices
B⊤B and B̃⊤B̃ are close too. This second lemma will be central in the proof of
Theorem 24.1.

Lemma 24.2. Suppose A = (a1, . . . ,an) ∈ Rn×n is a square real matrix and a
basis of a lattice Λ ⊂ Rn. Then

∥A−1∥2 ≤ nn/2+1 · λ1(Λ)−1 ·

 n∏
j=1

∥aj∥
λj(Λ)

 .

Proof. For j ∈ {1, . . . , n}, define Cj =
∥aj∥
λj(Λ) . We have that A−1 = 1

detAadj(A).

We have that adj(A)ij is defined by the determinant of the minor of A where the
i-th row and j-th column are deleted. By the Hadamard bound and subsequently
by Minkowski’s second theorem (see, e.g., [54, Theorem 1.5]),

|adj(A)ij | ≤
∏
k ̸=i

∥ak∥ =
∏
k ̸=i

Ck · λk(Λ)

≤ nn/2 · (
∏
k ̸=i

Ck) ·Vol(Λ)/λi(Λ) ≤ nn/2(
n∏
k=1

Ck) ·Vol(Λ)/λ1(Λ).

Therefore, by observing that det(A) = Vol(Λ), we obtain

∥A−1∥2 ≤ ∥A−1∥F ≤
1

det(A)
· n ·max

ij
|adj(A)ij | ≤ nn/2+1 · (

n∏
k=1

Ck)/λ1(Λ)

□

Lemma 24.3. Let B ∈ Rm×n be a basis of a rank-n lattice Λ ⊂ Rm (for some

m ≥ n ≥ 1), and let B̃ be an approximation of B where the entry-wise error satisfies

s |Bij − B̃ij | ≤ ε for every i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, where

ε = 2−6 · n−(n+4) ·m−1 ·

∏
j

∥bj∥
λj(Λ)

−2 · λ1(Λ)2/∥B∥2. (153)

Then

det(B̃⊤B̃) ∈ [ 78 ,
9
8 ] · det(B⊤B).
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Proof. We have, by [43, Corollary 2.14], for n×n complex matrices A,E, where A
is non-singular,

|det(A+E)− det(A)|
|det(A)| ≤ (∥A−1∥2∥E∥2 + 1)n − 1

≤ 2n∥A−1∥2∥E∥2 if ∥A−1∥2∥E∥2 ≤ 1/n. (154)

The last inequality here easily follows from (x + 1)n − 1 ≤ (ex)n − 1 ≤ 2nx for
nx ≤ 1.

We instantiate this inequality with A = B⊤B and E = B̃⊤B̃ − B⊤B, so that
A+E = B̃⊤B̃ (note that A is non-singular since B is of rank n, so the instantiation
is valid). In order to obtain a meaningful upper bound, let us compute bounds on
the two quantities ∥A−1∥2 and ∥E∥2.

We can rewrite E as

E =
(
B+ (B̃−B)

)⊤ · (B+ (B̃−B)
)
−B⊤B

= B⊤ · (B̃−B) + (B̃−B)⊤ ·B+ (B̃−B)⊤ · (B̃−B).

Using the sub-multiplicativity of the induced 2-norm and Equation (152), we obtain

∥E∥2 ≤ 2 · ∥B∥2 · ∥B̃−B∥2 + ∥B̃−B∥22.

By assumption on the entry-wise error, we know that ∥B̃ − B∥2 ≤ ∥B̃ − B∥F ≤√
nm · ε. Moreover, it holds that ∥B∥2 ≥ ∥b1∥ ≥ λ1(Λ) ≥ λ1(Λ)2/∥B∥2 ≥ ε (where

b1 is the first column vector of B, and see Equation (153)). This yields

∥E∥2 ≤ 3 · n ·m · ε · ∥B∥2. (155)

Let us now compute an upper bound on ∥A−1∥2 = ∥(B⊤B)−1∥2. Let (Q,R)
be the QR-decomposition of B, with Q ∈ Rm×m orthogonal and R ∈ Rm×n upper

triangular, i.e., B = QR. Since m ≥ n, we have R =

(
C
0

)
for some invertible

matrix C ∈ Rn×n. It then holds, by orthogonality of Q, that C⊤C = B⊤B; that
∥bi∥ = ∥ci∥ for all 1 ≤ i ≤ n; and that λi(Λ) = λi(ΛC) for all i’s, where ΛC is the
lattice spanned by the columns of C. This gives us

∥A−1∥2 = ∥(B⊤B)−1∥2 = ∥(C⊤C)−1∥2
≤ ∥(C−1)⊤∥2 · ∥C−1∥2
= ∥C−1∥22

≤

nn/2+1 · λ1(ΛC)
−1 ·

 n∏
j=1

∥cj∥
λj(ΛC)

2

= nn+2 · λ1(Λ)−2 ·

 n∏
j=1

∥bj∥
λj(Λ)

2

, (156)

where we used Equation (152) for the third line and Lemma 24.2 on C (which is n
by n as required) for the fourth line.
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Combining the bounds Equations (154) to (156) and observing that ∥A−1∥2 ·
∥E∥2 ≤ 1/n by choice of ε, we obtain

|det(B̃⊤B̃)− det(B⊤B)|
|det(B⊤B)| ≤ 2n · ∥A−1∥2 · ∥E∥2

≤ 2n · nn+2 · λ1(Λ)−2 ·

 n∏
j=1

∥bj∥
λj(Λ)

2

︸ ︷︷ ︸
∥A−1∥2

· 3 · n ·m · ε · ∥B∥2︸ ︷︷ ︸
∥E∥2

≤ 1/8,

which precisely means that det(B̃⊤B̃) ∈ [ 78 ,
9
8 ] · det(B⊤B). □

24.4. Proving the main result. We are now equipped to prove Theorem 24.1.
The proof is quite short once we have Lemma 24.3.

Proof of Theorem 24.1. Let ℓ = [Λ : Λ′] be the index of Λ′ in Λ. Then ℓ ≥ 1 is
an integer, and we know that det

(
(B′)⊤B′

)
/Vol(Λ)2 = ℓ2. Our objective is to

determine whether ℓ2 = 1 (i.e., Λ′ = Λ) or ℓ2 ≥ 4 (i.e., Λ′ ⊊ Λ).

By the choice of ε, we can apply Lemma 24.3 to B̃′, which proves that det
(
(B̃′)⊤B̃′

)
∈

[ 78 ,
9
8 ] · det

(
(B′)⊤B′

)
. Recall that by assumption, D ∈ [ 34 ,

5
4 ] · Vol(Λ). From these

two inequalities, we obtain that

det
(
(B̃′)⊤B̃′

)
D2

∈ [ 1625 · 78 , 169 · 98 ] ·
det
(
(B′)⊤B′

)
Vol(Λ)2

= [ 1425 , 2] · ℓ2.

If Λ = Λ′, then ℓ = 1 and we have
det
(
(B̃′)⊤B̃′

)
D2 ≤ 2. Otherwise, ℓ ≥ 2 and we

have
det
(
(B̃′)⊤B̃′

)
D2 > 2.2. We can then distinguish the two cases by computing the

quantity det
(
(B̃′)⊤B̃′

)
and checking whether is it ≤ 2 ·D2 or > 2 ·D2.

For the running time, we only need to compute the determinant of the rational
matrix (B̃′)⊤B̃′, and then compare it with the rational number 2 · D2. This can

be done in polynomial time in the bit-sizes of the B̃′ and D (see, e.g., [45] for
an algorithm that computes the determinant of integer matrices in polynomial
time). □

25. Post-processing in the S-unit computation

Theorem 19.1. Let K be a number field with degree n, and let G = {η1, . . . , ηk} ⊆
O×K,S a finite set of S-units. There exists an algorithm that takes as input the

set G37 and computes a system of fundamental S-units for the subgroup ⟨G⟩ ⊆ O×K,S
generated by G in compact representation, i.e., a pair (N, G) with N ∈ Zr×k such

that υj =
∏k
i=1 η

Nji

i for j ∈ {1, . . . , r} form a system of fundamental S-units for
⟨G⟩.

Additionally, this algorithm decides whether ⟨G⟩ = O×K,S or not, and runs in

time polynomial in k, log |∆K |, |S|, log
(
maxj∥LogS(ηj)∥

)
and maxj(size(ηj)).

37The elements ηi ∈ K are represented as vectors of rational coordinates in a fixed OK -basis,
as explained in Section 2.6.
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Proof. Part I: Setting up the log-matrix and assembling properties of the
log-S-unit lattice. Define A = maxj∥LogS(ηj)∥ and µ = (1000 · √n · log(n)3)−1.
We know from Lemma 15.6 that µ ≤ λ1(LogS(O×K,S)). Note that this lower bound
is automatically also a lower bound for the first minimum of any sublattice of
LogS(O×K,S).

Consider the exact matrix G where the rows consist of LogS(ηj) with j ∈
{1, . . . , k}, and compute an approximation G̃ ∈ Qk×(n+|S|), with ∥G̃j −Gj∥ ≤ ε
for each row, where we put

ε = µ · 2−8k ·
(
k · 4k ·A

µ

)−2(k+1)

︸ ︷︷ ︸
≤ C−10 as in Theorem 23.5
(Buchmann-Kessler-Pohst)

· 2−6 · (n+ |S|)−(k+6) · 2−(2k+1)(k+2) ·A−1 · µ︸ ︷︷ ︸
Determinant
approximation

≤ 1
4 · µ · C−10 (157)

Note that from the exact representation of the ηi’s, one can compute approxima-
tions of the LogS(ηi)’s with arbitrary precision ε in time polynomial in size(ηi),
in log(∥LogS(ηi)∥) and in log(1/ε). From our choice of ε, this is polynomial in
k, log |∆K |, log

(
maxj∥LogS(ηj)∥

)
= log(A), |S|, and maxi(size(ηi)) as expected.

Moreover, the bit-size of the resulting matrix G̃ is also polynomial in these quan-
tities.

The quantity ε is chosen such that the left part of the product in Equation (157)
counteracts the loss in precision due to the Buchmann-Kessler-Pohst algorithm
(Theorem 23.5), whereas the right part is the minimum precision required to make
the determinant approximation work (as in Theorem 24.1).

Part II: Applying the Buchmann-Kessler-Pohst algorithm. We apply The-
orem 23.5 to G̃ with r0 = k, µ ≤ λ1(LogS(⟨G⟩)) (as defined above) and we note
that, by definition, ∥G∥2,∞ ≤ A which implies ε < 1

4 · µ · C−10 (for C0 as in Theo-
rem 23.5), so the prerequisites of the theorem are satisfied.

So, the algorithm of Theorem 23.5 outputs an N such that B := NG is a basis
of LogS(⟨G⟩) and B̃ := NG̃ satisfies

∥B− B̃∥2,∞ ≤ C0 · ε ≤ 2−6 · (n+ |S|)−(k+6) · 2−(2k+1)(k+2) ·A−1 · µ2 (158)

Additionally, the rows bj of B satisfy

∥bj∥ ≤ (
√
rn+ 2) · 2 r−1

2 · λj(LogS(⟨G⟩)), (159)

where r is the rank of the lattice LogS(⟨G⟩).
Note that the pair (N, G) encodes a fundamental system of units of LogS(⟨G⟩)

in compact representation.
The Buchmann-Kessler-Pohst algorithm computes the rank r of LogS(⟨G⟩); we

proceed only to Part III if this rank equals the rank of LogS(O×K,S), namely nR +

nC + |S| − 1. It thus remains to decide whether LogS(⟨G⟩) = LogS(O×K,S) or not.
This is done by approximating determinants.

Part III: Computing the determinant. In order to apply Theorem 24.1 to

the matrix B̃ obtained, we need upper bounds on the quantities
∏r
j=1

∥bj∥
λj(LogS(⟨G⟩))

and ∥B∥2, and a lower bound on the quantity λ1(LogS(⟨G⟩)). Since LogS(⟨G⟩) is a
sublattice of LogS(O×K,S), we have already seen that λ1(LogS(⟨G⟩)) ≥ µ.
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By Equation (159), the output basis of the Buchmann-Kessler-Pohst algorithm
satisfies

∥bj∥
λj(LogS(⟨G⟩))

≤ (
√
rn+ 2) · 2 r−1

2 ≤ 2k+2,

where the last inequality holds because k ≥ r and r = nR+nC− 1 ≥ n/2− 1 (since

we proceeded to Part III). So,
∏r
j=1

∥bj∥
λj(LogS(⟨G⟩))

≤ 2k(k+2).

Finally, we observe that

∥B∥2 ≤ r ·max
j
∥bj∥ ≤ r ·max

j

( ∥bj∥
λj(LogS(⟨G⟩))

)
· λr(LogS(⟨G⟩)) ≤ r · 2k+2 ·A,

where for the last inequality we used the bound on
∥bj∥

λj(LogS(⟨G⟩))
computed above,

and the fact that A = maxj∥LogS(ηj)∥ is an upper bound on the last minimum of
the lattice generated by the ηj ’s.

Combining these bounds with Equation (158) (and using the fact that k ≥ r and
n+ |S| ≥ r), we obtain, using (n+ |S|)−(k+6) · r ≤ (n+ |S|)−1 · (n+ |S|)−(k+5) · r ≤
(n+ |S|)−1 · r−(r+4),

∥B− B̃∥2,∞
≤ 2−6 · (n+ |S|)−(k+6) · 2−(2k+1)(k+2) ·A−1 · µ2

≤ 2−6 · (n+ |S|)−(k+6) · 2−2k(k+2)︸ ︷︷ ︸
≤(

∏
j ∥bj∥/λj)

−2

·r · r−1 · 2−(k+2) ·A−1︸ ︷︷ ︸
≤∥B∥−1

2

· µ2︸︷︷︸
≤λ2

1

≤ 2−6 · r−(r+4) · (n+ |S|)−1 ·

∏
j

∥bj∥
λj(LogS(⟨G⟩))

−2 · λ1(LogS(⟨G⟩))2/∥B∥2,
as needed to apply Theorem 24.1 to the matrix B̃. We conclude that from the
knowledge of B̃ and a rational number D ∈ [ 34 ,

5
4 ] ·Vol(LogS(O×K,S)), we can decide

whether LogS(⟨G⟩) = LogS(O×K,S) or not.
Part IV: The running time. For the running time, we go through each part.
For Part I, we have already seen that G̃ can be computed in time polynomial in the
desired quantities, and that its bit-size is also polynomial. For Part II, note that
we applied the Buchmann-Kessler-Pohst algorithm as in Theorem 23.5, which takes
time polynomial in k, (n + |S|), log(∥G∥2,∞), log(1/µ) and the bit-size of G̃. By
definition of µ, this is polynomial in the desired quantities. Moreover, the bit-size
of the output matrix B̃ is also polynomial in those same quantities.

For Part III, we first compute a rational D ∈ [ 34 ,
5
4 ] ·Vol(LogS(O×K,S)), which can

be done in time polynomial in log |∆K | from Proposition 2.9 and Lemma 15.5. We

then apply Theorem 24.1 to the matrix B̃ and the rational number D. This takes
time polynomial in the bit-sizes of B̃ and D, which is polynomial in all the desired
quantities. This concludes the proof. □

26. Lattice preliminaries

In this section, we succinctly treat lattice preliminaries required for understand-
ing the next two sections (Sections 27 and 28) about a BKZ-variant by Hanrot,
Stehlé and Pujol. This includes the Gram-Schmidt orthogonalization of a basis,
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the potential of a basis, HKZ-reduced bases, Banaszczyk’s transference theorem
and the definition of a dually exponentially reduced basis.

26.1. Gram-Schmidt orthogonalization in Z-bases.

Notation 26.1. For a basis B ∈ Rn×n we denote its Gram-Schmidt orthogonal-
ization by B⋆ = (b⋆1, . . . ,b

⋆
n). We denote the dual basis of B by D = (B−1)⊤ =:

B−⊤ = (d1, . . . ,dn) = (b∨1 , . . . ,b
∨
n). If B is a basis of Λ, then D is a basis of the

dual lattice Λ∨ of Λ.

Notation 26.2. By a tilde, we generally denote an approximation. In this sec-
tion, often a real-valued B is approximated by a basis B̃ with rational coefficients.
Likewise, an approximation of the dual basis D is denoted by D̃.

Notation 26.3. For a basis B = (b1, . . . ,bn) ∈ Rm×n we denote by B[j:k] the

basis (πj−1(bj), . . . , πj−1(bk)) ∈ Rm×(k+1−j), where πj−1 = π(b1,...,bj−1)⊥ is the

projection orthogonal to the linear subspace generated by (b1, . . . ,bj−1). Note that
B[1:k] is just (b1, . . . ,bk).

Definition 26.4 (Potential of a basis). For a basis B ∈ Rm×n we denote the
potential by

P (B) =

n∏
j=1

∥b⋆j∥n+1−j =

n∏
j=1

Vol(L(b1, . . . ,bj)),

where L(b1, . . . ,bj) is the lattice generated by (b1, . . . ,bj).

Lemma 26.5. Let B = (b1, . . . ,bn) ∈ Zm×n be a basis of the lattice Λ, then
Vol(L(b1, . . . ,bj−1))

2 ·B[j:n] ∈ Zm. In particular, Vol(L(b1, . . . ,bj−1))
2 ·b⋆j ∈ Zm

and hence P (B)2 ·B⋆ ∈ Zm×n.

Proof. By the determinant formula for orthonormal projection [34, Vol. 1, Chapter
IX, §4, Equation (21)] we have that, for Dj := det(B⊤[1:j−1]B[1:j−1]), DjB[j:n] ∈ Zm.

In particular Djb
⋆
j ∈ Zm. Note that Dj = Vol(L(b1, . . . ,bj−1))

2 by definition.

As a result, we certainly deduce that for P (B)2 =
(∏n

j=2Dj

)
· Vol(L(B))2 we

have P (B)2 · b⋆k ∈ Zm for any k ∈ {1, . . . , n} (here, we use that Dj ∈ Z since
B ∈ Zm×n). That is, P (B)2 ·B⋆ ∈ Zm×n. □

Lemma 26.6. Let B = (b1, . . . ,bn) ∈ Zm×n be a basis of the lattice Λ, then
∥b⋆j∥ ≤ Vol(L(b1, . . . ,bj)) ≤ P (B).

Proof. We know that Vol(L(b1, . . . ,bj)) = Vol(L(b1, . . . ,bj−1)) · ∥b⋆j∥. More-

over, since B is integral, then Vol(L(b1, . . . ,bj−1))
2 ∈ Z, and so it is ≥ 1 (be-

cause B is a basis, so its vectors are linearly independent). The inequality ∥b⋆j∥ ≤
Vol(L(b1, . . . ,bj)) follows. □

Definition 26.7. We call a basis B = (b1, . . . ,bn) ∈ Rm×n size-reduced if for all
0 < i < j ≤ n

|⟨b⋆i ,bj⟩| ≤ 1
2∥b⋆i ∥2.

Lemma 26.8. Let B ∈ Zm×n be a size reduced basis of a lattice Λ. Then, for all
j ∈ {1, . . . , n},

∥bj∥ ≤
√
n
2 max

i
∥b⋆i ∥.
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Proof. Size reduced means that any basis vector bj can be written as
∑n
i=1 cijb

⋆
i

for |cij | ≤ 1/2. Hence, by the Pythagorean theorem, we have

∥bj∥2 =

n∑
i=1

c2ij∥b⋆i ∥2 ≤ n
4 max

j
∥b⋆i ∥2,

from which the claim follows. □

Corollary 26.9. Let B ∈ Zm×n be a size reduced basis of a lattice Λ. Then each
coefficient in B, B⋆ and B[j:k] (for k > j ∈ N) can be represented in 5 log2(n ·
P (B)) + 3 bits.

Proof. Each vector in B and B⋆ is bounded in Euclidean norm by
√
n · P (B)/2,

which is also an upper bound on the absolute value of each coefficient. Moreover, B
is integral and the denominators occurring in B⋆ can be maximally P (B)2. Every
coefficient of B and B⋆ is then a rational number which can be represented by a
fraction a/b with a, b integers, |a| ≤ √n · P (B)3/2 and 0 < b ≤ P (B)2. They can
be represented by respectively by ⌈log2(

√
n · P (B)3 + 1)⌉ and ⌈log2(P (B)2)⌉ bits.

Precisely the same reasoning can be used for B[i:j], since Vol(L(b1, . . . ,bj−1))
2 ·

B[j:n] ∈ Zm by Lemma 26.5 (and B[j:k] consists of just the first k− j+1 vectors of
B[j:n]). □

26.2. HKZ reduction.

Definition 26.10 (HKZ-reduced basis). A basis B ∈ Rm×n of a lattice Λ is called
HKZ-reduced if it is size reduced and if

∥b⋆j∥ = λ1(B[j:n]) for all j ∈ {1, . . . , n},
i.e., if the Gram-Schmidt vector b⋆j attains the minimum of the projected lattice
π(b1,...,bj−1)⊥(Λ) for every j ∈ {1, . . . , n}.
Lemma 26.11. Let B be a HKZ-reduced basis of Λ, then

P (B) ≤ n2n2

min
C

P (C),

where the minimum over the potential P (·) is over all bases C of Λ.

Proof. The HKZ reduced basis B satisfies 4
i+3λi(Λ)

2 ≤ ∥bi∥2 ≤ i+3
4 · λi(Λ)2 [48],

hence (using i+3
4 ≤ i for i ≥ 1),

P (B) =

n∏
j=1

(∥b⋆1∥ · · · ∥b⋆j∥) ≤
n∏
j=1

(∥b1∥ · · · ∥bj∥) ≤
n∏
j=1

jj(λ1(Λ) · · ·λj(Λ))

≤
n∏
j=1

jj · jj min
Λj

Vol(Λj) ≤ n2n
2
n∏
j=1

min
Λj

Vol(Λj) ≤ n2n
2

min
C

P (C). (160)

where the minimum minΛj is over all j-dimensional sublattices Λj ⊆ Λ and where
the minimum minC is over all bases of Λ.

The third inequality of Equation (160) might require some explanation. Any
i-dimensional sublattice Λi ⊆ Λ satisfies λj(Λ) ≤ λj(Λi) for all j ∈ {1, . . . , i}.
Therefore, by Minkowski’s second inequality,

λ1(Λ) · · ·λi(Λ) ≤ λ1(Λi) · · ·λi(Λi) ≤ iiVol(Λi).
□
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This lemma has as a consequence that applying the HKZ algorithm can only

increase the potential of a basis by a factor n2n
2

.

Corollary 26.12. Let B ∈ Rm×n be a basis of the n-dimensional lattice Λ and let
B′ = HKZ(B) be a HKZ-reduced basis of Λ. Then

P (B′) ≤ n2n2

P (B).

Proof. We have P (B′) ≤ n2n2 ·minC P (C) ≤ n2n2

P (B). □

The following lemma is for when a block of B is being HKZ-reduced, which
happens in the BKZ-algorithm.

Corollary 26.13. Let B ∈ Rm×n be a basis of a lattice Λ, let b ∈ {2, . . . , n}, and
let C = B[k:k+b−1] be a projected sub-block of B. Suppose U ∈ GLb(Z) is such that

C′ = CU is HKZ-reduced and write B′ = BŪ, where Ū acts as U on the basis
elements (bk, . . . ,bk+b−1) and leaves the rest intact. Then

P (B′) ≤ b2b
2

P (B),

Proof. The action of B′ = BŪ only changes the vectors (bk, . . . ,bk+b−1), but
does not change the space spanned by (bk, . . . ,bk+b−1). Hence, the Gram-Schmidt
vectors b⋆j for j /∈ {k, . . . , k + b − 1} also remain intact, as well as the volume

Vol(L(bk, . . . ,bk+b−1)) =
∏k+b−1
j=k ∥b⋆j∥ =

∏k+b−1
j=k ∥(b′j)⋆∥. So,

P (B′)

P (B)
=

∏n
j=1 ∥(b′j)⋆∥n+1−j∏n
j=1 ∥b⋆j∥n+1−j =

∏k+b−1
j=k ∥(b′j)⋆∥n+1−j∏k+b−1
j=k ∥b⋆j∥n+1−j

=

∏b−1
j=0 ∥(b′j)⋆∥b−j∏b−1
j=0 ∥b⋆j∥b−j

=
P (C′)

P (C)
≤ b2b

2

.

where the last inequality follows from Corollary 26.12 and where the third equality

follows from dividing by
∏k+b−1
j=k ∥b⋆j∥(n+1)−(b+k) so that

k+b−1∏
j=k

∥b⋆j∥n+1−j =

k+b−1∏
j=k

∥b⋆j∥(b+k)−j =
b−1∏
j=0

∥b⋆j∥j ,

and similarly for (b′j)
⋆, where we use that

∏k+b−1
j=k ∥b⋆j∥ =

∏k+b−1
j=k ∥(b′j)⋆∥. □

26.3. Reduction of dual bases.

Definition 26.14 (A dually exponentially reduced basis). A square basis B ∈
Rn×n of a lattice Λ is T -dually exponentially reduced (for T ≥ 1) if the dual basis
D = B−⊤ satisfies ∥dj∥ ≤ 2Tnλj(Λ

∨), where Λ∨ denotes the dual lattice of Λ.

26.4. Transference theorems. Banaszczyk proved the following transference the-
orem, relating the successive minima of a lattice Λ with the ones of its dual lat-
tice Λ∨.

Theorem 26.15 ([6, Theorem 2.1]). Let Λ be an arbitrary lattice of rank n in Rm,
for some m ≥ n ≥ 1. Then, for all 1 ≤ i ≤ n it holds that

1 ≤ λi(Λ) · λn−i+1(Λ
∨) ≤ n.
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Proof. The upper bound is exactly [6, Theorem 2.1]. The lower bound comes
from the following standard argument. Let v1, . . . , vi be i linearly independent
vectors of Λ with euclidean norm ≤ λi(Λ), and w1, . . . , wn−i+1 be (n − i + 1)
linearly independent vectors of Λ∨ with euclidean norm ≤ λn−i+1(Λ

∨). Let V
be the vector space spanned by the (vj)j and W be the vector space spanned
by the (wj)j . Both spaces live in span(Λ), which has dimension n. Moreover,
dim(V ) + dim(W ) = n + 1. Hence, V and W cannot be orthogonal, which means
that there should exist vk and wℓ such that ⟨vk, wℓ⟩ ≠ 0. By definition of the dual,
this implies that |⟨vk, wℓ⟩| ≥ 1 (because the inner product must be an integer).
And so, 1 ≤ |⟨vk, wℓ⟩| ≤ ∥vk∥ · ∥wℓ∥ ≤ λi(Λ) · λn−i+1(Λ

∨). □

27. The BKZ algorithm on integer bases

27.1. Introduction. In this section, we show that the variant of BKZ from Hanrot,
Pujol and Stehlé [39, Algorithm 2] (which we call BKZ’ in the rest of this section)
does not cause coefficient explosion in integer basis matrices. Hence, BKZ’ is suit-
able for integer lattice bases and one can obtain a bound on the bit-complexity of
the algorithm, and not only the number of tours needed. This was already discussed
in [39, Section 3, Cost of BKZ’], where the authors explained the big lines of the
reasoning. In this section, we make this discussion fully formal.

Concretely, applying the b-BKZ’ algorithm of Hanrot, Pujol and Stehlé on an
integer basis B of a lattice Λ yields a new basis C = (c1, . . . , cn) of Λ satisfy-

ing ∥c1∥ ≤ 2 · b
n−1

2(b−1)
+ 3

2 · Vol(Λ)1/n. Furthermore, this algorithm runs in time
poly(n, logmaxj ∥bj∥) · bb.

Approach. In [39], the authors give an upper bound on the number of tours needed
for the BKZ’ algorithm, in order to have a provable upper bound on the short
vector output by the algorithm. To obtain a total and provable bit-complexity
for the time of the b-BKZ’ variant for integer matrices, we need to show that no
coefficient explosion occurs and that the b-HKZ algorithm on the sub-blocks runs
in time about bb.

To show that no coefficient explosion occurs, we rely on standard techniques
using the potential P (B) of a basis. Namely, it is a fact that the bit sizes of the
coefficients occurring in a size-reduced basis B and its Gram-Schmidt basis B⋆ are
bounded by O(log2(nP (B))) (see Corollary 26.9). Hence, it is enough to sufficiently
bound the potential.

In the BKZ’ algorithm of Hanrot, Pujol and Stehlé, only size-reduction and
HKZ-reduction in dimension b occur (see Algorithm 7). As size-reduction does not
change the potential, only the influence of HKZ-reduction on the potential needs
to be examined. It can be shown that b-HKZ-reduction can only increase the po-

tential of a basis by a factor b2b
2

(see Corollary 26.12). Hence, all coefficients
remain sufficiently bounded, whenever the number of HKZ-reductions is polynomi-
ally bounded. But the latter is true by the fact that the number of ‘BKZ tours’
(essentially n times a b-HKZ-reduction) is bounded; this is what Hanrot, Pujol and
Stehlé show in their work [39, Theorem 1].

For the HKZ-reduction algorithm in dimension b, that is used as a subroutine in
the BKZ-algorithm, we use the provable Kannan-algorithm [40] on integer matrices
with a run time of about bb (disregarding the size of the basis matrix). Note that
the projected sub-blocks of the matrix are rational, but can be scaled up to be
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integral. This does not significantly increase the bit-size, because the denominators
can be shown to be bounded by the potential.

27.2. The BKZ’ algorithm of Hanrot, Pujol and Stehlé. We restate the
algorithm of Hanrot, Pujol and Stehlé [39, Algorithm 2] and their result on the
upper bound on the number of tours required to obtain a sufficiently short non-
zero vector of the input lattice.

Algorithm 7 The BKZ’ algorithm of Hanrot, Pujol and Stehlé, for integer bases

Require:

• A basis B = (b1, . . . ,bn) ∈ Zm×n
• A block size b ∈ {1, . . . , n}.

Ensure: A basis of L(B).
1: repeat
2: for k from 1 to n− b+ 1 do
3: Modify (bi)k≤i<k+b so that (πk−1(bi))k≤i<k+b is HKZ-reduced;
4: Size-reduce (b1, . . . ,bn).
5: end for
6: until no changes occur or termination is requested.
7: return (b1, . . . ,bn).

Theorem 27.1 (Theorem 1 of [39]). There exists an absolute constant C > 0 such
that the following holds for all n and b. Let B = (b1, . . . ,bn) be a basis of a lattice
Λ, given as input to the modified BKZ algorithm (Algorithm 7) with block-size b.
If terminated after

τBKZ = C
n3

b2
(log n+ log logmax

i

∥bi∥
Vol(Λ)1/n

)

calls to an HKZ-reduction in dimension b, the output C = (c1, . . . , cn) is a basis of
Λ that satisfies

∥c1∥ ≤ 2b
n−1

2(b−1)
+ 3

2 ·Vol(Λ)1/n.
Remark 27.2. In the original theorem statement [39, Theorem 1], the last line
reads: “If Λ ⊆ Qn, then the overall cost38 is ≤ poly(n, size(B)) · CostHKZ(b).”

It is precisely this statement in the last line that we prove in this section. This,
because the authors [39] only gave a sketch of how to show this ([39, Section 3,
Cost of BKZ’]). In this section we will follow their sketch and prove this statement
rigorously.

27.3. Applying BKZ’ to integral bases.

Proposition 27.3. Let B ∈ Zm×n be a basis of a lattice Λ, with m ≥ n ≥ 2.
Let b ∈ {2, · · · , n} be a block-size parameter. Then the BKZ’ algorithm of Hanrot,
Pujol and Stehlé on input B and b has a bit-complexity

poly(size(B),m) · bb

38Here, size(B) =
∑

ij size(Bij) and size(a/b) = log |a|+ log |b| for reduced fractions a/b. The

number CostHKZ(b) is the cost of applying HKZ in dimension b.
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and outputs a basis C = (c1, . . . , cn) satisfying

∥c1∥ ≤ 2 · b
n−1

2(b−1)
+ 3

2 ·Vol(Λ)1/n ≤ 2 · b2n/b · λn(Λ). (161)

Proof. We instantiate Theorem 27.1 with the integral basisB, yielding the shortness
bound39 in Equation (161) and an upper bound on the number of HKZ-reductions
τBKZ in dimension b. Note that τBKZ is poly(n, size(B)), according to Theorem 27.1.

For the b-HKZ reduction algorithm we use the provable Kannan-algorithm [40,
Theorem 2]: on input an integral basis M of a rank-b lattice L ⊆ Zm, this algorithm
runs in time poly(size(M),m) · bb/(2e)+o(b) = poly(size(M),m) · bb and outputs an
HKZ-reduced basis of L. We will apply this algorithm to the projected bases
B[k:k+b−1] occurring in the BKZ’ algorithm. Even though these bases are rational,
this is still possible just by multiplying out the denominators of the coefficients
(and revert that process after the lattice reduction). For this to be feasible, we will
of course need to show that these coefficients are sufficiently small in size (i.e., have
sufficiently small numerator and denominator).

Concluding, if we can show that all sizes of the coefficients occurring in the sub-
blocks of all intermediately computed matrices in Algorithm 7 remain sufficiently
bounded, say ≤ poly(size(B).m), we can indeed conclude that Algorithm 7 has
bit-complexity poly(size(B),m).

So, indeed, it remains to show that all (rational) coefficients of the occurring
bases, their Gram-Schmidt bases and the sub-blocks B[j:j+b−1] remain bounded in
bit-size by poly(size(B),m). We distinguish some cases

• The very first time that a HKZ-reduction is applied is just on the basis
B[1:b], whose coefficient sizes are clearly bounded by poly(logP (B)).

• After this very first time, we can, by line 4 always assume that the ba-
sis at hand, which we call B(0) for now, is size-reduced right before line

3. Hence, the coefficients of (πk−1((b
(0)
i ))k≤i<k+b are bounded in size by

poly(logP (B(0))), by Corollary 26.9. Hence Kannan’s HKZ algorithm can
reasonably applied in time poly(log(P (B(0))),m) · bb.

• Right after line 3 but before line 4, the new matrix B(1) = B(0)U (where U

only changes (b
(0)
i )k≤i<k+b) is not size-reduced anymore. But we do know,

by Corollary 26.12, that P (B(1)) ≤ b2b
2

P (B(0)). Since (πk−1(b
(1)
i ))k≤i<k+b

is HKZ-reduced (and thus size-reduced by definition), we know that the

coefficients of B
(1)
[k:k+b−1] are bounded by poly(log(P (B(1))),m), by Corol-

lary 26.9. Since for i /∈ {k, . . . , k+b−1}, b(0)
i are unaffected by U, we know

that these still satisfy size(b
(0)
i ) ≤ poly(log(P (B(0))),m). Hence, we can

certainly find a lift (by using Babai’s nearest plane algorithm) of B
(1)
[k:k+b−1]

to B(1) for which the coefficient sizes of (b
(1)
i ))k≤i<k+b are bounded by

poly(log(P (B(0))), log(P (B(1))),m) = poly(log(P (B(0))) + b,m).

(Note that this lift does not affect the potential of B(1).

Note that in the previous reasoning we see that in each HKZ-reduction, the potential

of the basis the algorithm is working on is maximally increased by a factor b2b
2

.

39The additional shortness bound in terms of λn(Λ) comes from the fact that λn(Λ)n ≥∏n
j=1 λj(Λ) ≥ Vol(Λ). For the simplification into bn/b, one can observe that (n−1)b+3(b−1)b ≤

4n(b− 1) for all b satisfying 2 ≤ b ≤ n. Dividing by 2(b− 1)b yields the simplification.
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But we know that the maximum number of HKZ reductions in the entire algorithm
is at most τBKZ ·n = poly(size(B),m) (where τBKZ is the number of tours). Hence,
the bases occurring in the algorithm can maximally have log potential of

log(Boccurring) ≤ log(b2b
2

) · τBKZ · n+ log(P (B)) ≤ poly(size(B),m).

Hence all occurring basesBoccurring have a logarithmic potential bounded by poly(size(B),m),
which has as an immediate consequence that all bases, Gram-Schmidt bases and
projected bases have coefficient sizes bounded by poly(size(B),m), which finishes
the proof. □

Corollary 27.4. Let B ∈ Zm×n be a basis of a lattice Λ, with m ≥ n ≥ 2 and let
b ∈ {2, · · · , n}. Then there exists an algorithm that takes as input B and b, has
bit-complexity

poly(m, size(B)) · bb

and outputs a basis C = (c1, . . . , cn) of Λ satisfying

∥cj∥ ≤ n · b2n/b · λn(Λ) for all j ∈ {1, . . . , n}. (162)

Proof. We apply the provable BKZ’ algorithm of Hanrot, Pujol and Stehlé as in
Proposition 27.3, recursively to

B, det(B[1:1])
2 ·B2:n, . . . ,det(B[1:j])

2 ·Bj+1:n , . . . , det(B[1:n−b])
2 ·Bn−b+1:n.

Here, we keep using the notation B after an application of BKZ’. After these ap-
plications, we backwards recursively lift this sequence into a size-reduced basis of
L(B).

More precisely we apply the following steps:

• Apply BKZ’ to B, call the result B.
• Construct the basis det(B[1:1])B[2:n] (integral, by Lemma 26.5) and apply
BKZ’ to it, call the result again det(B[1:1])B[2:n].

• . . .
• Construct the basis det(B[1:j])B[j+1:n] (integral) and apply BKZ’ to it, call

the result again det(B[1:j])B[j+1:n].
• . . .
• Construct the basis det(B[1:n−b])

2 ·Bn−b+1:n (integral) and apply BKZ’ to
it, call the result again det(B[1:j])B[j+1:n].

• Going backwards, add ckb
⋆
n−b with ck ∈ [−1/2, 1/2) to each vector in

Bn−b+1:n to reconstruct a short basis Bn−b:n.
• . . .
• Add ckb

⋆
j with ck ∈ [−1/2, 1/2) to each vector in Bj+1:n to reconstruct a

short basis Bj:n.
• . . .
• Add ckb

⋆
j with ck ∈ [−1/2, 1/2) to each vector in B2:n to reconstruct a

short basis B.

Since a BKZ’-reduction as in Proposition 27.3 consists of τBKZ HKZ-reductions,

each BKZ’ reduction can maximally increase the potential by a factor b2b
2·τBKZ

(see Corollary 26.12). Hence the n− b BKZ’-reductions in above procedure can at
most result in intermediate potentials of size

b2b
2·τBKZ·n · P (Binit),
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where Binit is the starting basis. Since det(B[1:k]) divide P (B) (the potential of the
same basis), and since B[k+1:n] has size bounded in O(log(n · P (B))) (see Corol-
lary 26.9), we can immediately deduce that in above procedure, all bit sizes remain
within (for the bound on τBKZ see Theorem 27.1)

log
(
nb2b

2·τBKZ·n · P (Binit)
)
= poly(m, size(Binit)).

In the resulting basis, we have, by construction,

∥b⋆j∥ ≤ 2 · b2n/b · λn(Λ) for all j ∈ {1, . . . , n},

where we use that λn−j(L(Bj+1:n)) ≤ λn(Λ) and b2(n−j)/b ≤ b2n/b. For the last
b vectors, we have this shortness guarantee from the b-HKZ reduction (see [48] or
the proof of Lemma 26.11).

Hence, by the size-reduced-like way the basis B is constructed, we have bj =
b⋆j +

∑
i<j cib

⋆
i with ci ∈ [−1/2, 1/2), and we obtain

∥bj∥ ≤ 2n · b2n/b · λn(Λ) for all j ∈ {1, . . . , n},

as required. □

28. The BKZ algorithm on approximate bases

28.1. Introduction. In this section, we will show that there exists a provable al-
gorithm that runs essentially in time O(bb) that computes a basis of an ideal lattice
xa whose Gram-Schmidt lengths are at most bO(n/b)λn(xa), which is sufficient for
the needs of this paper (see Sections 8.3 and 8.5). We assume throughout this entire
section that an LLL-reduced basis of OK is given; in the end result, Lemma 8.5,
this assumption is again explicitly mentioned.

In all this section, the ideal lattices xa we considered will be represented exactly.
To do so, we will restrict ourselves to elements x ∈ K×R that have all their complex
coordinates of the form a + ib, with a, b ∈ Q. In other words, we consider the
intersection of KR with the subset (Q + iQ)n of Cn. The ideal a is a fractional
ideal, and will be represented by a Z-basis, consisting of n elements (α1, . . . , αn)
of K (which can be exactly represented in a fixed basis of OK).

Even though we have a way to represent the ideal lattice xa exactly, we can only
compute an approximate basis of the corresponding lattice, due to the (irrational)
Minkowski embedding of xa into KR (even whenever x ∈ K×R itself is rational). In
this section we settle these precision issues by applying the basis reduction algo-
rithms (LLL, BKZ’) on rational approximations of the bases of xa.

The algorithm and its analysis consists of the following steps. These steps (i) -
(v) will correspond with Sections 28.2 to 28.6

(i) Computing an (approximate) dual basis of the basis of xa. For the
algorithm to succeed, the basis that we start with is required to be dually
reduced. For the purpose of reducing it, we therefore first compute the dual
basis of the input basis of xa (which we may assume to be in some Hermite
Normal form).
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(ii) Apply the the Buchmann-Pohst-Kessler algorithm to this approxi-
mate dual basis. To make the dual basis reduced, we apply the Buchmann-
Pohst-Kessler algorithm [18, 19] (see also Section 23). We apply the inverse-
transposed transformation to the original basis of xa, to obtain a dually ex-
ponentially reduced basis (see Definition 26.14). This part is treated in Sec-
tion 28.3.

(iii) Apply the variant of BKZ by Hanrot, Pujol and Stehlé [39]. Applying
a variant of BKZ with provable running time on this dually exponentially
reduced (approximate) basis of xa yields an approximate basis of xa with
BKZ-like shortness guarantees on the basis vectors.

(iv) Apply the closeness-lemma. By computing an initial approximate ba-
sis with sufficiently good precision, the same unimodular transformation that
makes this approximate basis have BKZ-like qualities, will also make the exact
basis of xa satisfy these shortness properties. Note that the unimodular trans-
form can be actually exactly (that is, not approximately) applied to a Z-basis
of xa which consists of elements (x · α1, . . . , x · αn) ∈ KR, where αj ∈ K.

(v) Concluding. Applying the compositions of the unimodular transformations
in each step to the initial basis (x · α1, . . . , x · αn) of xa yields a new basis of
xa that has BKZ-like shortness guarantees.

28.2. Computing an (approximate) dual basis of the basis of xa.

Introduction. Computing the dual basis of an approximate basis B̃xa ≈ Bxa of xa
is done by inverting and transposing the matrix: D̃ = B̃−⊤xa . The precision loss in
numerical approximation of inversion is proportional to ∥B−1xa ∥, the matrix norm of
the inverse of the basis. Hence, we would like to upper bound this matrix norm.

We do that by applying Lemma 24.2, which bounds this matrix norm in terms
of how far the basis vectors Bxa are from attaining the successive minima λj(xa).
Since we generally assume that ideals are given in a Hermite Normal Form (HNF) in
coordinates of an LLL-reduced Z-basis of OK (see Section 2.6), a reasonable upper
bound on the basis vectors Bxa can be achieved. On the other hand, a lower bound
on λj(xa) can be achieved by using ideal lattice properties from Lemma 2.13.

To obtain these results, the following lemma will turn out useful.

Lemma 28.1. Let x ∈ K×R and a ∈ IK . Let Bxa = (xα1, . . . , xαn) ∈ Kn
R a basis

of xa, where the basis (α1, . . . , αn) is assumed to be in HNF form whenever written
in terms of an LLL-reduced basis of OK (see Section 2.6). Then

(i) For all j ∈ {1, . . . , n}, we have ∥xαj∥ ≤ 2size(xa) · n3/2 · 2n · |∆K |1/n.
(ii) N(xa) ≤ 2n size(xa).
(iii) N(xa)−1 ≤ 2n size(xa).
(iv) λ1(xa)

−1 ≤ 2size(xa).

where size is defined in Section 2.6.

Proof. For (i), we make use of the assumption that a is represented by a rational
HNF basis in terms of an LLL-reduced Z-basis (β1, . . . , βn) of OK (for which thus
holds ∥βj∥ ≤ 2n · √n · |∆K |1/n by Lemma 2.13). More precisely, αj =

∑n
i=1 aijβi,

where (aij)ij ∈ Qn×n is an HNF-reduced basis. By definition of the size of an
ideal (see Section 2.6), we have that size(a) ≥ size(aij). Recall that the size of
rational numbers a/b with gcd(a, b) = 1 is equal to log2 |a|+ log2 |b|. Hence, using
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size(xa) = size(x) + size(a)

∥xαj∥ ≤ n ·max
j
|xj | ·max

ij
2size(aij) · max

j
∥βj∥︸ ︷︷ ︸

≤2n·
√
n·|∆K |1/n

≤ 2size(xa) · n3/2 · 2n · |∆K |1/n.

For (ii) note that N(xa) is equal to det((aij)ij) ·
∏
j xj . By Hadamard’s bound,

det((aij)ij) ≤
∏
j ∥(aij)i∥2 ≤

∏
j(
∑
i |aij |) (by the inequality between 1 and 2-

norms) and the latter can be bounded by (
∑
i |aij |)n and hence log2N(xa) ≤

n size(x) + n log2(
∑
i |aij |) ≤ n size(x) + n size(a) = n size(xa).

Item (iii) can be proven as follows. Because N (xa) = | N (x)| · N (a) and
| N (x)|−1 =

∏n
j=1 |xj |−1 ≤ 2size(x), we only need to show that N (a)−1 ≤ 2n size(a).

Write a = 1
d · b with d a minimal positive integer and b an integral ideal. Since d

minimally clears the denominators of a, we certainly have size(d) ≤ size(a). Now
N (a)−1 = N (a−1) = | N (d)| · N (b)−1 ≤ |N (d)| = dn ≤ 2n size(d) ≤ 2n size(a).

Item (iv) holds because xa is an ideal lattice, which implies λ1(xa) ≥ N (xa)1/n

due to item (i) from Lemma 2.13. Hence λ1(xa)
−1 ≤ N (xa)−1/n and the result

follows from item (iii) □

Bounding the matrix norm of B−1xa . We start by bounding the matrix norm of the
exact inverse of Bxa.

Lemma 28.2. Let x ∈ K×R and a ∈ IK . Let Bxa = (xα1, . . . , xαn) ∈ Kn
R a basis

of xa, where the basis (α1, . . . , αn) is assumed to be in HNF form whenever written
in terms of an LLL-reduced basis of OK (see Section 2.6). Then

∥B−1xa ∥2 ≤ n2n+1 · 2n2 · |∆K |1/2 · 2(2n+1) size(xa).

Proof. We apply Lemma 24.2 to obtain

∥B−1xa ∥2 ≤ nn/2+1 · λ1(xa)−1 ·

 n∏
j=1

∥xαj∥
λj(xa)


≤ nn/2+1 · λ1(xa)−1 · |∆K |−1/2 · N (xa)−1 ·

n∏
j=1

∥xαj∥. (163)

where we used
∏n
j=1 λj(xa) ≥ Vol(xa) = N (xa)|∆K |1/2 in the last inequality.

Using that N (xa)−1 ≤ 2n size(xa), λ1(xa)
−1 ≤ 2size(xa) and ∥xαj∥ ≤ 2size(xa) ·

n3/2 · 2n · |∆K |1/n for all j ∈ {1, . . . , n} (see Lemma 28.1(iii), (iv) and (i)), and
applying it to Equation (163), we obtain

∥B−1xa ∥2 ≤ nn/2+1 · λ1(xa)−1 · |∆K |−1/2 · N (xa)−1 ·
n∏
j=1

∥xαj∥

≤ nn/2+1 · 2size(xa) · |∆K |−1/2 · 2n size(xa) ·
(
2size(xa) · n3/2 · 2n · |∆K |1/n

)n
≤ n2n+1 · 2n2 · |∆K |1/2 · 2(2n+1) size(xa).

□

We can therefore conclude that the loss in precision by inverting an approximate
basis of xa can be reasonably upper bounded.



RIGOROUS METHODS FOR COMPUTATIONAL NUMBER THEORY 137

Lemma 28.3. Let B̃xa ∈ Qn×n be an approximation of Bxa, then

log2∥B̃−1xa −B−1xa ∥2 ≤ log2∥B̃xa −Bxa∥2 + 5n2 + 1
2 log2 |∆K |+ 3n size(xa),

under the assumption that log2∥Bxa−B̃xa∥2 ≤ −(5n2+ 1
2 · log2 |∆K |+3n size(xa)).

Proof. By [7, Cor. 7.2, Eq. 7.46], we have that

∥B−1 − B̃−1∥2 ≤ 2∥B−1∥22 · ∥B− B̃∥2,
as long as 2∥B−1∥2 · ∥B− B̃∥2 ≤ 1. Instantiating with B = Bxa, B̃ = B̃xa and the
bound of Lemma 28.2, we obtain the claim, using the following computation:

log2(2∥B−1xa ∥) ≤ 1 + (2n+ 1) log2(n) + n2 + 1
2 log |∆K |+ (2n+ 1) size(xa)

≤ 2n+ 2n2 + n2 + 1
2 log |∆K |+ (2n+ 1) size(xa)

≤ 5n2 + 1
2 log |∆K |+ 3n size(xa)

using the fact that for any positive integer n it holds that 2n ≤ 2n2, log2(n) ≤ n and

log2(n) + 1 ≤ 2n. The condition 2∥B−1∥2 · ∥B− B̃∥2 ≤ 1 holds by the assumption
in the lemma’s statement. □

Hence, the inversion of the approximate basis B̃xa only yields a polynomial (in
the size of the input) loss of bit precision.

Lemma 28.4. Let B̃xa be an approximation of a T -dually exponentially reduced
basis Bxa with log∥B̃xa −Bxa∥2 ≤ −(9n2 + 5

2 log2 |∆K |+ 5n size(xa) + n(T + 2)).

Then B̃xa is (T + 3)-dually exponentially reduced.

Proof. Let us write (d1, . . . ,dn) = D = B−⊤xa and (d̃1, . . . , d̃n) = D̃ = B̃−⊤xa . Let us
also define ε such that log2(1/ε) = 4n2+2 log2 |∆K |+2n size(xa). By Lemma 28.3
(and since transposing does not change the 2-norm of matrices), we have

log2∥D− D̃∥2 ≤ log2∥B̃xa −Bxa∥2 + 5n2 + 1
2 log2 |∆K |+ 3n size(xa)

≤ −(4n2 + 2 log2 |∆K |+ 2n size(xa)) ≤ log(ε).

Then, we have, for all j that ∥d̃j − dj∥ = ∥(D − D̃)ej∥ ≤ ∥D − D̃∥2 ≤ ε, which
implies that

∥d̃j∥ = ∥dj∥+ ε ≤ 2Tnλj((xa)
∨) + ε ≤ (2Tn + 1)λj((xa)

∨) ≤ 2(T+1)nλj((xa)
∨),
(164)

where, in the second inequality, we used the fact that ε ≤ λ1((xa)∨). This inequality
comes from combining the transference bound (Theorem 26.15) with items (ii) and
(iv) from Lemma 2.13 and item (ii) of Lemma 28.1

λ1((xa)
∨) ≥ λn(xa)−1 ≥ (

√
n · |∆K |3/2 · N (xa)1/n)−1

≥ (
√
n · |∆K |3/2 · 2size(xa))−1 ≥ ε

Writing Λ̃ for the lattice generated by the approximation B̃xa, it suffices to show
that λj((xa)

∨) ≤ 2nλj(Λ̃
∨) for all j, to show that B̃xa is (T+2)-dually exponentially

reduced. Indeed, then, by Equation (164), we have ∥d̃j∥ ≤ 2(T+1)nλj((xa)
∨) ≤

2(T+3)nλj(Λ̃
∨) for all j.
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By transference (see Theorem 26.15), we have

1

n
≤ λj(Λ

∨) · λn−j(Λ)
λj(Λ̃∨) · λn−j(Λ̃)

≤ n

hence λj(Λ
∨) ≤ nλn−j(Λ̃)

λn−j(Λ) ·λj(Λ̃∨) ≤ 2n ·λj(Λ̃∨), if one shows that λn−j(Λ̃)
λn−j(Λ) ≤ 2, i.e.,

λj(Λ̃) ≤ 2λj(Λ) for all j. This latter statement is what we finish the proof with.
Write xj ∈ xa = Λ for the vector attaining λj(xa). Then xj = Bxauj for

some uj ∈ Zn. By the closeness lemma (Lemma 28.6), we must have ∥uj∥ ≤
2(T+2)n ·λj(xa)/λ1(xa) ≤ 2(T+2)n · |∆K |1/n (by Lemma 2.13). Hence x̃j = B̃xauj =

xj + (Bxa − B̃xa)uj satisfy the property that {x̃1, . . . , x̃j} span a j-dimensional
space, and therefore surely

λj(Λ̃) ≤ λj(xa) + ∥Bxa − B̃xa∥2 · 2(T+2)n · |∆K |1/n

≤ λj(xa) + λ1(xa) ≤ 2 · λj(xa),
since ∥Bxa−B̃xa∥2 ≤ 2−n size(xa)−log |∆K |−(T+2)n ≤ N (xa)1/n·|∆K |−1/n·2−(T+2)n ≤
λ1(xa) · 2−(T+2)n · |∆K |−1/n (where we used item (i) from Lemma 2.13). □

28.3. Applying Buchmann-Pohst-Kessler to the approximate dual basis.
We apply Theorem 23.5 with k = r0 = n2 = [K : Q] =: n, n1 = 0, A = B−⊤xa and

Ã = B̃−⊤xa . To satisfy the initial conditions, we must have log2 ∥B−⊤xa − B̃−⊤xa ∥2,∞ <

log2(1/4 · µ · C−10 ), where40 µ = N (xa)−1/n · n−1/2 · |∆K |−
3
2n ≤ λn(xa)

−1 ≤
λ1((xa)

∨). And

C0 = 28n ·
(
n · 4n · ∥B−⊤xa ∥2,∞

µ

)2(n+1)

By Lemma 28.2, we have that ∥B−⊤xa ∥2,∞ ≤ ∥B−⊤xa ∥2 ≤ n2n+12n
2 |∆K |1/2·22n size(xa).

Hence, − log2(1/4 ·µ ·C−10 ) = O(n3+n log |∆K |+n2 size(xa)), and a precision poly-
nomial in n, log |∆K | and size(xa) is sufficient to apply Buchmann-Pohst-Kessler.
Hence we obtain a unimodular transformation U such that the basis elements of
B−⊤xa ·U have an LLL-like shortness quality compared to the successive minima of
(xa)∨. More precisely, the basis elements (c1, . . . , cn) = B−⊤xa ·U satisfy

∥cj∥ ≤ (n+ 2)2
n−1
2 · λj(xa∨) ≤ 23n · λj(xa∨),

hence, the basis Cxa := (B−⊤xa ·U)−⊤ = BxaU
−⊤ is T -dually exponentially reduced

with T := 3 (see Definition 26.14). For this last computation, note that both inverse
and transpose switch positions, hence doing them both keeps the positions of the
matrices.

We can conclude with the following proposition.

Proposition 28.5. There exists an algorithm that computes a 3-dually exponen-
tially reduced Z-basis (xα1, . . . , xαn) of an ideal lattice xa in time polynomial in
n, log |∆K | and size(xa).

Proof. Computing B̃xa with sufficient precision of orderO(n3+n log |∆K |+n2 size(xa))
allows for computing the dual basis B̃−⊤xa = (B̃−1xa )

⊤ and applying the Buchmann-
Kessler-Pohst algorithm (see Lemma 28.3 and the discussion above). Hence, by
applying the inverse transpose U−⊤ of the unimodular matrix U that is the output

40We have λn(xa) ≤
√
n · |∆K |

3
2n · N (xa)1/n by items (ii) and (iv) of Lemma 2.13.
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of the Buchmann-Kessler-Pohst algorithm to the initial Z-basis (xα1, . . . , xαn) of
xa yields a 3-dually exponentially reduced basis of xa. □

28.4. Applying the variant of BKZ by Hanrot, Pujol and Stehlé. By clear-
ing the denominators in the (new, dually exponentially reduced) matrix B̃xa, we
obtain an integer basis on which we can apply Algorithm 7, a variant of the BKZ
algorithm from Hanrot, Pujol and Stehlé. By Corollary 27.4, this algorithm outputs
in time41 poly(n, size(B̃xa)) · bb a basis C̃xa = (c1, . . . , cn) of xa that satisfies

∥cj∥ ≤ n · b2n/b · λn(xa).

28.5. The closeness lemma.

Lemma 28.6. Let B ∈ Rm×n be basis of a rank-n lattice Λ that is T -dually ex-
ponentially reduced as in Definition 26.14 and let v ∈ Λ be any lattice vector, with
v = Bu for some integral vector u. Then

∥u∥2 ≤ n3 · 2nT · ∥v∥2/λ1(Λ)2 ≤ 2n(T+2) · ∥v∥2/λ1(Λ)2.

Proof. Write Q = B⊤B for the quadratic form associated to B; then Q−1 =
(B⊤B)−1 = B−1B−⊤ = D⊤D is the quadratic form associated to the dual basis
D = B−⊤ = (d1, . . . ,dn) of B.

Denote Λ∨ for the dual lattice of Λ. By B being T -dually exponentially reduced,
we have (Q−1)jj = ∥dj∥2 ≤ 2Tn ·λj(Λ∨)2 ≤ n2 · 2T ·n/λn−j+1(Λ)

2 by Banaszczyk’s
transference theorem (Theorem 26.15). Therefore

Tr(Q−1) =

n∑
i=1

(Q−1)ii ≤ n2 · 2Tn
n∑
i=1

1

λi(Λ)2
≤ n3 · 2Tn/λ1(Λ)2.

Write µ1, . . . , µn > 0 for the eigenvalues of the positive definite matrix Q. Then,
for all i ∈ {1, . . . , n}, 1

µi
≤ Tr(Q−1) ≤ n3 · 2Tn/λ1(Λ)2, since all eigenvalues of Q

are positive. Therefore, the inverse of any eigenvalue of Q is upper bounded by
n3 · 2Tn/λ1(Λ)2,

Write v = Bu, then

∥u∥2 = u⊤u ≤ u⊤Qu

mini µi
≤ ∥v∥2 · n

3 · 2Tn
λ1(Λ)2

which, together with the fact that n3 ≤ 22n, proves the claim. □

Corollary 28.7. Let B̃ and B ∈ Rm×n be T -dually exponentially reduced bases of
rank-n lattices Λ̃ and Λ respectively.

Then(
1− 2(T+2)n · ∥B̃−B∥2

min(λ1(Λ), λ1(Λ̃))

)
≤ λj(Λ)

λj(Λ̃)
≤
(
1 +

2(T+2)n · ∥B̃−B∥2
min(λ1(Λ), λ1(Λ̃))

)

and |λ1(Λ̃)− λ1(Λ)| ≤ 2(T+2)n · ∥B̃−B∥2.

41Clearing denominators in a basis B ∈ Qm×n at most increases the size of that basis by 2·m·n.
Since dB for d =

∏
ij dij (where dij is the denominator of Bij) has size mn size(d) + size(B) ≤

(mn+ 1) size(B) ≤ 2mn size(B)
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Proof. Write U ∈ Zn×n ∩ GLn(R) for the (not necessarily unimodular) transfor-
mation such that C = BU attains the successive minima, i.e., ∥cj∥ = λj(Λ),
and the vectors cj are linearly independent. By Lemma 28.6, we know that

∥uj∥ ≤ 2(T+2)n · λj(Λ)/λ1(Λ).
Since U is non-singular, then C̃ := B̃U = B̃(u1, . . . ,un) consists of n indepen-

dent vectors. Hence λj(Λ̃) ≤ max1≤k≤j ∥c̃k∥, but we have

∥c̃k∥ ≤ ∥c̃k−ck∥+∥ck∥ ≤ ∥B̃−B∥2·∥uk∥+λk(Λ) ≤ λk(Λ)
(
1 +

2(T+2)n · ∥B̃−B∥2
λ1(Λ)

)
,

hence, by applying the same reasoning but interchanging Λ and Λ̃,

λj(Λ̃) ≤ λj(Λ)
(
1 +

2(T+2)n · ∥B̃−B∥2
λ1(Λ)

)
and λj(Λ) ≤ λj(Λ̃)

(
1 +

2(T+2)n · ∥B̃−B∥2
λ1(Λ̃)

)
.

Instantiating this with j = 1, shows |λ1(Λ̃)−λ1(Λ)| ≤ 2(T+2)n ·∥B̃−B∥2. Applying
the inequality 1 − x ≤ 1/(1 + x) (which holds for all x ≥ 0) and replacing λ1(Λ)

and λ1(Λ̃) by their minimum, we obtain the final claim(
1− 2(T+2)n · ∥B̃−B∥2

min(λ1(Λ), λ1(Λ̃))

)
≤ λj(Λ)

λj(Λ̃)
≤
(
1 +

2(T+2)n · ∥B̃−B∥2
min(λ1(Λ), λ1(Λ̃))

)
.

□

Corollary 28.8. Let B̃ and B ∈ Rm×n be T -dually exponentially reduced bases of
rank-n lattices Λ̃ and Λ respectively. Let C̃ = B̃U be a basis of Λ̃ satisfying

∥c̃j∥ ≤ qj · λn(Λ̃) for all j ∈ {1, . . . , n},
for qj ∈ R>0. Suppose ∥B̃ − B∥2 ≤ 1

4 · 2−(T+2)n · min(λ1(Λ), λ1(Λ̃)) and write
C = BU. Then,

∥cj∥ ≤ 2 · qj · λn(Λ) for all j ∈ {1, . . . , n}.
Proof. We have ∥uj∥ ≤ 2(T+2)n∥c̃j∥/λ1(Λ̃) by Lemma 28.6, and hence

∥cj∥ ≤ ∥cj − c̃j∥+ ∥c̃j∥ ≤ ∥B̃−B∥2 · ∥uj∥+ ∥c̃j∥

≤ ∥c̃j∥
(
1 +
∥B̃−B∥2 · 2(T+2)n

λ1(Λ̃)

)
≤ qj · λn(Λ̃) ·

(
1 +
∥B̃−B∥2 · 2(T+2)n

λ1(Λ̃)

)

≤ qj · λn(Λ) ·
(
1 +
∥B̃−B∥2 · 2(T+2)n

min(λ1(Λ̃), λ1(Λ))

)2

≤ 2 · qj · λn(Λ),

where in the penultimate inequality, we used Corollary 28.7 and in the last inequal-
ity we used the assumed upper bound on ∥B̃−B∥2. □

28.6. Conclusion.

Lemma 8.5. Let K be a number field of degree n. Let xa be an ideal lattice where
x ∈ K×R is represented by rational numbers, and where a ∈ IK is represented by
a rational Hermite Normal Form matrix Ma with respect to a given LLL-reduced
basis of OK .

Then there exists an algorithm that computes a Z-basis (xα1, . . . , xαn) of xa with
αi ∈ K such that

∥x · αi∥ ≤ 2n · b2n/b · λn(x · a),
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using time at most T = poly(bb, size(a), log |∆K |, size(x)).

Proof. Using the HNF rational matrixMa, we have a sequence of elements (α
(0)
1 , . . . , α

(0)
n )

generating a. The exact Minkowski basis is given by Bxa = (σ(α
(0)
j ))σ,j , i.e., the

columns of Bxa are the Minkowski embeddings of α
(0)
j into KR.

Due to the fact that these numbers are irrational in general, the basis Bxa can
only be approximated; we call this approximation B̃xa. Note that the values of

σ(α
(0)
j ) can reasonably be approximated by computing the roots of the defining

polynomial of the number field K. This can be done efficiently by, for example,
Newton iteration; this costs time polynomial in the desired bit precision. Hence,
if the final required bit precision is polynomial in the size of the input (which we
indeed will show to be the case), approximation is not going to have a significant
influence on the running time.
Computing the dual. So, suppose we have a rational approximation B̃xa of Bxa

within polynomial bits of precision. By Lemma 28.3, computing the dual basis of
B̃xa only looses O(n2 + log |∆K |+ (n+ 2) size(xa)) bits of precision. Therefore we

can assume that the dual basis of B̃xa approximates the dual basis of Bxa with
polynomial bits of precision.
Applying Buchmann-Kessler-Pohst on the approximate dual basis. Us-
ing the Buchmann-Kessler-Pohst algorithm on the approximate dual basis, we have

Proposition 28.5, which states we can compute efficiently a Z-basis (xα(1)
1 , . . . , xα

(1)
n )

that is ‘3-dually exponentially reduced’ (see Definition 26.14). That means the dual
basis (d1, . . . ,dn) of this new basis satisfies ∥dj∥ ≤ 23n · λj((xa)∨), where (xa)∨ is
the dual lattice of xa.

This new basis (xα
(1)
1 , . . . , xα

(1)
n ) is exact and we can re-approximate the associ-

ated basis B
(1)
xa by B̃

(1)
xa . By Lemma 28.4, a sufficient (polynomial) approximation

B̃
(1)
xa can be shown to be 6-dually exponentially reduced as well.

Applying Hanrot-Pujol-Stehlé. Without loss of generality, we can clear the

denominators in B̃
(1)
xa . Then, we apply the BKZ version of Hanrot-Pujol-Stehlé

with provable bounds on the number of tours. Using Corollary 27.4, we conclude

that there exists an algorithm using time poly(n, size(B̃
(1)
xa ), b

b) = poly(log |∆K |,
size(xa), bb) that outputs a new basis (b̃

(2)
1 , . . . , b̃

(2)
n ) = B̃

(2)
xa = B̃

(1)
xa · U of the

lattice L(B̃(1)
xa ) that satisfies

∥b̃(2)
j ∥ ≤ n · b2n/b · λn(L(B̃

(1)
xa ))

But we would like the new exact basis (xα
(2)
1 , . . . , xα

(2)
n ), obtained by applying U

to (xα
(1)
1 , . . . , xα

(1)
n ) to satisfy above claim. For this we need the closeness lemma.

Applying the closeness lemma. Note that B̃
(2)
xa = B̃

(1)
xaU is an approxima-

tion of B
(2)
xa = B

(1)
xaU, the exact Minkowski-basis of the Z-basis (xα(2)

1 , . . . , xα
(2)
n ).

Since B̃
(1)
xa and B

(1)
xa are both T -dually exponentially reduced (with T = 6 and 3

respectively), we can apply Corollary 28.8. A sufficient (polynomial bit precision)

approximation B̃
(1)
xa of B

(1)
xa then suffices to deduce that the vectors of B

(2)
xa satisfy

the same BKZ-like bounds (with a blow-up factor of 2), hence,

∥xα(2)
j ∥ ≤ 2n · b2n/b · λn(xa) for all j ∈ {1, . . . , n}.

□
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Bordeaux, 3(2):377–380, 1991.
[47] J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In Algebraic

number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham,
1975), pages 409–464. Academic Press, London, 1977.

[48] J. C. Lagarias, H. W. Lenstra Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive

minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990.
[49] S. Lang. Algebraic Number Theory. Graduate Texts in Mathematics. Springer, 1994.

[50] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2005.
[51] A. K. Lenstra, H. W. Lenstra Jr., et al. The development of the number field sieve, volume

1554. Springer Science & Business Media, 1993.

[52] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coeffi-

cients. Mathematische Annalen, 261(4):515–534, December 1982.
[53] S. Louboutin. Explicit bounds for residues of Dedekind zeta functions, values of L-functions

at s=1, and relative class numbers. Journal of Number Theory, 2000.
[54] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspec-

tive, volume 671 of The Kluwer International Series in Engineering and Computer Science.

Kluwer Academic Publishers, Boston, Massachusetts, 2002.

[55] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-
sures. SIAM J. Comput., 37(1):267–302, Apr. 2007.



144 K. DE BOER, A. PELLET-MARY, B. WESOLOWSKI

[56] H. Minkowski. Gesammelte Abhandlungen. Chelsea, New York, 1967.

[57] T. Miyake and Y. Maeda. Modular Forms. Springer Monographs in Mathematics. Springer

Berlin Heidelberg, 2006.
[58] J. Neukirch and N. Schappacher. Algebraic Number Theory. Grundlehren der mathematischen

Wissenschaften. Springer Berlin Heidelberg, 2013.
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PART 4

Appendix

A.1. Proof of Theorem 6.4, the random walk theorem

This following proof of Theorem 6.4 is put in the appendix because it is very similar
to proofs in other work [14, Section 3] [12, Chapter 4], with the difference that it is
here generalized to arbitrary moduli m and finite-index subgroups of Pic0Km , and a
slight change of the definition of the log-space H.

Theorem 6.4 (Random Walks in finite-index subgroups of the Arakelov Ray Class
Group, ERH). Let ε > 0 and s > 0 be any positive real numbers and let k ∈ R>0

be a positive real number as well. Let G ⊆ Pic0Km be a finite-index subgroup of

the Arakelov ray class group. Putting42 s̃ = min(
√
2 · s, 1/η1(Log(O×Km,1)

∨)), there
exists a bound

B = Õ
(
[Pic0Km : G]2 · n2k

[
n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2

])
such that for any integer

N ≥
⌈

1

2k log n
· (r · log(1/s̃) + 2 log(1/ε) + log|Pic0Km | − log[Pic0Km : G] + 2)

⌉
,

(24)

the random walk distribution [WG(B,N, s)] is ε-close to uniform in L1(G), i.e.,

∥[WG(B,N, s)]− U(G)∥1 ≤ ε,

where N (m) = N (m0) · 2|mR|, r = dim(H) = nR +nC− 1 and |mR| is the number of
different real places dividing m (see Section 2.4).

We follow the proof of [14, Section 3], with small adaptations.
The Hecke operator, characters and eigenvalues
Recall that G ⊆ Pic0Km is a finite-index subgroup of Pic0Km where we try to random-
ize over. Putting P = {p prime ideal of K | N (p) ≤ B, [d0(p)] ∈ G and p ∤ m}, we
define the Hecke operator H : L2(G)→ L2(G) by the following rule, for f ∈ L2(G).

H(f)(x) := 1

|P|
∑
p∈P

f(x− [d0(p)]).

This Hecke operator has the characters χ ∈ Ĝ as eigen functions, with eigenvalues

λχ ∈ C satisfying |λχ| ≤ 1 [14, Section 3.2]. The trivial character 1 ∈ Ĝ can be

42Recall that for any lattice Λ, we write Λ∨ for its dual, and η1(Λ) for its smoothing parameter
(see page 18).
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shown to have eigenvalue λ1 = 1.

H(χ)(·) := 1

|P|
∑
p∈P

χ(· − [d0(p)]) = χ(·) · 1

|P|
∑
p∈P

χ(−[d0(p)])︸ ︷︷ ︸
λχ

For a fixed χ ∈ Ĝ, there are [Pic0Km : G] extensions of this character to θ ∈
P̂ic0Km . These characters satisfy the following identity, which can be proved by
using standard character orthogonality techniques.

[Pic0Km : G]−1
∑

θ∈P̂ic0
Km

θ|G=χ

θ(−[d0(p)]) =
{
χ(−[d0(p)]) if [d0(p)] ∈ G

0 otherwise
(165)

Putting P = {p prime ideal of K | N (p) ≤ B and p ∤ m} (note the absence of the

class condition on p), we thus have, for any fixed χ ∈ Ĝ, using Equation (165),

λχ =
1

|P|
∑
p∈P

χ(−[d0(p)]) = 1

|P| · [Pic0Km : G]

∑
p∈P

∑
θ∈P̂ic0

Km

θ|G=χ

θ(−[d0(p)]) (166)

=
|P|
|P| ·

1

[Pic0Km : G]

∑
θ∈P̂ic0

Km

θ|G=χ

1

|P|
∑
p∈P

θ(−[d0(p)]) (167)

Assuming the Extended Riemann Hypothesis (as formulated in [44, §5.7]), one
can use results from analytic number theory [44, Theorem 5.15] to derive the fol-

lowing asymptotic bound for non-constant characters θ ∈ P̂ic0Km (see [14, Section
3.3]).

1

|P|
∑
p∈P

θ(−[d0(p)]) = O

(
log(B) log(Bn · |∆K | · N (m) · q∞(θ))

B1/2

)
, (168)

where q∞(χ) is the infinite part of the analytic conductor of the character χ (cf.
[44, Eq. (5.6)]), The proof of this result uses the Abel summation formula and is
almost the same as in [14, Section 3.3] or [78, Corollary 2.3.5] (see also [12, Section
4.3.3]), with the sole difference that the analytic conductor gets an extra factor
N (m) = N (m0) · 2|mR|.

By applying Equation (166) for χ = 1 ∈ Ĝ, the trivial character, one can get

an upper bound on the fraction |P|/|P|. By the fact that λ1 = 1, we obtain, from
Equation (168)

|P| · [Pic0Km : G]

|P| = 1 +O

(
[Pic0Km : G] · log(B) log(Bn · |∆K | · N (m) · q∞(1))

B1/2

)
.

(169)
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Hence, choosing B such that the value of the big-O of Equation (169) is strictly
bounded by a half43, we obtain

|P|
|P| ·

1

[Pic0Km : G]
≤ 2 (170)

Combining Equations (167), (168) and (170), we obtain that the eigen value λχ
for non-constant characters χ ∈ Ĝ under the Hecke operator H satisfies

λχ = O

(
[Pic0Km : G] · log(B) log(Bn · |∆K | · N (m) · q∞(χ))

B1/2

)
, (171)

The infinite analytic conductor q∞
The infinite analytic conductor q∞(χ) ∈ R>0 is a number quantifying the amount

of oscillation of the character χ ∈ Ĝ. By restricting a character χ ∈ Ĝ to the ray
unit torus44 Tm = H/Log(O×K ∩ Km,1) ⊆ G, one gets a character on Tm, which

can be uniquely associated with a dual lattice point ℓ∗ ∈ Log(O×Km,1)
∨, where

Log(O×Km,1) = Log(O×K ∩Km,1). The infinite part of the analytic conductor is in

that case equal to45 (see [44, Equation (5.3), (5.4), (5.7)] and [57, Equation (3.3.6),
(3.3.12)] or [14, Section 3.4] or [12, Section 4.3.4])

q∞(χ) =
∏

ν real

(3 + |2πℓ∗ν |)
∏

ν complex

(3 + |2πℓ∗ν |)
(
3 + |i2πℓ∗ν + 1|

)
(172)

Here, the components of the dual lattice point in the ray logarithmic unit lattice
Log(O×Km,1)

∨ are parametrized by the places ν. As a result, by applying the geo-
metric and arithmetic inequality for vector norms, we obtain the following bound
on the infinite analytic conductor.

q∞(χ) ≤
(
4 + 4π ∥ℓ∗∥ /√n

)n
,

where ℓ∗ ∈ Log(O×Km,1)
∨ is the unique dual logarithmic ray unit lattice point asso-

ciated with the character χ|Tm ∈ T̂m.
Fourier analysis of the Gaussian
Since the initial distribution of the random walk is a Gaussian gs : H → R, x 7→
e−π∥x∥

2/s2 over the hyperplane H = logK0
R, we are particularly interested in the

behavior of the distribution resulting from applying the Hecke operator N times,
i.e., HN (gs). By standard Fourier computations, one can prove that periodized

43Notice that, in order the bound Equation (171) to be non-trivial (i.e., smaller than 1), we
already need B to satisfy this condition, so it does not add an extra requirement on B. In

Equation (168), the analytic conductor satisfies q∞(θ) ≤ 4n for extensions θ of the unit character

on G, as Tm ⊆ G. This follows from the definition of the analytic conductor [44, Eq. (5.7)]
(denoted q(f) = q(f, 0) there), and the fact that the local parameters (denoted κj in [44]) are zero

for characters trivial on Tm.
44Due to the fact that [Pic0Km : G] is finite and the ray unit torus satisfies Tm ⊆ Pic0Km , it is

also included in G.
45This definition of the infinite part of the analytic conductor is slightly different to that of

Kowalski & Iwaniec [44, Equation (5.7)] (with s = 1) which is due to the difference in definitions
of the real and the complex L-functions (see also [12, Remark 4.13]). This difference is solved by

putting LR(s)LR(s+ 1) = LC(s), (see [58, Chapter 7, Proposition 4.3(iv)]).
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Gaussian function46 s−rgs|T
m ∈ L2(Tm) satisfies

s−rgs|T
m

=
∑

ℓ∗∈Log(O×
Km,1 )

∨

aℓ∗χℓ∗ (173)

where aℓ∗ = 1
Vol(Tm)g1/s(ℓ

∗), where Log(O×Km,1)
∨ is the dual lattice of the log ray

unit lattice Log(O×Km,1), and where χℓ∗(x) = e−2πi⟨x,ℓ
∗⟩ is a function on Tm, i.e.,

χℓ∗ ∈ T̂m.

By standard character arguments, one can simply write each χℓ∗ ∈ Ĝ (which

is zero everywhere except on Tm ⊆ G) as an average of all characters in Ĝ that
restrict to χℓ∗ on Tm. This results in the following identity (see also [14, §3.6]),

where χ′ ∈ Ĝ ranges over the characters of G ⊆ Pic0Km .

s−rgs|T
m

=
1

|G|
∑

χℓ∗∈T̂m

g1/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

χ′. (174)

Splitting up the sum
By splitting up the sum of Equation (174) into a ‘unit part’, a ‘low frequency
part’ where ∥ℓ∗∥ < r and a ‘high frequency part’ where ∥ℓ∗∥ ≥ r, we obtain the

following decomposition, for any r > 0, where χ′ ∈ Ĝ ranges over the characters of
G ⊆ Pic0Km .

|G| · s−r · gs|T
m

= 1G︸︷︷︸
Unit character

+
∑

χℓ∗∈T̂m

∥ℓ∗∥<r

g1/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

χ′ ̸=1

χ′

︸ ︷︷ ︸
Low frequency characters

+
∑

χℓ∗∈T̂m

∥ℓ∗∥≥r

g1/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

χ′

︸ ︷︷ ︸
High frequency characters

,

Now, applying the Hecke operator HN times to this equation, and taking the abso-
lute value of |G| · HN (gs|T

m

)− 1G, we obtain, by the Pythagorean theorem (using
that ∥χ′χ′∥22 = |G|),∥∥∥|G| · HN (s−rgs|T

m

)− 1G

∥∥∥2= |G| ∑
χℓ∗∈T̂m

∥ℓ∗∥<r

g21/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

χ′ ̸=1

|λχ′ |2N

︸ ︷︷ ︸
Low frequency

(175)

+ |G|
∑

χℓ∗∈T̂m

∥ℓ∗∥≥r

g21/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N

︸ ︷︷ ︸
High frequency

. (176)

46The periodization is defined as follows: gs|T
m
(x) :=

∑
ℓ∈Log(O×

Km,1 )
gs(x+ ℓ).
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We will bound the parts Equation (175) and Equation (176) separately. For the
latter, we have

|G|
∑

χℓ∗∈T̂m

∥ℓ∗∥≥r

g21/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N ≤ |G| · |G/Tm|
∑

ℓ∗∈Log(O×
Km,1 )

∨

∥ℓ∗∥≥r

g 1√
2s
(ℓ∗) (177)

≤ |G| · |G/Tm| · β(r)√
2rs
· g 1√

2s
(Log(O×Km,1)

∨),

(178)

where the last inequality follows from Banaszczyk’s tail bound [6] and the as-

sumption that rs >
√

r/(4π), where β
(n)
z :=

(
2πez2

n

)n/2
e−πz

2

, for which holds

β
(n)
t ≤ e−t2 for all t ≥ √n (see also [14, §3.6]).
To bound the share of the low-frequency characters, we use the bound from

Equation (171), |λχ′ | ≤ O
(

[Pic0Km :G]·log(B) log(Bn·|∆K |·N (m)·q∞(χ′))

B1/2

)
. Since these

characters have a ‘low frequency’, their analytic conductor q∞(χ′) is bounded,

namely, q∞(χ′) ≤ (4 + 2πr/
√
n)n for any χ′ ∈ Ĝ such that χ′|Tm = χℓ∗ for some

ℓ∗ ∈ Log(O×Km,1)
∨ with ∥ℓ∗∥ < r. Therefore,

|λχ′ | ≤ c = O

(
[Pic0Km : G] · log(B) log(Bn · |∆K | · N (m) · (4 + 4πr/

√
n)n)

B1/2

)
.

We then obtain

|G|
∑
∥ℓ∗∥≤r

g21/s(ℓ
∗)

∑
χ′|Tm=χℓ∗

|λχ′ |2N

︸ ︷︷ ︸
≤|G/Tm|·c2N

≤ |G| · |G/Tm| · c2N · g 1√
2s
(Log(O×Km,1)

∨)

(179)

We obtain the following bound by combining Equations (177) and (179), dividing
by |G| (which accounts to dividing by |G|2 under the square 2-norm) and using the
identity |G| = |G/Tm| ·Vol(Tm). Assuming the Extended Riemann Hypothesis for
Hecke L-functions (e.g., [44, §5.7]), and for all r, s > 0 with rs >

√
r

4π , we have

∥∥∥∥HN (s−ngs|T
m

)− 1

|G|1G
∥∥∥∥2 ≤ g 1√

2s
(Log(O×Km,1)

∨)

Vol(Tm)

(
c2N + β

(r)√
2rs

)
(180)

with c = O
(

[Pic0Km :G]·log(B) log(Bn·|∆K |·N (m)·(4+4πr/
√
n)n)

B1/2

)
.

Tuning parameters
Let 1 > ε > 0, s > 0 and k ∈ R>0 be given. We have g 1√

2s
(Log(O×Km,1)

∨) ≤
g1/s̃(Log(O×Km,1)

∨) ≤ 2Vol(Log(O×Km,1))/s̃
r by smoothing arguments (see Lemma 2.20).

Using that inequality and Hölder’s inequality (i.e., ∥f ·1∥1 ≤ ∥f∥2∥1∥2), noting that
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∥1G∥22 = |G|, we obtain, for each r >
√
r/(
√
2s),

∥WG(B,N, s)− U(G)∥21 (181)

≤ |G| ·
∥∥∥∥HN (s−rgs|T

m

)− 1

|G|1G
∥∥∥∥2
2

(182)

≤ |G/Tm| · g 1√
2s
(Log(O×Km,1)

∨) · (c2N + β
(r)√
2rs

) (183)

≤ 2 · |G| · s̃−r · (c2N + β
(r)√
2rs

) (184)

Here, c = O
(

[Pic0Km :G]·log(B) log(Bn·|∆K |·N (m)·(4+2πr/
√
n)n)

B1/2

)
. We proceed by bound-

ing the two summands in Equation (184) separately.

• By putting47 r equal to

1√
2s
·max

(√
r,
√
2 + r log(1/s̃) + 2 log(1/ε) + log|G|

)
we deduce that 2 · |G| · s̃−r · β(r)√

2rs
≤ ε2/2.

• Subsequently, choose48 a B = Õ([Pic0Km : G]2 · n2k[log(|∆K | N (m))2 +
n2 log(r)2]), i.e.,

B = Õ
(
[Pic0Km : G]2 · n2k ·

[
log(|∆K | N (m))2 + n2 log(1/s̃)2

+ n2 log(log(1/ε))2
])

such that c ≤ 1/nk, where c = O
(

[Pic0Km :G]·log(B) log(Bn·|∆K |·N (m)·(4+4πr/
√
n)n)

B1/2

)
.

Lastly, taking any integer N ≥ 1
2k logn ·(r · log(1/s̃)+2 log(1/ε)+log|G|+2)

and noting that c
1

k log n ≤ 1/e, we deduce that 2 · |G| · s̃−r · c2N ≤ ε2/2.
Combining, we can bound the right-hand side of Equation (184) by ε2. Taking
square roots gives the final result. □

A.2. Sampling of random prime ideals

In this section we show how to sample prime ideals p that are coprime with m and
whose class [d0(p)] fall into G ⊆ Pic0Km , using an oracle that can check whether an
ideal a satisfies [d0(p)] ∈ G or not. The algorithm doing this is a slight generalization
of the algorithm sampling prime ideals in [14, Lemma 2.2]. Before giving this
algorithm (together with its properties), we first need the following result on the
number of prime ideals that are coprime with m.

Lemma A.2.1 (ERH). Let m ⊆ OK be an ideal modulus and denote

πm
K(x) = |{p ∈ ImK | p prime and N (p) ≤ x}|

for the number of prime ideals not dividing m and having norm bounded by x ∈ R.
Let ω(m) denote the number of different prime ideal divisors of m.

47We use the bound β
(r)
α ≤ e−α2

for α ≥
√
r

48In this bound on B one would expect an additional log log|G| ≤ log log|Pic0Km |. But as it is
bounded by log(log(|∆K | N (m))) (see Lemma 5.1), it can be put in the hidden polylogarithmic

factors.
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Then, there exists x0 ∈ Õ(log2 |∆K |+ ω(m)) such that for all x ≥ x0 we have

πm
K(x) ≥ x

4 log x
.

Proof. Denote πK(x) = |{p ∈ IK | p prime and N (p) ≤ x}|, i.e., whenever m =
OK . We will prove the statement for this specific case first. By simplifying an
explicit result of Grenié and Molteni [37, Corollary 1.4], we obtain, under the
Extended Riemann Hypothesis49,∣∣∣∣πK(x)− πK(3)−

∫ x

3

du

log u

∣∣∣∣ ≤ √x[6 log |∆K |+ 4n log x+ 14].

Therefore, we have

πK(x) ≥
∫ x

3

du

log u
−√x[6 log |∆K |+ 4n log x+ 14]

≥ x

log x
−√x log(x)[6 log |∆K |+ 4n+ 14]

=
x

log x

(
1− log(x)2(6 log |∆K |+ 4n+ 14)√

x

)
≥ x

2 log x

where the first inequality follows from omitting πK(3) and the second inequality

from
∫ x
3

du
log u ≥ x

log x and from the assumption that x > x0, where x0 ∈ Õ(log2 |∆K |)
such that log(x0)

2(6 log |∆K |+4n+14)√
x0

< 1/2.

For the general case of m ̸= OK , we need to avoid m; so writing ω(m) for the
number of different prime ideals dividing m, we obtain

πm
K(x) ≥ πK(x)− ω(m) ≥ x

2 log x

(
1− 2 · ω(m) · log x

x

)
≥ x

4 log x
.

Where the last inequality can be deduced from the fact that x > x0 and where

x0 = Õ(log2 |∆K |+ ω(m)) is chosen such that 2·ω(m)·log x0

x0
< 1/2. □

The following lemma is a slight generalization of [14, Lemma 2.2], where we
demand the Arakelov ray class of the sampled prime ideals to be lying in G, some
subgroup of Pic0Km .

Lemma 5.4 (Uniform sampling of prime ideals, ERH). Let a basis of OK be known,
and let m0 ⊆ OK be a modulus. Let G ⊆ Pic0Km a finite-index subgroup and let
OG be an oracle that on input an ideal c returns whether [d0(c)] ∈ G or not. Let
PB = {p prime ideal of K | N (p) ≤ B, p ∤ m0 and [d0(p)] ∈ G}.

There exists a bound

B0 = Õ
(
[Pic0Km : G]2 ·

[
n2(log log(1/ε))2 + n2(log(1/s̃))2 + (log(|∆K | N (m)))2

])
such that for all B ≥ B0, one can sample uniformly from PB in expected time
O([Pic0Km : G] · n3 log2B) and using O([Pic0Km : G] · n logB) queries to OG.

Proof. The algorithm can be described as follows. Sample a uniform integer from
[0, B] and check if it is prime (if not, output ‘failure’). If it is, name the prime p,
factor pOK into prime ideals of OK and list the different prime factors {p1, . . . , pk}

49In the paper of Grenié and Molteni [37, Corollary 1.4], only the Dedekind zeta function
ζK(s) =

∑
a N (a)−s needs to satisfy the condition that all of its non-trivial zeroes lie at the

vertical line ℜ(s) = 1/2.
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that have norm bounded by B, do not divide m0 and satisfy [d0(pj)] ∈ G. If this
set is empty, output ‘failure’; otherwise, choose one pj uniformly at random in
{p1, . . . , pk} and output it with probability k/n. Otherwise, output ‘failure’.

Let q ∈ PB be arbitrary, and let p = q∩Z the prime ‘below’ q. Then the proba-
bility of sampling this q equals 1

nB , namely, 1
n times the probability of sampling p.

So, the probability of sampling successfully (that is, no failure) equals

|PB |
nB

≥ 1

8 · [Pic0Km : G] · n logB
since, by Equation (169), denoting PB = {p prime ideal of K | N (p) ≤ B, p ∤ m0},

|PB |
|PB |

≥ 1

2 · [Pic0Km : G]
,

and by Lemma A.2.1, we have |PB | ≥ B
4 logB (by adequately increasing B0 so that

B0 ≥ x0 from Lemma A.2.1).
The most costly part of the algorithm is the factorization of a prime p ≤ B in

OK . This can be performed using Kummer-Dedekind algorithm, which essentially
amounts to factoring a degree n polynomial modulo p. Using Shoup’s algorithm [71]
(which has complexity O(n2 + n log p) [77, §4.1]) and the fact that the algorithm
needs to repeat [Pic0Km : G] ·n logB times to get constant success probability, yields
the complexity claim and the query complexity for OG. □

A.3. Upper bound on the nth successive minimum of OK by Bhargava
et al.

The following theorem and its proof is a copy of that of Bhargava et al. [8, Theorem
3.1], with the difference that it is applied to the infinity norm and has explicit
constants everywhere. A similar result, but also without explicit constants, can be
found in an article by Peikert and Rosen [62, Lemma 5.4].

Theorem A.3.1 (Bhargava et al. [8]). Let K be any number field of degree n and
let OK be its ring of integers. Let OK ⊆ KR have the structure of a lattice via the
Minkowski embedding (see Section 2), and denote λ∞j (OK) for the j-th successive
minimum with respect to the infinity norm in KR. Then

λ∞n (OK) ≤ |∆K |1/n.
Proof. Let αj ∈ OK attain the successive minima for the infinity norm λ∞j (OK) for

j ∈ {1, . . . , n}, with α1 = 1. For any element β ∈ OK , we write β =
∑n
j=1[β]jαj ,

i.e., [β]j are the coordinates of β with respect to (α1, . . . , αn).
For 2 ≤ k, ℓ ≤ n − 1 consider the (n − 2) × (n − 2)-matrix C = ([αkαℓ]n),

i.e., the matrix consisting of the coordinates of αkαℓ with respect to αn. We
will show at the end of this proof that this is a non-degenerate matrix, implying
that there are no zero rows or columns. In other words, there exists a permutation
π : {2, . . . , n−1} → {2, . . . , n−1} such that [αkαπ(k)]n ̸= 0 for all k ∈ {2, . . . , n−1}.

So, the product αkαπ(k) ∈ OK extends {α1, . . . , αn−1} to a n-dimensional lattice;
therefore we have ∥αk∥∞∥απ(k)∥∞ ≥ ∥αkαπ(k)∥∞ ≥ λ∞n (OK). Taking products
over all k ∈ {2, . . . , n− 1} we obtain

n−1∏
k=2

∥αk∥2∞ =

n−1∏
k=2

∥αk∥∞∥απ(k)∥∞ ≥
(
λ∞n (OK)

)n−2
.
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Multiplying above equation by ∥α1∥2∞ = 1 and ∥αn∥2∞ = λ∞n (OK)2, and using
Minkowski’s second inequality50 [21, Chap. VIII, Thm. 5]

∏n
k=1 λ

∞
k (Λ) ≤ Vol(Λ),

we obtain

|∆K | ≥
n∏
k=1

∥αk∥2∞ ≥
(
λ∞n (OK)

)n
.

It remains to prove that C = ([αkαℓ]n) is non-degenerate. Suppose it is not, and
there exists dℓ for ℓ ∈ {2, . . . , n− 1} (not all zero) such that[ n−1∑

ℓ=2

dℓαkαℓ

]
n
=

n−1∑
ℓ=2

dℓ[αkαℓ]n = 0 for all k ∈ {2, . . . , n− 1}

Writing β =
∑n−1
ℓ=2 dℓαℓ, this means that, for all k ∈ {1, . . . , n− 1}, αkβ lies in the

span of (α1, . . . , αn−1). In other words, L = Qα1 + . . .+Qαn−1 is Q(β)-invariant,
i.e., a Q(β)-vector (strict) subspace of K. That is, dimQ(β)(L) ≤ dimQ(β)(K) − 1.
But then

n− 1 = dimQ(L) = dimQ(β)(L) · [Q(β) : Q]

≤ (dimQ(β)(K)− 1) · [Q(β) : Q] = n− [Q(β) : Q],

yielding [Q(β) : Q] = 1, i.e., β ∈ Q, which is impossible by the fact that β =∑n−1
ℓ=2 dℓαℓ is assumed to be non-zero and has no α1 = 1 part.
We conclude that C is non-degenerate, which finishes the proof. □

A.4. Upper bound on a defining polynomial of a number field

The following two lemmas show together that for any number field K there exists a
polynomial f ∈ Z[x] such that K = Q[x]/(f(x)) and so that size(f) ≤ O(log2 |∆K | ·
log2(log |∆K |)). That is, each field has a ‘small’ defining polynomial. The first
lemma is just a variant of the primitive element theorem [50, V.§4, Theorem 4.6],
whereas the second lemma uses this primitive element theorem inductively to bound
such a primitive element.

Lemma A.4.1 (Primitive Element Theorem). Let K = Q(α, β) be a separable
extension. Then there exist an integer λ ∈ {0, 1, . . . , dα · dβ} such that K = Q(α+
λβ), where dα = [Q(α) : Q] and dβ = [Q(β) : Q].

Proof. We write γ = α + λβ with λ ∈ Q. Our aim is to show that the number
of λ ∈ Q for which Q(α + λβ) ̸= Q(α, β) is bounded above by dα · dβ , hence, for
a certain λ ∈ {0, 1, . . . , dα · dβ}, it holds that Q(α + λβ) = Q(α, β) = K; by the
pigeon-hole principle.

Write fα, fβ for the minimum polynomial of α respectively β. Write γ = α+λβ.
Then we have fα(γ−λβ) = 0, hence β is a zero of the polynomial g = fα(γ−λx) ∈
Q(γ)[x].

50Note that Minkowski’s second inequality as stated in [21, Chap. VIII, Thm. 5] only states

that
∏n

k=1 λ
∞
k (Λ)·Vol(B) ≤ 2n ·Vol(Λ), where B = {x ∈ KR | ∥x∥∞ ≤ 1} (B is a ball of dimension

n, living in a real vector space of dimension 2n since our lattice is not full rank). To compute the

volume of B, observe that B consists in nR orthogonal copies of BR = {x ∈ C |x ∈ R, |x| ≤ 1}
and nC orthogonal copies of BC = {(x, x̄) ∈ C2 | |x| ≤ 1}. One can check that Vol(BR) = 2 and
Vol(BC) = 2π, leading to Vol(B) = 2rR+rC · πrC . Minkowski’s second theorem then implies that∏n

k=1 λ
∞
k (Λ) ≤ Vol(Λ) as desired.
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So, the minimum polynomial hγβ of β over Q(γ) divides g ∈ Q(γ)[x], but also

fβ ∈ Q[x]. So,

hγβ | gcd(g, fβ).

Suppose β /∈ Q(γ), then the minimum polynomial hγβ has degree d ≥ 2, and divides

both g and fβ . By separability, the polynomial hγβ has d distinct roots (in the

algebraic closure ofQ(γ)), so in particular, there exists β2 ̸= β such that hγβ(β2) = 0.

This β2 then satisfies fβ(β2) = g(β2) = 0. Putting α2 = γ − λβ2 and using the
definition of g, one can see that α2 is a root of fα.

Finally, combining the equations α = γ − λβ and α2 = γ − λβ2 and using the
fact that β ̸= β2, we obtain that λ = α−α2

β2−β , where β2 is a root of fβ and α2 is a

root of fα. There are at most deg(fα) · deg(fβ) = dαdβ possible λ with this shape.
Hence, Q(γ) = Q(α + λβ) = Q(α, β) for all but dα · dβ values λ ∈ Q. This was
what was remained to be proven. □

Lemma A.4.2. Let K be a number field of degree n. Then there exists a monic
integral irreducible polynomial g =

∑n
i=0 gix

i ∈ Z[x] such that K ≃ Q[x]/g(x) with

max
i

log |gi| = O(log |∆K | · log log |∆K |)

and hence

size(g) :=
∑
i

log |gi| = O(log2 |∆K | · log log |∆K |).

Proof. Let OK be the ring of integers of K. By definition of the last minimum of a
lattice, we know that there exist n linearly independent elements β1, . . . , βn ∈ OK
satisfying ∥βi∥∞ ≤ λ

(∞)
i (OK) ≤ |∆K |1/n, where we used Theorem A.3.1 for the

last inequality.
Since β1, . . . , βn span a n-dimensional space, then K = Q(β1, . . . , βn). Applying

the primitive element theorem (in the shape of Lemma A.4.1) inductively, we can
then deduce that there exists

β =

n∑
i=1

niβi

with ni ∈ {0, 1, . . . , n2} for all i, and such that K = Q(β). Indeed, assume by

induction that Kj := Q(β1, . . . , βj) = Q(γj) for some γj =
∑j
i=1 niβi as above.

Then by Lemma A.4.1, it holds that Kj+1 = Q(γj , βj+1) = Q(γj + nj+1βj+1) for
some nj+1 ≤ n2 (since all the intermediate fields appearing have degree at most n).

Therefore,

∥β∥∞ ≤ n3|∆K |1/n.

By definition of ∥β∥∞, this implies that for all embeddings σj : K → C, it holds

that |σj(β)| ≤ n3|∆K |1/n.
Let g =

∑n
i=0 gix

i be the minimal polynomial of β. Since β ∈ OK (because the
βi’s are in OK and the ni’s are in Z), then g has integer coefficients. Moreover, we
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have

|gj | =
∣∣∣ ∑
J⊆{1,...,n}
|J|=n−j

∏
i∈J

σi(β)
∣∣∣ ≤ (n

j

)
(n3|∆K |1/n)n−j

≤
n∑
j=0

(
n

j

)
(n3|∆K |1/n)n−j = (1 + n3|∆K |1/n)n

= n3n|∆K |
(
1 +

1

n3|∆K |1/n
)n
≤ e · n3n|∆K |,

since n3|∆K |1/n ≥ n.
Hence, maxi log |gi| = O(n log(n)+log |∆K |). Using the fact that n = O(log |∆K |)

concludes the proof. □
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