
Quantumly Computing S-unit Groups in
Quantified Polynomial Time and Space

Koen de Boer and Joël Felderhoff1

1 King’s College London

Abstract. We present a novel analysis of a quantum algorithm comput-
ing the S-unit group for a number field from Eisenträger et al. [EHKS14a]
and Biasse and Song [BS16]. We prove that this quantum algorithm runs
within polynomial time, where we explicitly quantify the polynomials of
the quantum gate and memory complexity (under GRH). We do so by
carefully analyzing an implementation of an Continuous Hidden Sub-
group Problem (CHSP) oracle function whose period is the (logarithm
of the) S-unit group, and provide it to an CHSP-solving algorithm as in
[BDF19].
Our analysis is novel due to minimizing the use of the quantum memory-
inefficient LLL-reduction, by resorting to strategically chosen precompu-
tations of approximations of high powers of prime ideals. Additionally,
we provide a new quantum algorithm computing a discrete Gaussian su-
perposition analogue of the GPV algorithm by Gentry et al. [GPV08].
Lastly, we include a full and rigorous numerical analysis of all parts of the
oracle-function computing algorithm, allowing to use fixed-point preci-
sion arithmetic and thus to precisely quantify the run-time and memory.

1 Introduction

Quantum algorithms in number theory

Out of all quantum algorithms, Shor’s algorithm [Sho94] for factoring is of-
ten considered as the most ground-breaking. It is distinct in having theoretical
implications, due to its large complexity gap between classical and quantum
computing, as well as practical implications in the field of cryptography. Indeed,
this algorithm can be seen as the early cause of the current standardization of
quantum-resistant cryptographic schemes [NIS25].

The polynomial-time factoring algorithm from Shor [Sho94] can be divided
into two parts: a period finding quantum algorithm solving the hidden subgroup
problem [ME99] in commutative groups by means of a quantum Fourier trans-
form [Cop02,Sho94,NC10], and the computation of an actual function of which
one wants to find the period, which is often referred to as the oracle function.
In the case of Shor’s algorithm, the period of this oracle function found by the
period finding quantum algorithm then gives information about the factorization
of a given number.

This framework of quantumly finding the period of a certain computable or-
acle function has then be generalized to solve other number theoretic problems

in polynomial time, like the discrete logarithm problem [Sho97], Pell’s equa-
tion [Hal07] and even the problem of computing unit groups [EHKS14a] and
class groups [BS16].

The oracle function

Shor’s algorithm for factoring has quantum gate complexity Õ(log3N) [Sho94]
and may be further improved to Õ(log2N) by fast multiplication techniques [HH21].
Remarkably, the bottleneck of Shor’s algorithm is not the quantum period-
finding algorithm, but rather the computation of the oracle function, which
consists of taking powers of a number g modulo the to be factored number N .
[Sho94]

Such a precise quantum gate complexity and clear identification of the bottle-
necks of the algorithms solving other number theoretic problems, like computing
the unit group by Eisenträger, Hallgren, Kitaev and Song [EHKS14a], and com-
puting the class group by Biasse and Song [BS16], is currently not possible. The
cause for this is that no exponent of the polynomial run-time is presented in these
works (including the submitted version of [EHKS14a] to STOC [EHKS14b]), and
no clear division in complexity is made between the period-finding part and the
oracle-part. Additionally, much of the intricacies involving handling real number
operations by rounding or using finite precision numbers is overlooked.

In [BDF19], a refined analysis of the quantum period finding part of these
algorithms was presented, leading to a quantitative measure of the exponent of
the polynomial complexity in terms of quantum gates, qubits and the number
of queries to the oracle function. The actual computation of the oracle function
is not treated in this refined analysis.

S-units in cryptanalysis

In cryptanalysis studying quantum-safe protocols it is common to assume that
an adversary has access to a quantum computer. In particular, by the works of
Eisenträger et al. [EHKS14a] and Biasse and Song [BS16], in many papers, the
S-unit group (e.g., class group and unit group) is assumed to be known by the
adversary. The adversary knowing the S-unit group is in particularly relevant in
the case of the attacks on IdealSVP and PIP [CDPR16,CDW17,PHS19]. Addi-
tionally, the knowledge of the S-unit group is also assumed in the module lattice
reduction of [LPSW19].

Quantum computation being a scarce future resource, the precise complexity
of computing S-unit groups is highly relevant for these cryptographic applica-
tions. We expect quantum memory especially to be the bottle-neck, which we
hence aim to minimize in this work.

Our work

In this work, we present a refined analysis of (variants of) the oracle functions
proposed by [EHKS14a,BS16], allowing for a quantified exponent of the poly-
nomial complexity of the full algorithms. This allows as well to compare the

2

weight on the running time of the period-finding part with that of the oracle-
computing part. We present a variant of the CHSP oracle described in [BS16],and
analyze this oracle function in Section 3 to prove that it satisfies the hypothe-
ses of [BDF19], needed to compute the S-unit group of a number field. Those
hypotheses consists of the Lipschitz and separativity properties of the oracle
function. We then present a description of the quantum algorithm, with an ex-
plicit qubit and gate complexity analysis focusing on the polynomial dependence
on d, s = |S| and log(|∆K |).

Our main result can be summarized by the following slightly informal state-
ments.

Theorem 1.1 (Assuming GRH, informal). There exists a quantum algo-
rithm that computes an adequate Continuous Hidden Subgroup oracle for the
S-unit group of a number field K of degree d and discriminant ∆K , using

O

(
d4 · (d+ |S|)7.5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)3+o(1)

)
quantum memory

and

O

(
d7 · (d+ |S|)17.5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)7+o(1)

)
quantum gates,

and polynomially many classical operations in the size of the input.

Corollary 1.1 (Assuming GRH). There exists a quantum algorithm that
computes (with constant success probability) a basis of the S-unit group of a
number field K of degree d and discriminant ∆K , using

O

(
d4 · (d+ |S|)7.5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)3+o(1)

)
quantum memory

and

O

(
d7 · (d+ |S|)18.5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)8+o(1)

)
quantum gates,

and polynomially many classical operations in the size of the input.

This theorem and corollary are derived from Theorem 5.1 and Corollary 5.1,
with the conservative estimates LLLMem(n, b) = O(n4b3/2), LLLGates(n, b) =
O(n7 · b3.5) [TS19, Eq 7, 8 and p.15] and ω = 2.81 for the polynomial com-
plexity exponent for matrix multiplication [Str69]. Retrieving a compact repre-
sentation of all S-units from an approximate basis happens by the procedure
in Appendix G. The GRH assumption is here only to give a polynomial-time
procedure to complete a set S into a set S′ that generates the class group of K.
If S already generates ClK , the previous results hold without GRH.

3

Technical overview. Let K be a number field of degree d = dR + 2dC,
let S = {p1, . . . , ps} be a factor basis and O×

K,S be the S-unit group of K.
We define the (possibly infinite) distance between two ideals I1 and I2 of the
same norm as the ℓ2 norm of the smallest total logarithmic embedding of x ∈ KR
such that x · I1 = I2. As was noted in [BS16], O×

K,S can be represented as the
kernel of the morphism f : (ei, x) 7→ (x) ·

∏
i p

ei
i where (ei) ∈ Zs and x ∈ KR of

norm 1. This fact allows use a Continuous Hidden Subgroup Problem (CHSP)
solver [EHKS14a,BDF19] to efficiently find a basis of O×

K,S , under some condi-
tions on f . Those conditions are:

1. f must be Lipschitz (it should not to vary too quickly);
2. f must be separative (it should not vary too slowly);
3. f must be efficiently implementable as a quantum algorithm.

The realization of the function F we build in this work is, as previously in-
troduced in [EHKS14a,BS16], a “quantum fingerprint” of an ideal lattice I =
(x) ·

∏
i p

ei
i . This fingerprint is constructed as a tail-cut Gaussian superposition

of the elements of I, encoded using the straddle encoding. In contrast to [BS16],
we encode the extended logarithm of the elements of KR instead of their complex
embeddings.

Lipschitzianity. To our knowledge, the previous literature did not anticipate
the tail-cut Gaussian superposition to be non-Lipschitz, though in generally it
is not as it can even be non-continuous. In order to overcome this problem,
we introduce the notion of almost-Lipschitz continuity (i.e., functions that sat-
isfy ∥f(x)− f(y)∥ ≤ a · ∥x− y∥+ ε) and show in Appendix H that any periodic
and almost Lipschitz function is close (in maximum norm) to some (fully) Lips-
chitz function with the same periodicity. We then prove that the oracle function f
that we construct is almost-Lipschitz (Lemma 3.3).

Separativity. The separativity condition is the following: if x and y are two
points that are far enough modulo the period of f , then ⟨f(x)|f(y)⟩ should
be small. This property is proven in Section 3.4. We prove it, similar as in
[EHKS14a,BS25], in two steps. First, we show that if the encodings of two ide-
als I1 and I2 have an inner product that is close to 1, then there exists a small
distortion g ∈ K0

R such that g ·I1 shares a sublattice with I2. As a second step, we
then prove that if two different ideals share a sublattice, then the inner product
of their Gaussian encoding cannot be too large, hence g · I1 = I2.

Efficient Quantum Implementation. In previous analysis of the S-unit compu-
tation algorithm [BS16,Ng24], the quantum complexity of the CHSP oracle is
either ignored or extended from the its classical description, which does not try to
minimize the amount of quantum memory used. In order to fill this gap, use sev-
eral techniques. Since the CHSP-solving algorithm queries the oracle function
on dyadic rationals, we can strategically precompute integral approximations
of high powers of the prime ideals in S to minimize ideal multiplication and
LLL-reduction. These integral approximations allow to use the Hermite Normal

4

Form on products of those, which makes that we perform ideal multiplications
reversely and hence minimize the quantum memory cost of the algorithm. Then
a single quantum-LLL reduction of this HNF is performed (instead of one per
single multiplication as in [BS25], which is much more). We aim to minimize the
number of quantum-LLL calls due to their heavy usage of quantum memory.
This LLL-reduced basis allows us to compute a (tail-cut and punctured) Gaus-
sian superposition, by using a new quantum analogue of GPV [GPV08]. For
this, we compute the R, the R-factor of its QR-factorization using a quantum
adaptation of Householder’s algorithm.

Quantum analogue of GPV. The (classical) GPV algorithm [GPV08] allows to
sample from a discrete Gaussian over a lattice, with the special property that
the parameter σ can be chosen almost as small as the largest Gram-Schmidt
norm of the given basis of the lattice. In this paper, propose a novel algorithm
to construct an approximate discrete Gaussian quantum superposition, by com-
bining the original techniques of the classical algorithm by Gentry, Peikert and
Vaikuntanathan [GPV08] and an algorithm of Kitaev and Webb [KW09] that
computes a Gaussian superposition over Z efficiently. Much of the proof that the
approximation is sufficiently close consists of numerical analysis.

Parameters of the algorithm. In Section 5, we collect all relations and constraints
related to the parameters of our algorithm, in order to fix values that minimize
the exponents of the polynomials defining the quantum gate and memory costs.

Relation between our work and [BS25], the full version of [BS16]. This
paper heavily builds on an extended abstract published on SODA in 2016 [BS16],
whose complete version was released shortly (1 day) before the release of this
work. We will cite it as [BS25], and consider it as concurrent work. We highlight
the differences and similarities between our approach and [BS25] during the
course of the paper.
Our current understanding is that the running time of the oracle defined in [BS25]
has polynomial growth in V , which is the upper bound on the Euclidean norm
of its input [BS25, Theorem 2]. The analysis of [BDF19] gives that this V has
linear growth in 1/τ (see Theorem K.1), where τ is the absolute error on the
output basis of the CHSP solver. This dependency makes the oracle defined
in [BS25] exponential in quantum space and gate count when one wants τ ex-
ponentially small. Our oracle does not present this problem, and allows τ to be
as small as ((d + |S|)(d+|S|)|∆K |)−O(d+|S|) while preserving a polynomial gate
and memory complexity. In Appendix G, we analyze the precision required to
compute a (exact) compact representation of a basis of O×

K,S and we show that

τ = ((d+ |S|)(d+|S|)|∆K |)−O(d+|S|) indeed suffices.

Acknowledgments. During most of the time this research took place, Joël
Felderhoff was working at the ENS de Lyon, LIP (UMR 5668) and funded by

5

the Direction Générale de l’Armement (Pôle de Recherche CYBER). Joël Felder-
hoff’s work is supported by UKRI grant EP/Y02432X/1. The authors want to
thank Léo Ducas, Guillaume Hanrot, Vincent Lefèvre and Gilles Villard.

2 Preliminaries

2.1 Notations

We denote N,Z,Q,R,C for respectively the natural numbers, the integers, the
rational numbers, the real numbers and the complex numbers. Vectors are con-
sidered column vectors and are, like matrices, denoted with bold letters. The
inner product, except for the bra-ket notation, is denoted with a simple dot ·.
We make use of the Landau notation O(·), in which, in this work, the hidden con-
stant is always absolute, meaning that it does not depend on any other quantity.
For any a, b ∈ R, we denote Ja, bK := [a, b]∩Z and JaK := J0, aK to simplify nota-
tion involving integer intervals. The proofs of the preliminary results presented
in this section are available in Appendix B.

2.2 Quantum algorithms, complexity and analysis

In this paper, H will denote a Hilbert space, S(H) the unit sphere of H (with
respect to the induced norm on H). When H is defined as a qubit-space, S(H)
is the set of all quantum states of these qubits. For any function f : X → H
and k ∈ Z>0 we define the function f

⊗k : X → H⊗k as f⊗k(x) = f(x)⊗. . .⊗f(x)
for any x ∈ X. We make use of the following result, which describes how a
classical algorithm can be simulated on a quantum computer.

Theorem 2.1 ([NC10, Sec. 1.4.1]). Suppose A is an algorithm that uses N
NAND operations, operates on M bits of memory and output O bits. Then it can
be simulated by a quantum circuit CA , using 2N Toffoli gates, in the following
way:

CA · |m⟩|o⟩|0N ⟩ := |m⟩|o⊕A(m)⟩|0N ⟩ for all m ∈ {0, 1}M and o ∈ {0, 1}O

2.3 Lipschitz continuity and separativity

Throughout this work, unless otherwise specified, we denote ∥·∥ as the Euclidean
norm of vectors, and we denote ∥A∥ = sup∥x∥=1 ∥A · x∥, as the spectral norm
on matrices.

Definition 2.1. Let (X, δ) denote a metric field. Let f : X → H. The func-
tion f is said to be (a, α)-almost Lipschitz continuous if, for all x, y ∈ X,
∥f(x)− f(y)∥ < a · δ(x, y) + α.

In this work, we study a function described by a tail-cut Gaussian super-
position, which cannot be Lipschitz continuous since it is not even continuous

6

in the ordinary sense. We tackle this issue by proving that this function is al-
most-Lipschitz continuous and therefore close to a Lipschitz continuous function
with respect to the uniform norm, see Theorem H.1. This contrasts with [BS25],
where the functions are proven to be close to the infinite Gaussian sum.

Definition 2.2. Let (X, δ) be a metric space, ν > 0 and ε ∈ [0, 1). We say
that f : X → S(H) is (ν, ε)-separating over (X, δ) if for any x, y ∈ X it holds
that

δ(x, y) > ν ⇒ |⟨f(x)|f(y)⟩| ≤ ε

We say that f is ν-totally separating over (X, δ) if it is (ν, 0)-separating.

This property is named “pseudo-injectivity” in [BS25]. Note that the separativity
property depends heavily on the distance notation δ on X. In the use-case of
this paper, f : Rn → S(H) will be a Λ-periodic function for some full-rank
lattice Λ ⊂ Rn. As can be readily verified, such a function cannot be separating
for any parameter. But if we instead consider the induced function f̃ over Rn/Λ,
it might be (ν, ε)-separating over the quotient space Rn/Λ (equipped with the
quotient metric).

2.4 Lattices

A lattice L is a discrete additive subgroup of Rn. For any lattice L of Rn, there
exists a set of R-linearly independent vectors (bi)1≤i≤m such that L =

∑m
i=1 Z·bi.

The family (bi)1≤i≤m is called a basis of L, and it is unique up to the (right)
action of GLn(Z). In this work we only consider full rank lattices, i.e.,m = n. We
define the ith minimum of L as λi(L) := inf {r > 0,dim(span(L ∩B(0, r))) = i}
and the (co-)volume of L as Vol(L) := Vol(Rn/L). If L is full-rank and has a
basis B, then we have Vol(L) = |det(B)|. Note that the volume of L does not
depend on the basis of L.

Lemma 2.1 (Consequence of [MG02, Cor.7.2]). Let L1,L2 two (full rank)
lattices of Rd. Let R ≥

√
d ·max(λd(L1), λd(L2)). Then

L1 = L2 if and only if L1 ∩B(0, R) = L2 ∩B(0, R).

Gaussian measures The Gaussian function with parameter σ > 0 is defined

by ρσ(x) = exp
(
−π(∥x∥2)/(σ2)

)
, and satisfies

∫
Rn ρσ(x)dx = σn. For any dis-

crete X ⊂ Rn, we define ρσ(X) :=
∑

x∈X ρσ(x). For ε > 0 and a lattice L ⊂ Rd,
the smoothing parameter of L is defined as

ηε(L) := inf
{
σ > 0, ρ1/σ(L⋆ \ {0}) ≤ ε

}
,

where L⋆ is the dual lattice of L.

7

2.5 Number theory

We succinctly present the notions of algebraic number theory used in this work.
The interested reader is referred to [Neu13]. In the current paper, K denotes
a number field of degree d, OK its ring of integers and ∆K its discriminant.
Let Φ = (σi)1≤i≤d : K → Cd be the canonical embedding of K. We order
the embeddings σi in such a way that σi(K) ⊂ R for 1 ≤ i ≤ dR are the
real embeddings, and σdR+i = σdR+dC+i for any 1 ≤ i ≤ dC are the complex
embeddings. Note that d = dR + 2dC.

We denote KR = K ⊗ R and extend the canonical embedding Φ = (σi)i to
the entirety of KR by extension of scalars. This canonical embedding endows KR
with the structure of a normed space, where the norm of x ∈ KR is ∥Φ(x)∥. For
sake of brevity, we will write ∥x∥ = ∥Φ(x)∥ and ∥x∥∞ = ∥Φ(x)∥∞.

We define the algebraic norm of any element of KR as N (x) =
∣∣∣∏d

i=1 σi(x)
∣∣∣,

which extends the algebraic norm ofK toKR in the sense thatN (x) =
∣∣NK/Q(x)

∣∣
for x ∈ K. We denote by K×

R := {x ∈ KR | σi(x) ̸= 0 for all i} the group of in-
vertible elements of KR and by K0

R ⊂ K×
R the group of norm-1 elements of K×

R .
The unit group O×

K ⊂ OK is the set of integers of K whose inverse also are
integers. We define the logarithmic embedding of KR,

Log : (K×
R ,×) −→ (RdR+dC ,+)

x 7−→ ((ln(|σi(x)|))i=1,...,dR , (2 ln(|σ(xdR+i)|))i=1,...,dC) ,

which is a surjective group morphism. The logarithmic embedding is not injec-
tive, as its kernel is exactly the group of x ∈ K×

R such that |σi(x)| = 1 for
any i = 1, . . . , d (in contains in particular the roots of unity of K). In order to
turn Log into an injective group morphism, we introduce the extended logarith-
mic embedding.

Definition 2.3. For any z ∈ C\{0}, recall that z can be written as z = ei arg(z) ·
|z| for arg(z) ∈ R/(2πZ). If z ∈ R \ {0}, we have arg(z) ∈ {0, π} depending on

the sign of z. Let Arg : K×
R → {0, π}dR × (R/(2πZ))dC be the function defined

by arg(x) = (arg(σi(x)))1≤i≤dR+dC . We write ArgK = Arg(K×
R) and define the

extended logarithmic embedding as follows:

LogEx : K×
R −→ ArgK ⊕ LogKR
x 7−→ (Arg(x),Log(x))

The function LogEx is a group isomorphism, and we denote by ExpEx its
inverse.

Via the extended log embedding we can introduce a distance on K×
R by defin-

ing δK×
R
(x, y) := δ(LogEx(x),LogEx(y)) (where the latter is induced from the

standard metric on R and R/(2πZ)). This distance is translation invariant with
respect to multiplication byK×

R , i.e., for any a, x, y ∈ K×
R , we have δK×

R
(ax, ay) =

δK×
R
(x, y). Additionally, if the sign of every real embedding of x, y ∈ K×

R coin-

cides, we have δK×
R
(x, y) = ∥LogEx(x)− LogEx(y)∥.

8

Note that, since the definition of δK×
R
involves a discrete distance over {0, π},

it can take infinite values. For example, if dR > 0, we have δK×
R
(1,−1) = ∞, a

case in which (K×
R , δK×

R
) is a disconnected space.

2.6 Ideals

A fractional ideal of K is a discrete additive subgroup I of K that satisfies
α · I ⊆ I for all α ∈ OK . A fractional ideal is integral if it is included in OK .
A replete ideal is a subgroup of KR of the form x · a for a an integral ideal
and x ∈ K×

R .
The set of replete ideals forms a group: The product of two replete ideals

is I · J :=
{∑k

i=1 ai · bi | k ∈ Z>0, ai ∈ I, bi ∈ J
}

and the inverse of a replete

ideal I is I−1 = {x ∈ KR, x · I ⊂ OK}. The fractional ideals forms a group in
the same fashion. The norm of a replete ideal is N (x · a) := N (x) · N (a), which
matches the usual ideal norm in the case of fractional ideals. A principal replete
ideal is an ideal of the form x · OK with x ∈ K×

R . Any fractional ideal I can be
written in a unique way (up to ordering) as a finite product of prime ideals I =∏

p p
vp(I) where vp(I) ∈ Z is the p-adic valuation of I (if x ∈ K, we write vp(x) =

vp(x · OK)). The canonical embedding of any replete ideal is a full rank lattice
in Φ(KR); such a lattice is said to be an ideal lattice. In this work we identify
replete ideals and their embeddings, and denote by IdLatK the set of replete
ideals of K and IdLat0K the set of norm-1 replete ideals.

Definition 2.4. We equip the set IdLat0K with the distance

δideal(I, J) = inf {∥LogEx(x)∥ | x ∈ KR such that x · I = J} ∈ R≥0 ∪ {∞} .

Note that the distance between two ideals is finite if and only if the two ide-
als are in the same co-set of ClK . In [BS25], another distance is considered,
namely the “matrix distance”, defined for any lattices L1,L2 as d(L1,L2) =
inf {∥M∥,L1 = exp(M) · L2}. This distance is more general as it applies to all
lattices, but in our case we choose to restrict it to “diagonal matrices” as it
highlights the commutative nature of ideals, and lead to simpler computations.

S-units Let S be a finite set of prime ideals ofK. We denote the set of fractional
ideals generated by S as ⟨S⟩. The set of S-units is denoted O×

K,S and is the set
of elements of K whose prime factorization only involves primes from S:

O×
K,S = {α ∈ K such that α · OK ∈ ⟨S⟩} ,

Note that O×
K,∅ = O×

K , and O×
K,S ⊂ O×

K,S′ whenever S ⊆ S′.

Properties of ideal lattices Ideal lattices are not typical lattices. They have
some properties that we highlight in the next lemmas. In the first of these lemmas
is shown that ideal lattices have bounded smoothing parameters.

9

Lemma 2.2 ([PRSD17, Lemma 6.9]). Let I ∈ IdLatK . It holds that ηε(I) ≤
(N (I) · |∆K |)1/d ·max

(
1,
√
(ln(1/ε))/d

)
.

The successive minima of ideal lattices are constrained, unlike those of general
lattices. This is shown in the next lemma.

Lemma 2.3 ([LPSW19, Le. 2.2], [BDPW20, Le. 2.8] and [Boe22, Le. 2.22]).
For any J ∈ IdLatK it holds that λ1(J) ≥

√
d · N (J)1/d, and λd(J) ≤

√
d ·

λd(OK) · |∆K |1/(2d) · N (J)1/d, furthermore, λd(OK) ≤
√
d · |∆K |1/d.

For any R > 0 and X ⊆ K×
R we denote X|R = {x ∈ X, ∥x∥ ≤ R}.

Lemma 2.4. Let I ∈ IdLatK and R ≥ N (I)1/d. Then for any x ∈ I \ {0},
y ∈ I|R \ {0} with x ̸= y, it holds that dK×

R
(x, y) ≥ N (I)1/d/2R.

Lemma 2.5. Let R ≥
√
d, and let I, J ∈ IdLat0K such that there exists x ∈

(I ∩ J) \ {0} satisfying ∥x∥∞ ≤ R. Then for any (u, v) ∈ I|R × J |R with u ̸= v,

we have dK×
R
(u, v) ≥ 1/(2R2 · |∆K |1/(2d)).

In the following lemma, we show that the discrete Gaussian distribution over
a lattice cannot have most of its weight on any strict sublattice.

Lemma 2.6 (see also [EHKS14b, Lemma E.5]). Let J ⊊ I ∈ IdLatK .

Then, for any σ ≥ 3 · d3/2 · |∆K |3/(2d) · N (I)1/d it holds that ρσ(J)/ρσ(I) ≤ 2/3.

Balancedness Multiplying an ideal I by some x ∈ K×
R changes the geometry

of I. In order to measure the geometrical impact of the multiplication by such x ∈
K×

R , we use the notion of balancedness.

Definition 2.5 ([FPSW23, Def. 2.4]). Let η ∈ R>1. An element x ∈ KR is

said to be η-balanced if, for any i ∈ JdR + dCK, it holds that |σi(x)| ∈ |N (x)|1/d ·
[1/η, η] .

Lemma 2.7. Let η1, η2 > 1 and x, y ∈ KR such that x is η1-balanced and y
is η2-balanced. Then x · y is (η1 · η2)-balanced.

Lemma 2.8 (Derived of [FPSW23, Alg C.1]). There exists a polynomial
time algorithm SampleBalanced that, on input an ideal I with basis BI of Φ(I) ⊂
Rd and a balancedness parameter η > 1, outputs x ∈ I \ {0} such that

(i) ∥x∥ ≤ η
η−1 · d3/2 · max1≤i≤d ∥b⋆i ∥, where (b⋆i)1≤i≤d is the Gram-Schmidt

basis of BI ,
(ii)

∣∣σi(x)/N (x)1/d − 1
∣∣ ∈ [1 − η−1, η − 1] for all i ∈ J1, dK. In particular, x

is η-balanced.

10

2.7 Computation of the S-Units and CHSP Oracle

The purpose of this paper is to compute an approximation of a basis of the
Log-S unit lattice of a number field. For sufficiently good approximation, it
will yield large elements (in efficient compact representation) generating O×

K,S

(see [BS16]). Acquiring this basis is done by feeding an adequate oracle function
to the CHSP algorithm described in [EHKS14a,BDF19]. For our use-case, we
will rephrase the main statement of [BDF19] in the particular case of the Log-S
unit lattice.
Let S = {p1, . . . , ps} be a set of prime ideals of K, let NS = maxp∈S(N (p))
and BLog ∈ R(dR+dC−1)×(dR+dC) be an orthonormal basis of LogK0

R. We assume
that the size of the ideals is polynomial in d and log |∆K |, that is to say thatNS =

|∆K |d
O(1)

. We say that we compute the S-unit group if we compute a sufficiently
close approximation of a basis of the following lattice, that we call ΛS :{
(θ,x,a) ∈ ArgK × RdR+dC−1 × Zs, ExpEx(θ,V x) ·

s∏
i=1

(
pi

N (pi)1/d

)ai

= OK

}
⊂ R2(dR+dC)−1+s.

In Appendix J we show that ΛS is full rank in R2(dR+dC)−1+s, and we bound
its minima and volume. Any (θ,x,a) ∈ ΛS is associated to an S-unit α =
ExpEx(θ,V x) ·

∏s
i=1 N (pi)

ai/d ∈ O×
KS along with the relation: [

∏s
i=1 p

ai
i] =

[OK] ∈ ClK . Conversely, any element of α ∈ O×
KS satisfying (α) =

∏s
i=1 p

ai
i

is associated with (LogEx(α/N (α)1/d),−a) ∈ ΛS so the knowledge of the full
lattice ΛS gives the full group O×

KS as well as a matrix of relations of the ideals
of S in the class group.
The set S can be any set of prime ideals, but in this paper, in order to simplify
the analysis of ΛS , we assume that S generates ClK . Our result can be amended
to any S by extending it to a larger set S′ that generates ClK (which can be done,
using GRH, by including all prime ideals with norm bounded by 12 log2 |∆K |
[Bac90]), and post-process the resulting S′-unit lattice into the S-unit lattice,
by straightforward lattice algorithms like HNF.

Let V > 0, n and Q be integers. We define V Dn
Q = V 2−Q · J−2Q, 2QKn ⊂

[−V, V]n. Our main result is the following.

Theorem 2.2. Let H be a qubit space of dimension 2n, α ∈ (0, 1/32) and τ ∈
(0, 1) be error parameters, A ≥ 1 and ν ≤ poly(d)−1 two real numbers, then
there exists Q, k ∈ Z>0, V ∈ R>0 such that for any f : R2(dR+dC)−1+s → H
which is (A,α)-almost-Lipschitz, (ν, 1/4− 8α)-separative and ΛS-periodic, there
exists a quantum procedure

– making k oracle calls to f over the set V D2(dR+dC)−1+s
Q ,

– using O((d+ s)Q+ n) qubits,

– using O
(
kQ(d+ s) · (log(kQ(d+ s)))

2
)
quantum gates,

– poly(s, log(a)) classical bit operations,

11

which outputs with probability ≥ 1/2 − 4kα a matrix B̃ for which holds that∥∥∥B − B̃
∥∥∥ ≤ τ , where B is a basis of ΛS satisfying ∥B∥ ≤ (d+ s)O(d+s) · |∆K |.

Furthermore, Q, k and V satisfy

– Q = O
(
(d+ s)2+o(1) · log(A) + log(τ)

)
,

– V ≥ 1 with log(V) = O
(
(d+ s)1+o(1) + log(n) + log(|∆K |)

)
,

– k = O
(
(d+ s)1+o(1) log(A)

)
,

This theorem is a modified version of [BDF19, Theorem 3.3], specialized for
the lattice ΛS . For the sake of completeness, we provide a proof in Appendix K.

3 A quantum encoding of ideal lattices

3.1 Introduction

The goal of this paper is to construct an oracle function for which the period
tells us something about the S-unit group of a number field. Invoking a period-
finding quantum algorithm then allows us to actually compute a representation
of this S-unit group.

As already explained in Section 2.7, a crucial ingredient of this oracle func-
tion is a sound quantum encoding of ideal lattices. Sound, in the way that the
encoding should be well-defined, has a periodicity that allows us to extract in-
formation about the S-unit group, and it should be almost-Lipschitz continuous
and separating. This is respectively shown in Sections 3.2 to 3.4

In this work, a quantum encoding of ideal lattices I ∈ IdLat0K , i.e., an in-
jective function F : IdLat0K → S(H), is constructed by a (tail-cut) Gaussian
superposition over the logarithmic embedded elements of I. This map is similar
to the one presented in [BS16,BS25], which generalize the one first presented
in [EHKS14a]. It differs in the sense that [EHKS14a,BS16] encode elements of I
directly, whereas we encode their logarithmic embedding. We deemed this more
natural, as it maps the multiplicative distance between ideal lattices to an addi-
tive one in the log space. Our encoding also does not encode 0, which is present
in every ideal, as its logarithm is not defined.

The quantum encoding The quantum encoding used in the present work is
defined as follows.

Definition 3.1. Let a, σ, ν ∈ R>0 and R ≥
√
d, and let Enc be an a-Lipschitz

(for some a ∈ R>0) and ν-totally separative map K×
R |R 7→ S(H). For any J ∈

IdLat0K , the punctured tail-cut Gaussian distribution with parameter σ and ra-
dius R on J is the distribution on J \ {0} |R defined by the following rule.

pR,σ(J, x) :=
ρσ(x)

ρσ(J \ {0} |R)

12

The tail-cut Gaussian superposition with parameter σ > 0 and radius R > 0 is
defined by

FR,σ : IdLat0K −→ S(H)

J 7−→ |J⟩ :=
∑

x∈J\{0}|R

√
pR,σ(J, x)|Enc(x)⟩ .

Theorem 3.1. Let σ and R such that σ ≥ 3·d3/2·|∆K |3/(2d); R ≥ 2·σ
√
d ln(32σ).

Let ν = 1/(4R), ν′ ≤ (30 · (5d + 2a))−1, ε′ ≤ 1/30 and Enc : K×
R → H a map

that is injective, a-Lipschitz for some a > 0, totally ν-separative and (ν′, 1− ε′)-
separative.
Then FR,σ is well-defined, [(5d + 2a), 4e−(R/σ)2/2]-almost Lipschitz continuous
and (ν′, 1− ε′)-separative.

Proof. The conditions on σ,R and ν match the conditions of Lemmas 3.1 and 3.3,
hence FR,σ is well defined and [(5d + 2a), 4e−(R/σ)2/2]-almost Lipschitz contin-

uous. Note that for our value of R and σ, it holds that 4e−(R/σ)2/2 ≤ 1/30. We
can then apply Lemma 3.6 and the result follows. ⊓⊔

Remark 3.1. The two types of separativity of Enc capture different properties
of Enc and serve different goals. The total separativity captures the moment at
which ⟨Enc(x)|Enc(y)⟩ is zero; it is indispensable for the Lipschitz analysis, as it
allows to control the interference between different elements x, y ∈ K×

R . In con-
trast, the (ν′, 1−ε′)-separativity captures the moment at which ⟨Enc(x)|Enc(y)⟩
is just a small bit away from 1, and therefore concerns x, y ∈ K×

R that are much
closer to each other; it is this latter separativity that is inherited by the total
fingerprint FR,σ.

3.2 Well-definedness of FR,σ

The following lemma shows that the quantum encoding FR,σ, for adequate pa-
rameters, is well-defined (indeed takes values in S(H)) and injective.

Lemma 3.1. Assume that 0 < ν <
√
d/(2R) and R ≥ d3/2 · |∆K |1/2+1/(2d)

.
Let Enc be an injective, a-Lipschitz (for some a ∈ R>0) and ν-totally separative
map K×

R |R 7→ S(H). Then for any I ∈ IdLat0K , we have FR,σ(I) ∈ S(H).
Furthermore, the function FR,σ is injective.

Proof. Let I ∈ IdLat0K . We first show that FR,σ(I) ∈ S(H). Lemma 2.4 implies
that the distance between two distinct non-zero points of I is always greater
than ν, so ⟨Enc(x)|Enc(y)⟩ = 0 for any x ̸= y ∈ I \ {0} |R. Hence ∥FR,σ(I)∥2 =∑

x∈I\{0}|R pR,σ(I, x) = 1.

We conclude with the injectivity of FR,σ. Let I, J ∈ IdLat0K satisfying FR,σ(I) =
FR,σ(J). Then, by injectivity of Enc, I and J coincide on the ball of radius R.
Then, by Lemmas 2.1 and 2.3, we can conclude that I = J . ⊓⊔

13

3.3 Almost Lipschitz continuity

In this lemma, we give a Lipschitz constant on F∞,σ. The proof is similar to the
one of [EHKS14b, Section D], but adapted with our metric δideal(·, ·), and the
embedding which is Lipschitz over K×

R and not over KR. We also use differential
analysis instead of infinitely close lattices.

Lemma 3.2. Let σ ≥ 2|∆K |1/d, let ν ≤ (8σ
√
d ln(32σ))−1 and let Enc be an a-

Lipschitz (for some a ∈ R>0), ν-totally separative and injective map. Then the
function F∞,σ is (5d+ 2a)-Lipschitz.

Proof. We may without loss of generality assume that I, J ∈ IdLat0K satisfy
δideal(I, J) < ∞, since the statement follows trivially otherwise. So there ex-
ists u ∈ K0

R satisfying ∥LogEx(u)∥ = δideal(I, J) with J = u · I.
Writing |Ψ⟩ = F∞,σ(I) =

∑
x∈I\{0} q(x)|Enc(x)⟩ and |Ψu⟩ = F∞,σ(uI) =∑

x∈I\{0} qu(ux)|Enc(ux)⟩ (where q(x) =
√
p∞,σ(I, x) and qu(ux) =

√
p∞,σ(uI, ux)),

we have, by the triangle inequality

∥Ψ−Ψu∥ ≤ ∥
∑

x∈I\{0}

(q(x)− qu(ux))|Enc(x)⟩∥︸ ︷︷ ︸
|ΨA⟩

+ ∥
∑

x∈I\{0}

qu(ux)(|Enc(x)⟩ − |Enc(ux)⟩)∥

︸ ︷︷ ︸
|ΨB⟩

Let R = 1/(4ν). We have, by Lemma 2.4 and ν-total separativity,

∥|ΨA⟩∥2 =
∑

x,y∈I\{0}

(q(x)− qu(ux))(q(y)− qu(uy)) ⟨Enc(x)|Enc(y)⟩

≤
∑

x∈I|R\{0}

(q(x)− qu(ux))
2 +

∑
x,y∈I\I|R

(q(x)− qu(ux))(q(y)− qu(uy))

≤

 ∑
x∈I|R\{0}

L2
x +

∑
x,y∈I\I|R

LxLy

 ∥LogEx(u)∥2

where Lx is the Lipschitz-constant of the function u 7→ qu(ux) at LogEx(u) = 0
with respect to the metric LogEx(u).

By Lemma C.2, we have
∑

x∈I|R\{0} L
2
x ≤ d2π2 and by Lemma C.3 we have∑

x∈I\I|R Lx ≤ 1, so
∑

x,y∈I\I|R LxLy = (
∑

x∈I\I|R Lx)
2 ≤ 1. Hence,

∥|ΨA⟩∥ ≤
√
d2π2 + 1∥LogEx(u)∥.

We finish by bounding ∥|ΨB⟩∥. We may assume ∥LogEx(u)∥ ≤ ν. For x ∈
I|R, y ∈ I with x ̸= y, by Lemma 2.4 and the triangle inequality, it holds that
dK×

R
(x, y), dK×

R
(x, u · y), dK×

R
(u · x, y) and dK×

R
(u · x, u · y) are all greater than

1/(4R) = ν. Hence, by ν-total separativity of Enc, for x ∈ I|R \ {0} and y ∈
I \{0}, the inner product between |Enc(x)⟩−|Enc(ux)⟩ and |Enc(y)⟩−|Enc(uy)⟩
equals zero if x ̸= y. Hence, by using the Cauchy-Schwarz inequality for the inner

14

products of |Enc(x)⟩−|Enc(ux)⟩ and |Enc(y)⟩−|Enc(uy)⟩, and their a-Lipschitz
continuity, we obtain, by Lemma C.3,

∥|ΨB⟩∥2 = a2 · ∥LogEx(u)∥2
 ∑

x∈I|R\{0}

qu(ux)
2 +

∑
x,y∈I\I|R

qu(ux)qu(uy)


≤ 2 · a2 · ∥LogEx(u)∥2

Hence. ∥Ψ −Ψu∥ ≤ (
√
d2π2 + 1+

√
2a)∥LogEx(u)∥ ≤ (5d+2a)∥LogEx(u)∥,

which finishes the proof. ⊓⊔

We now give the almost-Lipschitz parameters for FR,σ, which allows to take
into account that this map is not continuous due to the tail-cut, which is novel
compared to [EHKS14a,BS25].

Lemma 3.3. Let σ, ν and Enc satisfy the conditions of Lemma 3.2. Then FR,σ

is [(5d+ 2a), 4e−(R/σ)2/2]-almost Lipschitz continuous.

The proof of this lemma can be found in Appendix B

3.4 Separativity

In this section, we describe the separativity condition for the function FR,σ. We
show that if ⟨FR,σ(I1)|FR,σ(I2)⟩ is sufficiently close to 1, then there exists a
small distortion u ∈ K0

R such that u · I1 = I2. The proof technique is similar
to the one of [EHKS14b,BS25], but the details are different as we make use of
the (ν′, 1− ε′)-separativity of Enc. This and the fact that Enc encodes over K×

R
and not KR makes that we do not derive the same conditions on the parameters
σ, R and Enc. The proof of those statements can be found in Appendix B.

Lemma 3.4. Let Enc be (ν′, 1− ε′)-separative injective for some ν′, ε′ ∈ (0, 1),
and let I, J ∈ IdLat0K satisfy ⟨FR,σ(I)|FR,σ(J)⟩ ≥ 1− ε′. Then there exists I ′ ∈
IdLatK with δideal(I, I

′) ≤ ν′ such that I ′ ∩ J ̸= {0}.

The next lemma is adapted from [EHKS14b, Lemma E.7].

Lemma 3.5. Let σ ≥ 3 ·d3/2 · |∆K |3/(2d), R ≥
√
d ·σ and ν ≤ 1/(2R). Let I, J ∈

IdLat0K satisfying (I ∩ J)|R ̸= {0}. Then either I = J or

⟨I|J⟩ < 4

5
.

We now state the separativity of FR,σ.

Lemma 3.6. Let σ ≥ 3 ·d3/2 · |∆K |3/(2d), ν ≤ 1/(2R) and Enc an injective map
which is ν-totally separative over (K×

R , δK×
R
). Furthermore, assume that σ, ν,R

and Enc are such that FR,σ is (A,α)-almost Lipschitz for some A ∈ R with
α ≤ 1/30, and that Enc is (ν′, 1 − ε′)-separative for some ε ∈ (0, 1/30) and
ν′ ≤ 1/(30A). Then the function FR,σ is (ν′, 1− ε′)-separative.

15

4 Implementation of the Quantum algorithm

4.1 Introduction

The goal of the current section is to show how to construct a quantum circuit
evaluating GR,σ and to precisely analyze its quantum complexity. In particular,
we focus on deriving a precise polynomial bound on the number of quantum
gates and qubits required to build the quantum circuit. For the classical oper-
ations that might occur in-between, we are less precise and merely show their
polynomial running time.

We start with defining the quantum oracle GR,σ in Section 4.2, which consists
of a composition of two functions: one that defines the replete ideal I from
exponents of the prime ideals from S (for which holds |S| = s), the embeddings
and the phases. This oracle function is very similar to that of [EHKS14a,BS16].

RdR+dC−1︸ ︷︷ ︸
embeddings

×RdC × ZdR︸ ︷︷ ︸
‘phases’

× Zs︸︷︷︸
prime ideals

−→IdLatK −→ {quantum states}

x, θ, s, a 7→I 7→ FR,σ(I).

We show that a repetition of this oracle function (meaning, a manifold tensor
product) is sufficient for this function to satisfy the conditions of Theorem 2.2.

In Section 4.3, we make the important observation that the CHSP algorithm
(see Theorem 2.2) as in [BDF19] only queries the oracle functions on vectors con-
sisting of dyadic rationals (i.e., rationals with a power of two as a denominator);
in other words it queries the oracle function on a specific grid. This allows for the
precomputation of the ideals, embeddings and phases in a specific power-of-two
way, that vastly diminishes the number of expensive ideal multiplications and
lattice reductions.

These precomputations of these ideals involve exponentially large powers of
prime ideals, for which extra care needs to be taken to to represent them in such
a way that they can be handled and computed with efficiently. This is the object
of Sections 4.4 and 4.5.

The rest of this section is devoted to making precise the computations in Al-
gorithm 4.1 (that computes the quantum function GR,σ) and carefully determine
their quantum gate and memory complexity. We note that a special algorithm
is devised (see Section 4.7) to make ideal multiplication more memory-efficient
in the quantum setting. Also, a new, quantum variant of the GPV algorithm
[GPV08] is used in Algorithm 4.1, of which the algorithm definition, its com-
plexity and numerical analysis is presented in Section 6.

4.2 From ideal lattice encoding to CHSP Oracle

Recall that S = {p1, . . . , ps} be a set of prime ideals of OK of size s generating
ClK , V ∈ R(dR+dC)×(dR+dC−1) a fixed orthonormal basis of Log(K0

R), we define
the function

GR,σ : RdR+dC−1 × RdC × ZdR × Zs → S(H),

16

by

GR,σ(x,θ, s,a) = FR,σ

(
ExpEx ((θ′, s′,BLog · x)) ·

s∏
i=1

(pi/N (pi)
1/d)ai

)
, (1)

where θ′ = θ mod 2π and s′i = π if si is even, 0 else. Apart from the differences
on FR,σ highlighted in the previous sections, this function is essentially the same
as the one presented if [BS25, Section 4].

Lemma 4.1. Assume that R, σ, ν, ν′, and Enc satisfy the hypotheses of Theo-
rem 3.1, then there exists l = O(1) ∈ Z such that G⊗l

R,σ is (ν′, 1/5)-separative.

Proof. This follows directly from Theorem 3.1 and the fact that if a function f
is (ν, 1− ε)-separative, then the function f⊗l is (ν, 1− lε)-separative. ⊓⊔
Lemma 4.2. Assume that R, σ, ν, ν′, a, and Enc satisfy the hypotheses of Theo-
rem 3.1 and let l be as in Lemma 4.1. Then, G⊗l

R,σ is (O(d+a), O(exp
(
−R2/σ2

)
))-

almost Lipschitz.

4.3 From continuous to polynomial-size input space

In [BS25], the product ExpEx ((θ′, s′,BLog · x)) ·
∏s

i=1(pi/N (pi)
1/d)ai is per-

formed using E-ideal arithmetic [BS25, Section 4.2] and approximation of the
exponential function. Overall, this technique consists in representing high power
of ideals pa as a product of smaller elements of small norms and a small norm
ideal. The algorithm is presented in a classic setting but it is implied that it is
transformed into a quantum algorithm by means such as Theorem 2.1. Here, we
twist this approach by noting that in Theorem 2.2, the oracle GR,σ is only called

on a finite set. This set is equal to V D2(dR+dC)+s−1
Q = V

2Q
·J−2Q, 2QK2(dR+dC)+s−1,

meaning that if V andQ can be computed beforehand, our algorithm’s parameter

set can be restricted to V D2(dR+dC)+s−1
Q , allowing for a lot of classical precom-

putation.
Given V and Q, the strategy we choose is to pre-compute classically two-

element representation of a finite (polynomial size) set of integral ideals and
to transform the calls to GR,σ into a (polynomial size) multiplication of ide-
als, which can be done exactly with a quantum algorithm. Recall that V =
[b1, . . . , bdR+dC−1] is an orthonormal basis of Log(K0

R); we have that for any θ′,
s′, x = y · V/2Q with y ∈ J−2Q, 2QKdR+dC−1 and a ∈ J−2Q, 2QKs,

ExpEx ((θ′, s′,V · x)) ·
s∏

i=1

(pi/N (pi)
1/d)ai

=Exp(i(θ′, s′)) ·
dR+dC−1∏

i=1

Exp(bi · xi) ·
s∏

i=1

(pi/N (pi)
1/d)ai

=Exp(i(θ′, s′)) ·
dR+dC−1∏

i=1

Q∏
j=0

bitj(|yi|)=1

Exp(sign(yi)
V

2Q
bi · 2j) ·

s∏
i=1

Q∏
j=0

bitj(ai)=1

(pi/N (pi)
1/d)2

j

.

17

Where bitj(x) is the jth bit in the binary decomposition of x ∈ Z≥0. This
equality implies that if a Z-basis of the ideals

I±,i,j = ExpEx(± V

2Q
bi)

2j · OK and F±,k,j = p±2j

k

has been pre-computed, then up to rescaling by constant factor and multiplying
by a phase, computing the ideal involved in GR,σ(·) is reduced to computing a
polynomially large ideal product. This technique is similar to the one presented
in [BS25, Section 4.1], but with classical precomputation and without needing
E-ideal arithmetic (described in [BS25, Section 4.2]), since we precompute inte-
gral ideals. This also allows us to evaluate our oracle at input θ,x with ∥θ, s∥
exponentially large (which is not the case in [BS25, Theorem 2]).

4.4 Interlude: small approximations of ideals

As said before, the ideals we are considering have exponential size and would
lead to exponential gate and memory complexity. In order to represent and ma-
nipulate those large ideals, the usual method (see for example [BS25, Algorithm
2]) is to use compact representation of ideals, namely a representation of the
form ((αi)0≤i≤k, a) such that

I2
k

=

k∏
i=0

α2i

i · a

with a and the αi of polynomial size. We propose a modification of this method
and show that up to taking a larger (but still polynomially-sized) a, we can have

almost all the geometric information of the ideal I2
k

represented in the ideal a.

Lemma 4.3. Let p,m ≥ 1, and k ≥ 0. For any I ⊂ KR replete ideal, there
exists an integral ideal a and an element α ∈ KR such that and

I2
k

= α · a.

with a satisfying N (a) ≤ BK,p,m,k where

log(BK,p,m,k) ≤ C · d · (log(m) + d+ k + p+ log(|∆K |)) .

for some absolute C > 1, and

δideal(I
2k/N (I2

k

)1/d, a/N (a)1/d) ≤ 2−p/m

Furthermore, if I is a fractional ideal, then there exists a polynomial time algo-
rithm in size(I),m, p, log(|∆K |), k and d computing a basis of a and a polynomial-
size representation of α.

The proof of this lemma is available in Appendix D.

18

4.5 Classical precomputations

We precompute classically in polynomial-time the integral ideals (Ĩ±,i,j)i,j and

(F̃±,k,j)k,j which are the integral approximation of the ideals (I±,i,j)i,j and
(F±,k,j)k,j as described in Lemma 4.3 for m = Q · (dR+dC+ s). These ideals are
represented by a two element representation (see Appendix I for a presentation of

our computation model), which have Euclidean norm (2dN (I)1/d·|∆K |1/(2d))O(1)

for an ideal I. We also pre-compute a two-element representation of the inverses

of the Ĩ±,i,j and F̃±,k,j , which will be used to quantumly compute the product
in an invertible way (see Algorithm 4.2).

These pre-computations allow us to describe the quantum algorithm com-
puting the function GR,σ in Algorithm 4.1. We study its complexity and the
required precision in the next few subsections. The outline of the algorithm is
essentially the same as the one described in [BS25], with explicit Gaussian su-
perposition computation and classical precomputations. In the next subsection,
we detail Algorithm 4.1 step by step.

Algorithm 4.1 Overview of GComputeR,σ,q,p,ε

Input: x ∈ (V/2Q) · J−2Q, 2QKdR+dC−1,θ ∈ RdC , s ∈ ZdR ,a ∈ J−2Q, 2QKs

Output: |ψ′⟩ ε-close to GR,σ(x,θ, s,a).
1: Compute |s′⟩, |θ′⟩ and |y⟩ = 2Q/V · x (see Eq. (1).
2: Compute the list A of ideals associated with y and a (see Eq. (2)).
3: Define b =

∏
a∈A a, compute Hb ← HNF(

∏
a∈A a).

4: Let Mb ← QuantumLLL2d(Hb).
5: Compute B′

b = B̃OK ·Mb/N (b)1/d an approximation of a basis of the canonical
embedding of b/N (b)1/d.

6: Compute R′
b = Householder(B′

b) an approximation of the R-factor of the QR-
factorization of B′

b.
7: Compute |ϕ′⟩ = QGaussian (R′

b), an approximation of the Gaussian superposition
using Algorithm 6.1 with error parameter ε/2, periodization parameter q, devia-
tion 2p · σ, matrix 2p ·R′

b ∈ Zd×d .
8: Apply multiplication by diag(θ, s′) ·B′

b to the coordinate qubits of |ϕ′⟩ to get |φ′⟩.
9: Compute |ψ′⟩ = Enc′(|φ′⟩) an approximation of Enc with precision 2−p over the

state |ϕ′⟩.
10: Un-compute R′

b,B
′
b,Mb,Hb,A,y,θ′ and s′.

11: Return |ψ′⟩.

4.6 Determination of the set of ideals A in Line 2

Let x ∈ (V/2Q) · J−2Q, 2QKdR+dC−1,θ ∈ RdC , s ∈ ZdR ,a ∈ J−2Q, 2QKs be the
input of the algorithm. We approximate the ideal (up to the norm and phase

19

factors)

I =

dR+dC−1∏
i=1

Q∏
j=0

bitj(|xi|)=1

Exp(± V

2Q
bi · 2j) ·

s∏
i=1

Q∏
j=0

bitj(|ai|)=1

p2
j

i .

Recall that we have pre-computed polynomial-size approximations of all of the
ideals of this product (see Section 4.5 for the definitions of F̃ and Ĩ). We can
then define the set

A =
{

˜Isign(xi),i,j , bitj(|xi|) = 1
}⋃{

˜Fsign(ak),k,j , bitj(|ak|) = 1
}
, (2)

where i ∈ J0, dR + dR − 1K, j ∈ J0, QK and k ∈ J1, sK. Note that |A| ≤ Q · (dR +
dC + s) = m. Finally, A can be computed with a number of quantum gates and
memory negligible compared to the rest of the algorithm.

4.7 Computation of the product of ideals in Line 3

A quantum algorithm to compute the product of two ideals in place.
The classical algorithm to multiply two ideals is described in [Coh93, §4.7.1],
and works as follows: if I = (xI) + (yI) and J is given by its HNF (b1, . . . , bd)
with xI , yI , (bi) ∈ K, then the lattice spanned by B = [xI · b1, yI · b1, . . . , xI ·
bd, yI · bd] is I ·J and a basis of it can be extracted by computing the HNF of B.
By Theorem 2.1, there exists a quantum circuit QIdMult such that

QIdMult · |xI , yI⟩|HJ⟩|C ∈ {0, 1}d
2·log(B)⟩ = |xI , yI⟩|HJ⟩|C ⊕HI·J⟩,

where the ⊕ stands for bit-wise xor. In order to adapt this algorithm to the
quantum context and minimize the quantum memory used, we use an ”in-place”
version of it that we call QIdMultInPlace , described in Algorithm 4.2.

Algorithm 4.2 QIdMultInPlace

Input: |xa, ya⟩ a two-element representation of a, |xa−1 , ya−1⟩ a two-element represen-
tation of a−1, |Hb⟩ the HNF of an ideal b.

Output: |xa, ya⟩|xa−1 , ya−1⟩|Ha·b⟩.
1: Initialize the state |xa, ya⟩︸ ︷︷ ︸

R1

|xa−1 , ya−1⟩︸ ︷︷ ︸
R2

|Hb⟩︸ ︷︷ ︸
R3

|0d×d⟩︸ ︷︷ ︸
R4

2: Apply QIdMult on registers R1, R3, R4 yielding |xa, ya⟩|xa−1 , ya−1⟩|Hb⟩|Hab⟩
3: Uncompute the state |Hb⟩ in R3 by applying QIdMult on R2, R4, R3, yielding (by

deletion with bit-wise XOR) |xa, ya⟩|xa−1 , ya−1⟩|0d×d⟩|Hab⟩
4: Swap R3 and R4 and Return R1, R2, R4, R3

As described in Appendix I.2, the classical algorithm computing the product
of two ideals runs in time

O
(
(dω+1 (size(xa) + size(ya) + log(N (a · b))))1+o(1)

)
.

20

In our context, all a are obtained from Lemma 4.3 so that their two element

representation have size O(log
(
B

1/d
K,p,m,Q

)
). The size of b will change during

the algorithm. The overall amount of quantum gates and memory for one call
to QIdMultInPlace is then

O
(
(dω+1 (log(BK,p,m,Q) + log(N (b))))1+o(1)

)
.

The product algorithm of Line 3. Let A = {a1, . . . , ak}. We start by b0 =
OK , represented by the identity matrix, and let bi+1 = ai · bi. We then re-
peatedly use the two-element representation of any ideal ai and their inverse to
multiply bi−1 by ai using QIdMultInPlace .

Complexity. The norm of every ai is bounded by BK,p,m,Q, the norm of bi =∏
j≤i aj then satisfies N (bi) ≤ Bi

K,p,m,Q. The fact that QIdMultInPlace is in
place implies that the quantum memory is re-used from the computation of one
product to the next one. There are at most m terms in the product, the number
of memory qubits used in order to compute the product is then

O
((
dω+1 ·m · log(BK,p,m,Q)

)1+o(1)
)
,

and the required number of quantum gates is

O
((
dω+1 ·m2 · log(BK,p,m,Q)

)1+o(1)
)
.

The final norm of the ideal b is then bounded by Bm
K,p,m,Q.

Error analysis. Let I = Exp(x)
∏s

i=1(pi/N (pi)
1/d)ai be the ideal whose su-

perposition is computed. The ideal distance between b/N (b)1/d and I is, by
Lemma 4.3, bounded by |A| · 2−p/m ≤ 2−p.

4.8 Matrix reduction of Step 4

We implement the 2d-reduction of the integral matrix Hb by using the Quan-
tum LLL procedure. Assessing the complexity of this procedure is not an easy
task. Our first idea would be to simulate the classical LLL algorithm (either
the textbook version [LLL82] or the quadratic complexity version [NS09]) using
Theorem 2.1, but doing so requires a very large amount of quantum memory.
Tiepelt and Szepieniec [TS19] proposed a version of the implementation of text-
book LLL with a new technique to achieve a trade-off between quantum memory
and gates, leading to a better memory efficiency. They claim that their technique
apply to the quadratic-complexity version of LLL, but do not estimate the num-
ber of quantum gates needed in this case. To retain full generality, we will denote
by LLLGates(n, b) (resp. LLLMem(n, b)) the number of quantum gates (resp. of

21

quantum memory) needed to compute the LLL reduction of a full rank integral
matrix of size n × n whose entries are bounded by 2b. For example, for [TS19]
version of textbook LLL, we have (see [TS19, Eq 7, 8 and p.15])

LLLGates(n, b) = O
(
n7 · b3.5

)
and LLLMem(n, b) = O

(
n4b3/2

)
Step 4 is then realized using LLLGates(d,m log(BK,p,Q)) quantum gates and a
quantum memory of LLLMem(d,m log(BK,p,Q)) memory qubits.

Error analysis. These computations are made over integral matrices, hence no
error analysis is required for this step.

4.9 From the exact representation to canonical embedding in Step 5

We recall that the real computations are done within absolute precision 2−p (see
Appendix I.2). As mentioned in Appendix I.2, the integral ideal b is represented
as its basis Mb over BOK

, we now compute the embedding into KR of the basis
of b. This is done by multiplying Mb by BOK

. Note that BOK
is represented in

fixed point representation with an error of 2−p by the matrix B̃OK
.

Complexity analysis The bit-size of B̃OK
is O

(
d2 ·

(
p+ log

(
|∆K |1/d

)))
since BOK

is LLL-reduced. The product B′
b = B̃OK

·Mb/N (b)1/d is computed
in two steps. First, computing Mb/N (b)1/d within precision 2−p, which is done

in time O(d2(log
(
B

m/d
K,p,m,Q

)
)1+o(1)). Then the product of the two matrices is

computed in time

O

(
dω · log

(
p+ log

(
|∆K |1/d

))1+o(1)
)

Error analysis Now that we are working with real values, we track the er-
ror propagation in our computations step by step. We define Bb = BOK

·
Mb/N (b)1/d an exact basis of b/N (b)1/d, letM = Mb/N (b)1/d andM ′ the 2−p

approximation of M . We have B′
b = B̃OK

·M ′, and hence

∥B′
b −Bb∥ ≤

∥∥∥B̃OK
·M ′ −BOK

·M ′
∥∥∥+ ∥BOK

·M ′ −BOK
·M∥

≤2−p · ∥M ′∥+ 2−p · ∥BOK
∥

=poly(d) · 2d−p · |∆K |1/(2d) = 2O(d) · 2−p · |∆K |1/(2d). (3)

4.10 QR factorization of Step 6

The R-part of the QR decomposition of B′
b (which we denote R′

b) is computed
using the Householder algorithm on B′

b with fixed point precision 2−p in black
box.

22

Complexity Classically, computing the R-factor of a matrix of size n×n using
Householder algorithm takes O(d3) real multiplication and additions, leading

to a classical complexity of O

(
d3 ·

(
p+ log

(
|∆K |1/d

))1+o(1)
)
, the number of

quantum memory and gates is then the same as the classical complexity, up to
a constant factor.

Error analysis In Appendix E.1, we prove that there exists an absolute con-
stant C1 > 0 such that∥∥R′

b ·R
−1
b − I

∥∥ ≤ 2C1d · 2−p · |∆K |1/(2d),

where Rb = QR(Bb).

4.11 Computing the Gaussian superposition of Step 7

We propose a quantum implementation of the GPV [GPV08] algorithm. In Ap-
pendix L, we summarize the results needed for our analysis. The Gaussian super-
position is computed by Algorithm 6.1 with error parameter ε/2, periodization
parameter q, deviation 2p ·σ, matrix 2p ·R′

b ∈ Zd×d. At the end of this step, the
main state of the algorithm is an approximation of

C−1
∑

z∈Zd\{0},
∥Bb·z∥≤R

ρσ(Bb · z)|z⟩ (4)

where C > 0 is a normalization factor.

Complexity analysis . By Lemma L.5 and the fact that ∥R′
b∥ ≤ 2O(d) ·

|∆K |1/(2d), the implementation uses

Õ

(
d2 ·

(
log(q) + d+ log

(
|∆K |1/d

)
+ p+ size(σ)

)1+o(1)

+ d · log2(q) · (log(1/ε))3/2
)

quantum gates and

O

(
d ·
(
log(q) + log

(
|∆K |1/d

)
+ p+ size(σ)

)1+o(1)

+ log(1/ε)

)
memory qubits.

Error analysis Theorem 6.1 and the fact that cond(Rb) = 2O(d) imply that as
long as ε, σ,R and q satisfy

– 2C1d · 2−p · |∆K |1/(2d) ≤ ε2/(64d),

– σ ≥ poly(d) · ε−4/d · 2d · |∆K |1/(2d),
– R =

√
ln(2/ε) · d · σ,

– q is a power-of-two larger than ε−4/d · 2O(d),

then the trace distance between Eq. (4) and |ϕ′⟩ is less that ε/2. From now-on,
we fix q to be the smallest power of two satisfying this condition.

23

4.12 Update of the coordinates in Step 8

We apply the linear transformation in order to bring the output state close to

|ψ⟩ = C ′−1
∑

z∈Zd\{0},
∥Bb·z∥≤R

ρσ(Bb · z)|B′
b · z⟩, (5)

where |x⟩ is the representation of x ∈ KR as a d-dimensional vector of com-
plex numbers represented in fixed points with precision 2−p. This register has
size O(d(p+ log(R))). The complexity of this step is negligible compared to the
rest of the computations.

Error analysis Since the update is a trace-preserving operation over the qubits,
the error between |ψ⟩ and |ψ′⟩ is carried from the previous computation, so it is
less than ε/2.

Encoding the elements of KR in Step 9 Let b′ = ExpEx(θ, s) · b/N (b)1/d.
By multiplying by the phases and applying Enc′ on the elements register (|B′

b ·z⟩
in Eq. (5)), the state approximates FR,σ(b

′), where FR,σ is defined in Section 3.

Complexity analysis . The complexity in terms of quantum gates and memory
of this step is exactly the same as the one to compute Enc with precision 2−p,
it is negligible compared to the rest of the computation.

Error analysis . The error analysis is described in Appendix E.2. We give here
the final result: the distance between |ψ′⟩ and FR,σ(b

′) is less than 2−p + ε/2.

4.13 Final distance to GR,σ

We have that GR,σ(x,θ, s,a) = FR,σ(I
′), with I ′ = ExpEx(θ, s) · I with the

notation of the previous subsection. The state computed by Algorithm 4.1 is an
approximation of FR,σ(b

′), the distance between I ′ and b′ is bounded by 2−p so
we have that as long R, σ, ν and Enc follow the hypothesis of Theorem 3.1 for
some a, ν′, ε′, then FR,σ is

∥|ψ′⟩ −GR,σ(x,θ, s,a)∥ ≤ 2−p+ε/2+(5d+10a) ·2−p+4 exp
(
−(R/σ)2/2

)
. (6)

This concludes this section.

5 Parameters and final complexity

In order to simplify computations, we assume that s = |S| = poly(d, log(|∆K |))
(else, the number of considered ideals is exponential), and NS ≤ |∆K |O(1) ·2dO(1)

in order to have polynomial-sized ideals1. Note that this is not needed for the
algorithm to work and terminate and for the polynomial complexity.

1 Note that in order to compute the whole class group, assuming GRH [Bac90], it
suffices to take S to be the set of all prime ideals of norm ≤ 12(log |∆K |)2.

24

5.1 Choosing σ,R and p

Let σ,R, ν, p and ε the parameters of Algorithm 4.1. For this analysis, we in-
stantiate Enc = EncR,t where EncR,t is defined in Definition M.3. We will fix

the parameter t in this section. Note that by Lemma M.3, it is 2
√
d · t to-

tally separative and a =
√
d · π/(2t)-Lipschitz. By Corollary M.1, it is also

(2
√
d · t/(

√
10 · π), 29/30) separative. The parameters need to satisfy several

hypotheses. First, we fix σ, it needs to satisfy σ ≥ 3 · d3/2 · |∆K |3/(2d) for Theo-
rem 3.1 and σ ≥ 2O(d) ·ε−4/d|∆K |1/2d for Corollary L.2. There exists an absolute
constant cσ ≥ 1 such that fixing

σ = (2d · ε−1/d)cσ · |∆K |3/(2d)

satisfies all these conditions.
We now fix R. It needs to satisfy

– R ≥ 2 · σ
√
d ln(32σ) for Theorem 3.1,

– R ≥ O(
√
ln(1/ε) · d/π) · σ for the error in the almost-Lipschitz continuity

of Theorem 3.1, equal to 4 exp
(
−(R/σ)2/2

)
to be smaller than ε/4,

– R ≥
√

ln(2/ε) · d · σ for Theorem 6.1 with error parameter ε/2.

Note that for any d ≥ 2, ε < 1, we have that ln(1/ε) ≤ O(d) · ε−1/d. There exists
an absolute constant cR ≥ 1 such that fixing

R =
(
2d · ε−1/d

)cR
· |∆K |1/d

satisfies all these conditions.
Now we fix t. Let ν = 2

√
d · t and ν′ = 2

√
d · t/(

√
10 · π), they need to satisfy

– ν ≤ 1/(2R) for Theorem 3.1 (where ν = 2
√
d · t);

– ν′ ≤ poly(d) · s · log(NS))
−1 to satisfy Theorem 2.2.

There exists an absolute constant ct ≥ 1 such that fixing

t =
(
ε1/d · 2−d · |∆K |−1/(2d)

)ct
satisfies all these conditions. Finally, we fix the precision parameter p of Algo-
rithm 4.1. The conditions it needs to satisfy are

– 2−p ≤ ε2 · poly(d)−1 · 2−O(d) · |∆K |−1/d
for Theorem 6.1,

– 2−p+(5d+10a)·2−p+3ε/4 ≤ ε, where a =
√
d·π/(2t) for the right-hand-side

of Eq. (6) to be less than ε.

So there exists an absolute constant cp ≥ 1 such that fixing

p = cp ·
(
d+ log

(
|∆K |1/d

)
+ log(1/ε)

)
satisfy those conditions.

We do amplify a constant number of time the function GR,σ, as noted in Lem-
mas 4.1 and 4.2. This has no impact on the parameter choice and the complexity,
up to a constant factor.

25

5.2 Final complexity of the quantum oracle

In this subsection, we compute the final complexity of Algorithm 4.1 for the
previously computed values of σ,R, t, p, and the value of Q of Theorem 2.2. We

also take our error parameter to be ε = 2−Θ(d) · |∆K |Θ(1)
. This implies that we

take σ = (2d · |∆K |1/d)O(1), R = (2d · |∆K |1/d)O(1), t = (2−d · |∆K |−1/d
)Ω(1),

p = O (d+ log(|∆K |)), q = O
(
d+ log

(
|∆K |1/d

))
. Now, using Proposition G.1,

we fix τ = 2−Θ((d+s)2 log(d+s)) · |∆K |−Θ(d+s)
to be the error parameter of Theo-

rem 2.2, which gives

Q = O
(
(d+ s)2+o(1)

(
log
(
|∆K |1/d

)
+ d
))

We now bound the complexity of each steps of Algorithm 4.1 for the parameter
values we computed. For readability we will omit the O notation. We have that

m = Q · (dR + dC + s) = (d+ s)3+o(1)
(
log
(
|∆K |1/d

)
+ d
)
,

and

log(BK,p,m,Q) = d(d+ s)2+o(1)
(
log
(
|∆K |1/d

)
+ d
)
.

For the sake of brevity, we defer the step-by-step description of the costs to
Appendix F.

Overall complexity The overall complexity of computing G within preci-

sion |∆K |−Θ(1) · 2−Θ(d) is dominated by Steps 3 and 4.

Theorem 5.1 (Overall complexity of the oracle computation). With all
the parameter fixed in Section 5, it holds that the complexity of Algorithm 4.1 is:
Quantum memory:

LLLMem

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
+O

(
dω+2+o(1) · (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
.

Gate count:

LLLGates

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
+O

(
dω+2+o(1) · (d+ s)8+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)3+o(1)

)
.

Omitting big-O notation again, the output space is of size (see Eq. (38))

log
(
dim(Hν/2)

)
= d · (d+ log

(
|∆K |1/d

)
),

26

and the Lipschitz constant A of G satisfies

log(A) = d+ log
(
|∆K |1/d

)
.

Corollary 5.1. The complexity of the quantum procedure of Theorem 2.2 run-
ning with this paper’s quantum implementation of the oracle G is:
Quantum memory:

LLLMem

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
+O

(
dω+2+o(1) · (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
.

Gate count:

LLLGates

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
·O
(
(d+ s)1+o(1)

(
log
(
|∆K |1/d

)
+ d
))

+O

(
dω+2+o(1) · (d+ s)9+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)4+o(1)

)
.

The proof of this corollary can be found in Appendix B.

6 An efficient quantum circuit for the GPV algorithm,
computing a Gaussian lattice superposition

In this section, we will present a new and efficient algorithm to compute an
approximation of the Gaussian quantum state

c−1
Λ,σ

∑
z∈GQ

ρσ,c(Bz)|z⟩,

where GQ = {−2Q/2, . . . , 0, . . . , (2Q − 1)/2}n \ 0 ⊆ Zn, a centered set of repre-
sentatives of (Z/2QZ)n, with Q ∈ Z>0. This will be done by combining two tech-
niques; one of Kitaev and Webb [KW09], which allows to compute a Gaussian
superposition over Z efficiently; and one of Gentry, Peikert and Vaikuntanathan
[GPV08], which is a classical technique computing general discrete Gaussian dis-
tributions from Gaussian distributions over Z. Though this latter technique is
classical, it is here amended for our quantum setting.

Recall the definition of the Gaussian function from Section 2.4. For c,x ∈ Rm,
we denote ρσ,c(x) = e−π∥x−c∥2/σ2

.

Theorem 6.1. For any ε ∈ (0, 2−n), and any non-singular upper triangular ma-
trix R,R′ ∈ Zn×n with positive diagonal satisfying

∥∥R′R−1 − I
∥∥ ≤ ε2/(16n) ≤

27

Algorithm 6.1 QuantumGaussian

Input: An upper triangular invertible matrix R = [r1, . . . , rn] ∈ Zn×n with positive diagonal, a
center c ∈ Zn, a deviation σ ∈ Q>0 and a window parameter q ∈ Z>0 that is a power of 2.

Output: A quantum state ε-close in the trace distance to

C
−1

∑
z∈(Z/qZ)n

ξσ,c,q(R, z)|z⟩,

where C ∈ R>0 satisfies C2 =
∑

z∈Zn ρσ(Rz)2.

1: Initialize |R⟩|c⟩|σ⟩|0⟩|0⟩.
2: Compute c′ = cn

rn,n
and (σ′)2 = σ2/r2

n,n. Put it in the state

|B⟩|c⟩|σ⟩|c′, (σ′
)
2⟩|0⟩

3: Use QGauss
(q,ε/(2n))
Z the periodized discrete Gaussian over Z with center c′ and deviation σ′

within trace distance ε/(2n).

|R⟩|c⟩|σ⟩

|c′, (σ′
)
2⟩ · C−1

0

∑
z∈Z/qZ

ξ̃σ′,c′,q(1, z)|z⟩

 |0⟩,

where C0 ∈ R>0 satisfies C2
0 =

∑
z∈Z ρσ′,c′ (z)

2 and ξ̃ signifies that it is a close approximation
of ξ.

4: Then uncompute c′ and (σ′)2 to obtain

|R⟩|c⟩|σ⟩|0⟩

C
−1
0

∑
z∈Z/qZ

ξ̃σ′,c′,q(1, z)|z⟩

 |0⟩

5: Compute |c⟩|σ⟩|0⟩|z⟩ 7→ |cz⟩|σ⟩|0⟩|z⟩, where cz := c − zrn. Then we obtain

|R⟩

C
−1
0

∑
z∈Z/qZ

ξ̃σ′,c′,q(1, z)|cz⟩|σ⟩|0⟩|z⟩

 |0⟩

6: Recursively, use the first n−1 basis vectors of R, the center c′
z = πn−1(c−zrn) (where πn−1 is

the projection to the first n−1 coordinates) and deviation σ (using the ancilla space of σ′, c′) to

obtain the periodized discrete Gaussian over R◦ = (r1, . . . , rn−1) within trace distance
(n−1)ε

n ,
yielding

|R⟩ · C−1
0

∑
z∈Z/qZ

ξ̃σ′,c′,q(1, z)|cz⟩|σ⟩|0⟩|z⟩ · C−1
z ·

∑
z◦∈(Z/qZ)n−1

ξ̃σ,cz,q(R◦, z◦)|z◦⟩,

where Cz ∈ R>0 satisfies C2
z =

∑
z◦∈Zn−1 ρσ,cz (R◦z◦)

2, and ξ̃ signifies that it is a close

approximation of ξ.
7: Uncompute the shifts of the center c, i.e., |cz⟩|σ⟩|0⟩|z⟩ 7→ |c⟩|σ⟩|0⟩|z⟩, to obtain

|R⟩|c⟩|σ⟩|0⟩C−1
0

∑
z∈Z/qZ

ξ̃σ′,c′,q(1, z)|z⟩C
−1
z

∑
z◦∈(Z/qZ)n−1

ξ̃σ,cz,q(R◦, z◦)|z◦⟩.

8: Output the resulting state.

1, and σ ≥
√
2 · ln(64n3/ε2) · ∥R∥, then the output of Algorithm 6.1 on input

28

(R′, σ, R, q, c = 0) is ε-close to the state

C ′−1
∑
z∈Zn,

∥Rz∥≤R

ρσ(R · z)|z⟩, (7)

where R =
√
ln(1/ε) · n · σ and q is the smallest power of two such that

q ≥
√
2n · ln(1/ε) · ln(64n3/ε2) · ∥R∥ · cond(R).

Moreover, Algorithm 6.1 uses

Õ
(
n2 · β1+o(1) + n · log2(q) · (log(1/ε))3/2

)
quantum gates and

O
(
n · β1+o(1) + log(1/ε)

)
ancillary qubits, where

β = log(n · q · ∥R∥) + max
i

(size(ci)) + size(σ).

References

Bab85. László Babai. On lovász’ lattice reduction and the nearest lattice point
problem. In K. Mehlhorn, editor, STACS 85, pages 13–20, Berlin, Hei-
delberg, 1985. Springer Berlin Heidelberg.

Bac90. Eric Bach. Explicit bounds for primality testing and related problems.
Mathematics of Computation, 55(191):355–380, 1990.

Ban93. W. Banaszczyk. New bounds in some transference theorems in the ge-
ometry of numbers. Mathematische Annalen, 296(1):625–635, Dec 1993.

BDF19. Koen de Boer, L. Ducas, and S. Fehr. On the quantum complexity of the
continuous hidden subgroup problem. In IACR Cryptol. ePrint Arch.,
2019.

BDPMW20. Koen de Boer, Léo Ducas, Alice Pellet-Mary, and Benjamin Wesolowski.
Random self-reducibility of ideal-svp via arakelov random walks. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy – CRYPTO 2020, pages 243–273, Cham, 2020. Springer International
Publishing.

BDPW20. K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-
reducibility of Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.

BK96. Johannes Buchmann and Volker Kessler. Computing a reduced lattice
basis from a generating system. Unpublished Manuscript, 08 1996.

Boe22. Koen Boer. Random walks on Arakelov class groups. PhD thesis, Leiden
University, 2022.

BPW25. Koen de Boer, Alice Pellet-Mary, and Benjamin Wesolowski. Rigorous
methods for computational number theory. Cryptology ePrint Archive,
Paper 2025/1514, 2025.

29

BS16. Jean-François Biasse and Fang Song. Efficient quantum algorithms for
computing class groups and solving the principal ideal problem in arbi-
trary degree number fields. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, page 893–902. Society
for Industrial and Applied Mathematics, Jan 2016.

BS25. Jean-Francois Biasse and Fang Song. An efficient quantum algorithm
for computing s-units and its applications. (arXiv:2510.02280), October
2025. arXiv:2510.02280 [cs].

CDPR16. R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short gener-
ators of principal ideals in cyclotomic rings. In EUROCRYPT, 2016.

CDW17. R. Cramer, L. Ducas, and B. Wesolowski. Short Stickelberger class rela-
tions and application to Ideal-SVP. In EUROCRYPT, 2017.

Coh93. Henri Cohen. Algorithms for Algebraic Number Theory II. Graduate
Texts in Mathematics. Springer, 1993.

Cop02. D. Coppersmith. An approximate fourier transform useful in quantum
factoring, 2002.

CSV12. Xiao-Wen Chang, Damien Stehlé, and Gilles Villard. Perturbation anal-
ysis of the qr factor r in the context of lll lattice basis reduction. Mathe-
matics of Computation, 81(279):1487–1511, 2012.

EHKS14a. Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A
quantum algorithm for computing the unit group of an arbitrary degree
number field. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing. ACM, 2014.

EHKS14b. Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A
quantum algorithm for computing the unit group of an arbitrary de-
gree number field. Available at: https://www.cse.psu.edu/~sjh26/

units-stoc-submission.pdf, 2014. Full version, Accessed: September
9th, 2025.

FPSW23. Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé, and Benjamin
Wesolowski. Ideal-svp is hard for small-norm uniform prime ideals. In
TCC 2023, 2023.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
2008.

Hal07. Sean Hallgren. Polynomial-time quantum algorithms for pell’s equation
and the principal ideal problem. J. ACM, 54(1), March 2007.

HH21. D. Harvey and J. van der Hoeven. Integer multiplication in time
O(n logn). Annals of Mathematics, 193(2):563–617, 2021.

HR14. Ishay Haviv and Oded Regev. On the Lattice Isomorphism Problem, pages
391–404. 2014.

Kes91. Volker Kessler. On the minimum of the unit lattice. Séminaire de Théorie
des Nombres de Bordeaux, 3(2):377–380, 1991.

KW09. Alexei Kitaev and William A. Webb. Wavefunction preparation and re-
sampling using a quantum computer, 2009.

LJS90. J. C. Lagarias, Hendrik W. Lenstra Jr., and Claus-Peter Schnorr. Korkin-
Zolotarev bases and successive minima of a lattice and its reciprocal lat-
tice. Combinatorica, 10(4):333–348, 1990.

LLL82. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 1982.

30

https://www.cse.psu.edu/~sjh26/units-stoc-submission.pdf
https://www.cse.psu.edu/~sjh26/units-stoc-submission.pdf

Lou00. Stephane Louboutin. Explicit bounds for residues of Dedekind zeta func-
tions, values of L-functions at s=1, and relative class numbers. Journal
of Number Theory, 2000.

LPSW19. Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet.
An lll algorithm for module lattices. In ASIACRYPT, 2019.

ME99. Michele Mosca and Artur Ekert. The hidden subgroup problem and
eigenvalue estimation on a quantum computer. In Colin P. Williams,
editor, Quantum Computing and Quantum Communications, pages 174–
188, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

MG02. Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems:
a cryptographic perspective, volume 671. Springer Science & Business
Media, 2002.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case re-
ductions based on gaussian measures. SIAM Journal on Computing,
37(1):267–302, 2007.

NC10. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2010.

Neu13. Jürgen Neukirch. Algebraic number theory, volume 322. Springer Science
& Business Media, 2013.

Ng24. Iu-Iong Ng. Upper bounding the quantum space complexity for comput-
ing class group and principal ideal problem. (arXiv:2405.12508), May
2024. arXiv:2405.12508 [quant-ph].

NIS25. National institute of standards and technology: Post-quantum cryptog-
raphy standardization, 2025.

NS09. Phong Q. Nguyen and Damien Stehlé. An lll algorithm with quadratic
complexity. SIAM Journal on Computing, 2009.

NS13. J. Neukirch and N. Schappacher. Algebraic Number Theory. Grundlehren
der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2013.

NV09. Phong Q. Nguyen and Brigitte Valle. The LLL Algorithm: Survey and
Applications. Springer Publishing Company, Incorporated, 1st edition,
2009.

PHS19. A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices
with pre-processing. In EUROCRYPT, 2019.

PMS21. Alice Pellet-Mary and Damien Stehlé. On the hardness of the ntru prob-
lem. In Advances in Cryptology – ASIACRYPT 2021, 2021.

PRSD17. Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudoran-
domness of ring-lwe for any ring and modulus. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pages
461–473, 2017.

Sho94. P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations of
Computer Science, page 124–134, Nov 1994.

Sho97. Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Comput-
ing, 26(5):1484–1509, 1997.

SL96. Arne Storjohann and George Labahn. Asymptotically fast computation of
Hermite normal forms of integer matrices. In Proceedings of the 1996 In-
ternational Symposium on Symbolic and Algebraic Computation, ISSAC
’96, page 259–266, New York, NY, USA, 1996. Association for Computing
Machinery.

31

Str69. Volker Strassen. Gaussian elimination is not optimal. Numer. Math.,
13(4):354–356, August 1969.

TS19. Marcel Tiepelt and Alan Szepieniec. Quantum lll with an application to
mersenne number cryptosystems. In LATINCRYPT 2019, 2019.

Wil17. M.M. Wilde. Quantum Information Theory. Cambridge University Press,
2017.

A Extended preliminaries

Lemma A.1 (Smoothing lemma, see the proof of [MR07, Lemma 4.4]).
Let L ⊂ Rd be lattice. Then, for any ε > 0 and σ > ηε(L) we have

(1− ε)
σd

det(L)
≤ ρσ(L) ≤ (1 + ε)

σd

det(L)

Lemma A.2 (Banaszczyk’s tail bound). Let βd(κ) :=
(

2πeκ2

d

)d/2
exp
(
−πκ2

)
.

Let σ > 0 and R ≥ σ ·
√
d. Then for all lattices L ⊂ Rd,

ρσ(L \B(0, R))

ρσ(L)
≤ βd(R/σ) ≤ e−(R/σ)2 . (8)

Proof. The proof of the left-most inequality of Equation (8) is by Banaszczyk
[Ban93, Lemma 1.5]. The right-most inequality follows from the following com-
putation for c > 1.

βd(
√
dc) = (

√
2πe · c · e−πc2)d ≤ (e−c2)d = e−c2d,

and hence βd(R/σ) ≤ e−(R/σ)2 whenever R/σ ≥
√
d.

B Technical proofs

Lemma 2.4. Let I ∈ IdLatK and R ≥ N (I)1/d. Then for any x ∈ I \ {0},
y ∈ I|R \ {0} with x ̸= y, it holds that dK×

R
(x, y) ≥ N (I)1/d/2R.

Proof. Let imaximizing log |σi(x)/σi(y)|. Then we have dK×
R
(x, y) ≥ ∥Log(x)− Log(y)∥2 ≥

∥Log(x)− Log(y)∥∞ ≥ log |σi(x)/σi(y)|. Let s ∈ {−1, 1} be the sign of |σi(x)|−
|σi(y)|. Then, by Lemma 2.3 and the fact that s(|σi(x)| − |σi(y)|) ≥ λ1(I)/

√
d

(by the inequality between infinity norms and Euclidean norms),

dK×
R
(x, y) ≥ s log

∣∣∣∣1 + |σi(x)| − |σi(y)|
|σi(y)|

∣∣∣∣ ≥ log

∣∣∣∣1 + λ1(I)√
d|σi(y)|

∣∣∣∣ ≥ log

(
1 +

N (I)1/d

R

)
≥ N (I)1/d

2R
,

where the last inequality holds since for x ∈ (0, 1), ln(1 + x) ≥ x/2. ⊓⊔

32

Lemma 2.5. Let R ≥
√
d, and let I, J ∈ IdLat0K such that there exists x ∈

(I ∩ J) \ {0} satisfying ∥x∥∞ ≤ R. Then for any (u, v) ∈ I|R × J |R with u ̸= v,

we have dK×
R
(u, v) ≥ 1/(2R2 · |∆K |1/(2d)).

Proof. We write I = x·a and J = y·b for integral ideals a and b, note thatN (x) =
N (a)−1. The condition on I ∩ J implies that N (I ∩ J) ≤ Rd.

By Minkowski’s theorem, there exists a ∈ x−1 · (I ∩ J) such that

∥a∥∞ ≤|∆K |1/(2d) · N
(
x−1 · (I ∩ J)

)
≤|∆K |1/(2d) ·R · N (a)1/d.

In particular this implies that N (a/a) ≤ |∆K |1/2 · Rd. Since a ∈ x−1 · (I ∩ J),
there exists b ∈ b such that x · a = y · b, which implies that x/y ∈ (1/a) · b.
Since a ∈ (x−1) · x · a = a, we have that OK ⊆ (1/a) · a, this implies that J ⊂
(1/a) · a · J . On the other hand we have

I = (x/y) · y · a ⊆ (1/a) · b · y · a = (1/a) · a · J.

We proved that I, J ⊂ (1/a) · a · J . Let u, v ∈ I|R × J |R with u ̸= v. The fact
that J ⊂ (1/a) · a · J implies that N ((1/a) · a · J) ≤ 1, so the condition on R
allows to apply Lemma 2.4:

dK×
R
(u, v) ≥ N ((1/a) · a · J)1/d

2R
.

The fact that N (a/a) ≥ |∆K |−1/2 ·R−d then concludes the proof. ⊓⊔

Lemma 2.6 (see also [EHKS14b, Lemma E.5]). Let J ⊊ I ∈ IdLatK .

Then, for any σ ≥ 3 · d3/2 · |∆K |3/(2d) · N (I)1/d it holds that ρσ(J)/ρσ(I) ≤ 2/3.

Proof. We prove this fact for arbitrary rank d lattices Λ′ ⊊ Λ and σ ≥ 3
√
d ·

λd(Λ), which we will instantiate at the end of this proof with Λ′ = J and Λ = I.
Let Λ′ ⊊ Λ be a sub-lattice of Λ and let w ∈ Λ \ Λ′. Then we have, by a

technique from [HR14, Claim 2.10],

ρσ(Λ
′ + w) + ρσ(Λ

′ − w) =
∑
x∈Λ′

(
e−π∥x+w∥2/σ2

+ e−π∥x−w∥2/σ2
)

= 2e−π∥w∥2/σ2 ∑
x∈Λ′

(
e−π∥x∥2/σ2

cosh
(
2π⟨x,w⟩/σ2

))
≥ 2ρσ(w)ρσ(Λ

′),

by applying the fact that cosh(α) is bounded by 1 for real α. Hence,

ρσ(Λ) ≥ ρσ(Λ
′) +

ρσ(Λ
′ + w) + ρσ(Λ

′ − w)

2
≥ (1 + ρσ(w))ρσ(Λ

′).

33

Therefore,

ρσ(Λ
′)

ρσ(Λ)
≤ 1

1 + ρσ(w)
.

The set {ℓ ∈ Λ | ∥ℓ∥ ≤
√
dλd(Λ)} must contain a HKZ-basis of Λ [LJS90]. So,

for any Λ′ ⊊ Λ there exists w ∈ Λ\Λ′ with ∥w∥ ≤
√
d ·λd(Λ). So there exists w ∈

Λ\Λ′ such that ∥w∥ ≤
√
d ·λd(Λ) < σ/3, hence ρσ(w) ≥ exp

(
−π3−2

)
≥ 0.7, and

thus 1
1+ρσ(w) ≤ 1/1.7 ≤ 2/3. Instantiating this for Λ = I we use the inequality

3 · d3/2 · |∆K |3/(2d) · N (I)1/d ≥ 3 ·
√
d · λd(I),

by Lemma 2.3. This concludes the proof.

Lemma 2.8 (Derived of [FPSW23, Alg C.1]). There exists a polynomial
time algorithm SampleBalanced that, on input an ideal I with basis BI of Φ(I) ⊂
Rd and a balancedness parameter η > 1, outputs x ∈ I \ {0} such that

(i) ∥x∥ ≤ η
η−1 · d3/2 · max1≤i≤d ∥b⋆i ∥, where (b⋆i)1≤i≤d is the Gram-Schmidt

basis of BI ,
(ii)

∣∣σi(x)/N (x)1/d − 1
∣∣ ∈ [1 − η−1, η − 1] for all i ∈ J1, dK. In particular, x

is η-balanced.

Proof. The algorithm consists in running the nearest-plane algorithm with ba-
sis BI with target t = d · ∥B⋆

I ∥ · η/(η− 1) · 1. Let y ∈ Φ(I) be the output of the

algorithm. We have that ∥y − t∥∞ ≤ (
√
d/2) · ∥B⋆

I ∥. This implies that y ̸= 0,
and the bound on ∥y∥. The balancedness of y = Φ−1(y) comes from exactly the
same computations as in the proof of [FPSW23, Lemma C.2] (where we take
M = 2/(η − 1) in that lemma).

Lemma 3.4. Let Enc be (ν′, 1− ε′)-separative injective for some ν′, ε′ ∈ (0, 1),
and let I, J ∈ IdLat0K satisfy ⟨FR,σ(I)|FR,σ(J)⟩ ≥ 1− ε′. Then there exists I ′ ∈
IdLatK with δideal(I, I

′) ≤ ν′ such that I ′ ∩ J ̸= {0}.

Proof. Write |I⟩ = FR,σ(I) and |J⟩ = FR,σ(J). Then, by the Cauchy-Schwarz
inequality,

|⟨I|J⟩| ≤
∑

x,y∈I|R×J|R

√
pR,σ(I, x)pR,σ(J, y)|⟨Enc(x)|Enc(y)⟩|

≤ max
x,y∈I|R×J|R

(|⟨Enc(x)|Enc(y)⟩|) ·
∑

x,y∈I|R×J|R

√
pR,σ(I, x)pR,σ(J, y)

≤ max
x,y∈I|R×J|R

|⟨Enc(x)|Enc(y)⟩|.

Thus, there must exist x ∈ I|R and y ∈ J |R with |⟨Enc(x)|Enc(y)⟩| ≥ |⟨I|J⟩| ≥
1−ε′. Hence, by separativity, we must have δK×

R
(x, y) ≤ ν′, i.e., y/x = ExpEx(θ)

with ∥θ∥ ≤ ν′. Putting I ′ := (y/x) ·I, we have y ∈ (ExpEx(θ) ·I) = (y/x) ·I = I ′

but also y ∈ J . We can therefore conclude that y ∈ I ′ ∩ J with δideal(I, I
′) ≤ ν′.

⊓⊔

34

Lemma 3.5. Let σ ≥ 3 ·d3/2 · |∆K |3/(2d), R ≥
√
d ·σ and ν ≤ 1/(2R). Let I, J ∈

IdLat0K satisfying (I ∩ J)|R ̸= {0}. Then either I = J or

⟨I|J⟩ < 4

5
.

Proof. If I = J , there is nothing to prove. Hence, let us assume that I ̸= J .
Without loss of generality, we assume that ρσ(J |R) ≤ ρσ(I|R). Lemmas 2.5, 2.6,
A.1 and A.2 and the condition on ν implies that

⟨I|J⟩ =
∑

x∈(I∩J)|R\{0}

√
pR(I, x) · pR(J, x) =

ρσ ((I ∩ J) \ {0} |R)√
ρσ(I \ {0} |R)ρσ(J \ {0} |R)

≤ ρσ ((I ∩ J) \ {0} |R)
ρσ(I \ {0} |R)

=
ρσ ((I ∩ J)|R)− 1

ρσ(I|R)− 1
≤ ρσ (I ∩ J)− 1

(1− e−d2) · ρσ(I)− 1

=
ρσ(I ∩ J)
ρσ(I)

· 1− ρσ(I ∩ J)−1

1− e−d2 − ρσ(I)−1
≤ 2

3
· 1

1− e−d2 − ρσ(I)−1

≤ 2

3
· 1

1− e−d2 − (1− e−d)−1 ·
√

|∆K |/σd

≤ 2

3
· 1

1− e−d2 − (1− e−d)−1 · (3
√
2 · d1.5)−d

.

An analysis of this expression shows that for d ≥ 2, it is less than 4/5, hence the
result. ⊓⊔

Lemma 3.6. Let σ ≥ 3 ·d3/2 · |∆K |3/(2d), ν ≤ 1/(2R) and Enc an injective map
which is ν-totally separative over (K×

R , δK×
R
). Furthermore, assume that σ, ν,R

and Enc are such that FR,σ is (A,α)-almost Lipschitz for some A ∈ R with
α ≤ 1/30, and that Enc is (ν′, 1 − ε′)-separative for some ε ∈ (0, 1/30) and
ν′ ≤ 1/(30A). Then the function FR,σ is (ν′, 1− ε′)-separative.

Proof. Let I, J ∈ IdLat0K such that ⟨FR,σ(I)|FR,σ(J)⟩ ≥ 1−ε′. By Lemma 3.4 we
can deduce that there exists I ′ ∈ IdLatK with δideal(I, I

′) ≤ ν′ with I ′∩J ̸= {0}.
Our next aim is to show that I ′ = J , and hence δideal(I, J) = δideal(I, I

′) ≤ ν′,
which then finishes the proof. Writing |J⟩ := FR,σ(J) (and similarly for I ′, I),
we have

⟨I ′|J⟩ = ⟨I|J⟩ − (⟨I| − ⟨I ′|)|J⟩
≥1− ε′ − (A · ν′ + α) by (A,α)-almost Lipschitz continuity

≥9/10.

Now, by Lemma 3.5, this implies that I ′ = J , which finishes the proof. ⊓⊔

Lemma 3.3. Let σ, ν and Enc satisfy the conditions of Lemma 3.2. Then FR,σ

is [(5d+ 2a), 4e−(R/σ)2/2]-almost Lipschitz continuous.

35

Proof. Using that ∥|ΨR⟩ − |Ψ∞⟩∥2 = 2 − 2Re(⟨ΨR|Ψ∞⟩) we concentrate on this
latter inner product. We have

⟨ΨR|Ψ∞⟩ =
∑

x∈I\{0}|R,y∈I\{0}

√
pR,σ(I, x)

√
p∞,σ(I, y) ⟨Enc(x)|Enc(y)⟩

=
∑

x∈I\{0}|R

√
pR,σ(I, x)

√
p∞,σ(I, x) =

∑
x∈I\{0}|R

ρσ(x)√
ρσ(I \ {0} |R)ρσ(I \ {0})

=

√
ρσ(I \ {0} |R)
ρσ(I \ {0})

=

√
ρσ(I|R)− 1

ρσ(I)− 1
=

√
−e−R2/σ2 + 1− ρσ(I)−1

1− ρσ(I)−1

≥
√
1− 2e−(R/σ)2 ≥ 1− 2e−(R/σ)2 .

where the second equality follows from Lemma 2.4, and the last equality from
Banaszczyk’s tail bound (Lemma A.2). In the second last inequality we use
that ρσ(I) ≥ 1

2σ
d/
√
|∆K | ≥ 2 by smoothing arguments (Lemma A.1), and in

the last inequality we use
√
1− 2x ≥ 1− 2x for x ∈ [0, 1]. Hence

∥|FR,σ⟩(uI)− |FR,σ⟩(I)∥
≤ ∥|FR,σ⟩(uI)− |F∞,σ⟩(uI)∥+ ∥|F∞,σ⟩(uI)− |F∞,σ⟩(I)∥+ ∥|F∞,σ⟩(I)− |FR,σ⟩(I)∥

≤
√
4e(R/σ)2 + (5d+ 2a)∥LogEx(u)∥+

√
4e(R/σ)2 .

Hence FR,σ is [(5d+ 2a), 4e−(R/σ)2/2]-almost Lipschitz continuous. ⊓⊔

Corollary 5.1. The complexity of the quantum procedure of Theorem 2.2 run-
ning with this paper’s quantum implementation of the oracle G is:
Quantum memory:

LLLMem

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
+O

(
dω+2+o(1) · (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
.

Gate count:

LLLGates

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
·O
(
(d+ s)1+o(1)

(
log
(
|∆K |1/d

)
+ d
))

+O

(
dω+2+o(1) · (d+ s)9+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)4+o(1)

)
.

Proof. Note that the quantum complexity, both time and space, of the whole
procedure to compute a basis of ΛS is dominated by the computation of G.
By Theorem 2.2 we need to compute the oracle k = O((d + s)1+o(1) log(A)) =

O((d + s)1+o(1)(log
(
|∆K |1/d

)
+ d)) times. By re-using memory, the quantum

memory count is the same as in Theorem 5.1, whereas the quantum gate count

is multiplied by k = O((d+ s)1+o(1)(log
(
|∆K |1/d

)
+d)), which yields the result.

36

C Lipschitz bound on difference of Gaussian sums

Lemma C.1. Let Λ a full rank lattice in Rn, and let 1 > ε > 0 and σ > 2ηε(Λ).
Let X be a random variable sampled from the discrete Gaussian over Λ with
parameter σ. Let i, j ∈ {1, . . . , n}.

Then

–
∣∣∣E(X2

i)− σ2

2π

∣∣∣ < σ2ε
1−ε · 1

4π2 .

–
∣∣∣E(X2

iX
2
j)− 3σ4

4π2

∣∣∣ < σ4ε
1−ε ·

(
3

4π3 + 1
16π4

)
.

Proof. This is a generalization of the proof of [MR07, Lemma 4.2]. ⊓⊔

Corollary C.1. Let I ∈ IdLat0K and σ ≥ |∆K |1/d. Let X̃ be a random variable
sampled from the discrete Gaussian distribution over I \ {0} with parameter σ.
Then for any i, j ∈ {1, . . . , n},

– E
(
X̃2

i

)
≤ 0.4 · σ2 .

– E
(∥∥∥X̃∥∥∥2) ≤ 0.4 · d · σ2

– E
(
X̃2

i X̃
2
j

)
≤ 0.2 · σ4.

– E
(∥∥∥X̃∥∥∥4) ≤ 0.2 · d2 · σ4.

Proof. One can prove that if we set δ = ρσ(I \ {0})−1, then for any function f :
KR → R≥0 satisfying f(0) = 0 it holds that

E(f(X̃)) = (1 + δ) · E(f(X)),

where X is sampled from the Gaussian distribution over I with parameter σ.
By Lemma 2.2, it holds that σ ≥ η2−d(I), which implies that ρσ(I) ≥ (1− 2−d) ·
σd/|∆K |1/2 ≥

√
|∆K | ≥ 2d/2 where the last bound follows from Minkowski’s

theorem. In particular, it holds that δ ≤ (2d/2 − 1)−1. The result follows from
applying Lemma C.1 with ε = 2−d and multiplying by 1 + δ. ⊓⊔

In this subsection, for any I ∈ IdLat0K , x ∈ I and u ∈ K0
R we write hσ(I, x) =

ρσ(x)/ρσ(I) and vσ,I(θ) = (
√
hσ(eθI, eθx))x∈I .

Lemma C.2. Let σ ≥ |∆K |1/d. Then the function θ 7→ vσ,I(θ) is (π · d)-
Lipschitz.

Proof. Note that the derivative with respect to the imaginary parts of θ is equal
to zero, due to the fact that the Gaussian only depends on the norm. Hence,
we only consider θ ∈ RdR+dC . Then, by applying standard derivative rules, we
obtain

∂θi

√
hσ(eθI, eθx) =

−π
σ2

·
√
hσ(eθI, eθx) ·

(∣∣σi(eθx)∣∣2 − E(|σi(Y)|2)
)

37

where Y is a discrete Gaussian sampled over eθI with parameter σ. For any i,
the sequence (θ 7→ ∂θi

√
hσ(eθ · I, eθ · x))x∈I|R converges uniformly to (θ 7→

∂θi
√
hσ(eθ · I, eθ · x))x∈I when R→ ∞. This implies that

∂θi

[
θ 7→ (

√
hσ(eθ · I, eθ · x))x∈I

]
= θ 7→ (∂θi

√
hσ(eθ · I, eθ · x))x∈I .

In particular, if we denote Dvσ,I |θ the differential operator of vσ,I at θ, we have
for all α ∈ RdR+dC ,

Dvσ,I |θ(α) =
−π
σ2

·
d∑

i=1

αi ·
(√

hσ(eθI, eθx) ·
(∣∣σi(eθx)∣∣2 − E(|σi(Y)|2)

))
x∈I

(9)
We then have

∥Dvσ,I |θ(α)∥2 =
π2

σ4

∑
x∈I

d∑
i=1

α2
i · hσ(eθI, eθx) ·

(∣∣σi(eθx)∣∣2 − E(|σi(Y)|2)
)2

≤ ∥α∥2 · π2

σ4

∑
x∈I

hσ(e
θI, eθx) ·

d∑
i=1

(∣∣σi(eθx)∣∣2 − E(|σi(Y)|2)
)2

≤ ∥α∥2 · π2

σ4

∑
x∈I

hσ(e
θI, eθx) ·

d∑
i=1

(∣∣σi(eθx)∣∣4 + E(|σi(Y)|2)2
)

≤ ∥α∥2 · π2

σ4

∑
x∈I

hσ(e
θI, eθx) ·

d∑
i=1

(∣∣σi(eθx)∣∣4 + E(|σi(Y)|2)2
)

≤ ∥α∥2 · π2

σ4
·

(
E
(
∥Y ∥2

)2
+
∑
x∈I

hσ(e
θI, eθx) ·

∥∥eθx∥∥4)

≤ ∥α∥2 · π2

σ4
·
(
E
(
∥Y ∥2

)2
+ E

(
∥Y ∥4

))
≤ d2 · π2 · ∥α∥2,

where the last inequality comes from Corollary C.1. This concludes the proof.
⊓⊔

Lemma C.3. Let σ ≥ 2|∆K |1/d, let R ≥ max(
√
dσ, 4σ log σ) and let I ∈

IdLat0K . Write
gσ(I, x) = ρσ(x)/ρσ(I \ {0})

Define Lx :=
(∑dR+dC

i=1 (∂θi
√
gσ(eθI, eθx)|θi=0)

2
)1/2

, which are Lipschitz con-

stants of the components of the function θ 7→ vσ,I(θ) = (
√
gσ(eθI, eθx))x∈I . We

have ∑
x∈I\B(0,R)

Lx ≤ (1 + π
√
d) · 4 · 2dσd/2|∆K |−1/4

e−R2/(2σ)2

and ∑
x∈I\B(0,R)

√
gσ(I, x) ≤ 4 · 2dσd/2|∆K |−1/4

e−R2/(2σ)2 .

38

Additionally, if R ≥ 2σ
√
d log(32σ), both sums are bounded by 1.

Proof. By the chain rule, we have

∂θi

√
gσ(eθI, eθx) =

1

2
· gσ(eθI, eθx)−1/2 · ∂θigσ(eθI, eθ). (10)

By the quotient rule, we have

∂θigσ(e
θI, eθ) =

ρσ(e
θI \ {0})∂θiρσ(eθx)− ρσ(e

θx)∂θiρσ(e
θI \ {0})

ρσ(eθI \ {0})2

=
−2π · ρσ(eθx)

σ2
·
e2θi |σi(x)|2ρσ(eθI \ {0})−

∑
x∈I\{0} e

2θi |σi(x)|2ρσ(eθx)
ρσ(eθI \ {0})2

=
−2π · ρσ(eθx)

σ2 · ρσ(eθI \ {0})
·
(
e2θi |σi(x)|2 − E[X̃2

i]
)

=
−2π

σ2
· gσ(eθI, eθx) ·

(
e2θi |σi(x)|2 − E[X̃2

i]
)
, (11)

where X̃i is the σi-th component of the random variable over the replete ideal
eθI defined by the probability distribution eθx 7→ gσ(e

θI, eθx).

Combining Equations (10) and (11), we obtain

∂θi

√
gσ(eθI, eθx) =

−π
σ2

√
gσ(eθI, eθx)

(
e2θi |σi(x)|2 − E[X̃2

i]
)
.

Hence, evaluating the derivative at θ = 0 and taking the square of the Euclidean
norm,

L2
x =

π2

σ4
· gσ(I, x)

dR+dC∑
i=1

(|σi(x)|2 − E[X̃2
i])

2 ≤ π2

σ4
· gσ(I, x)

(
∥x∥4 +

dR+dC∑
i=1

E[X̃2
i]

2

)

≤ π2

σ4
· gσ(I, x)

(
∥x∥4 + dσ4

)
where the last inequality follows from Corollary C.1. Therefore, by using

√
a+ b ≤√

a+
√
b for a, b ∈ R>0,

∑
x∈I\B(0,R)

Lx ≤ π

σ2

∑
x∈I\B(0,R)

√
gσ(I, x)∥x∥2 + π

√
d

∑
x∈I\B(0,R)

√
gσ(I, x). (12)

39

We concentrate on the left-hand summand, for which we have∑
x∈I\B(0,R)

√
gσ(I, x)∥x∥2 ≤ 1

ρσ(I \ {0})1/2
∑

x∈I\B(0,R)

e−
π

2σ2 ∥x∥2+2 ln ∥x∥

≤ 1

ρσ(I \ {0})1/2
∑

x∈I\B(0,R)

e−
π

4σ2 ∥x∥2

≤ ρ2σ(I\B(0, R))

ρσ(I \ {0})1/2
≤ e−R2/(2σ)2 · ρ2σ(I)

ρσ(I \ {0})1/2

≤ e−R2/(2σ)2 2 · (2σ)d|∆K |−1/2√
0.5 · σd · |∆K |−1/2 − 1

≤ 4 · 2dσd/2|∆K |−1/4
e−R2/(2σ)2 .

where the second inequality holds since 1
2 ≤ 1 − 2σ2

π

ln(∥x∥2)
∥x∥2 , whenever ∥x∥ ≥

R ≥ 4σ log σ; the fourth inequality by the fact that R ≥
√
dσ and Banaszczyk’s

bound (Lemma A.2); the fifth inequality by smoothing arguments (Lemma A.1)

(which gives an error of e−d for σ ≥ |∆K |1/d); the sixth inequality by the fact

that σd ≥ 4|∆K |1/2.
The right-hand summand of Equation (12) can be similarly bounded by the

fact that∑
x∈I\B(0,R)

√
gσ(I, x) ≤

ρ2σ(I\B(0, R))

ρσ(I \ {0})1/2
≤ e−R2/(2σ)2 · ρ2σ(I)

ρσ(I \ {0})1/2

≤ 4 · 2dσd/2|∆K |−1/4
e−R2/(2σ)2 .

By combining these two bounds, we obtain the bound on the sum over Lx,
whereas just the last computation yields the bound on the sum over

√
gσ(I, x).

For the last statement, we only have to prove the bound of 1 of the first sum,
as the last sum easily follows. If R ≥ 2σ

√
d log(32σ), we have that e−R2/(2σ)2 ≤

(32σ)−d and hence

(1 + π
√
d) · 4 · 2dσd/2|∆K |−1/4 · e−R2/(2σ)2 ≤ (1 + π

√
d) · 4 · 16−dσ−d/2 < 1.

D Compact representation of high powers of an ideal

Lemma D.1. Algorithm D.1 is correct and runs in polynomial time in log(k), d
and in the size of its input. Additionally, a is an integral ideal satisfying N (a) ≤
Cd

η · |∆K |1/2 for Cη = 2d ·d3 · (η−1)−1, and the αi are η-balanced elements of K
with size polynomial in log(Cη), log(|∆K |) and size(I). Furthermore, we always
have t ≤ ⌈log2(k)⌉ for k > 0.

Proof. We prove the correctness by induction on k, where the ground case k = 0
is trivial. We assume k > 0 and k is even. Then, by induction, (a0, β0, . . . , βt−1) =

40

Algorithm D.1 CompRep

Input: An ideal lattice I represented as its basis over BOK , a power k ∈ N, and a
real η ∈ (1, 2)

Output: (a, α0, . . . , αt) such that a ·
∏t

j=0 α
2j

j = Ik.
1: If k = 0, return a = (OK).
2: Compute (a0, β0, . . . , βt−1) = CompRep(I, ⌊k/2⌋).
3: Put a′ = a20 if k is even, a′ = I · a20 else.
4: Compute a LLL-reduced basis B of Φ(a′−1).
5: Compute α′ = SampleBalanced(B, η), and put a = α′ · a′.
6: Put αj = βj−1 for j ∈ {1, . . . , t} and α0 = 1/α′.
7: Output (a, α0, . . . , αt)

CompRep(I, k/2) satisfies (I)k/2 = a0 ·
∏t−1

j=0 β
2j

j . By definition, we have a20 =

a · (α′)−1, hence

(I)k =

a0 ·
t−1∏
j=0

β2j

j

2

= a20 ·
t−1∏
j=0

β2j+1

j = a · (α′)−1 ·
t∏

j=1

α2j

j = a ·
t∏

j=0

α2j

j .

For k is odd we have, by induction (I)(k−1)/2 = a0 ·
∏t−1

j=0 β
2j

j . Since, by definition

we have a · (α′)−1 = I · a20, we obtain

(I)k = I ·

a0 ·
t−1∏
j=0

β2j

j

2

= I · a20
t∏

j=1

α2j

j = a ·
t∏

j=0

α2j

j ,

which finishes the proof.
We will now show the bounds on a and αi of the output. In all cases, a

is either OK or a′ · α′ where α′ is output of SampleBalancedwith a LLL-short

basis of a′−1. This implies that a ⊆ OK , that ∥α′∥ ≤ Cη · det(a′)−1/d
and

that α′ (and hence also α0 = 1/α′) is η-balanced and that its size is polynomial
in log(Cη), log(|∆K |) and size(I). By the arithmetic-geometric mean inequality
we obtain that

N (α′) ≤ (∥α′∥/
√
d)d ≤ Cd

η · det(a′)−1
= Cd

η · N (a′)−1 · |∆K |1/2,

hence N (a) = N (a′) · N (α′) ≤ Cd
η · |∆K |1/2.

For the bound on t, use induction: for k = 1 note that only β0 is de-
fined, hence t = 0. For k > 1, a new αi added to a list of, by induction,
of ≤ ⌈log2(k/2)⌉ ≤ ⌈log2(k)⌉ − 1 elements, which proves the claim.

The fact that k is at least divided by 2 at each recursive call to CompRepimplies
that ⌉log2(k) recursive call are made on input k. The LLL algorithm and ideal
multiplications run in polynomial time on the size of their input, which implies
the claimed running time. ⊓⊔

Note that when computing a compact representation for I2
k

, a compact
representation for I2

j

is computed along the way for all j = 1, . . . , k − 1.

41

Lemma D.2. Let a output from Algorithm D.1 on input I, k, η. Then we have
that

δideal(a/N (a)1/d, Ik/N (Ik)1/d) ≤ 2k
′+1 ·

√
d · (η − 1)

for k′ = ⌈log2(k)⌉.

Proof. One can check that for any I, J ∈ IdLat0K , one has δideal(I
2, J2) ≤

2δideal(I, J). We now show the result for k = 1. We have that a′ = I, and a = α′·I
for α′ satisfying, by Lemma 2.8, that∣∣∣σi(α′)/N (α′)1/d − 1

∣∣∣ ∈ [1− η−1, η − 1].

We denote ã = a/N (a)1/d, Ĩ = I/N (I)1/d and α̃′ = α′/N (α′)1/d. We have
that Ĩ = (α̃) · ã, and hence δideal(Ĩ , ã) ≤

∥∥LogEx(α̃′)
∥∥. Now, for every i =

1, . . . , d, we have that ln
(∣∣σi(α̃′)

∣∣) ≤
∣∣σi(α̃′)

∣∣ − 1 ≤ η − 1. It is also true for

any i = dR + 1, . . . , dR + 2dC that arg(σi(α̃′)) ≤ tan−1(|σi(α′)− 1|) ≤ η − 1.
Finally, it holds that

∥LogEx(α′)∥ ≤
√
d · (η − 1).

For k ≥ 2, by induction we have that the distance between the normalized target
ideal and a′ is multiplied by two at Step 3 and then by the same argument as
for k = 1, the distance is increased by at most

√
d ·(η−1). A bound is then given

by a sequence d1 =
√
d(η − 1), dk = 2dk/2 +

√
d(η − 1). We bound dk by d2k′

for k′ = ⌈log2(k)⌉, and get d2k′ = (2k
′+1 − 1) ·

√
d · (η − 1), which gives us the

desired result. ⊓⊔

Lemma 4.3. Let p,m ≥ 1, and k ≥ 0. For any I ⊂ KR replete ideal, there
exists an integral ideal a and an element α ∈ KR such that and

I2
k

= α · a.

with a satisfying N (a) ≤ BK,p,m,k where

log(BK,p,m,k) ≤ C · d · (log(m) + d+ k + p+ log(|∆K |)) .

for some absolute C > 1, and

δideal(I
2k/N (I2

k

)1/d, a/N (a)1/d) ≤ 2−p/m

Furthermore, if I is a fractional ideal, then there exists a polynomial time algo-
rithm in size(I),m, p, log(|∆K |), k and d computing a basis of a and a polynomial-
size representation of α.

Proof. Let η = 1+2−k−1−p/(
√
d ·m). By Lemma D.1, (a, (αi)) can be computed

(in polynomial time if I is fractional), with αi η-balanced and

I2
k

= a ·
k∏

j=0

α2j

j

42

We have (η − 1)−1 = 2k+1+p ·
√
d ·m, the bound on N (a) then becomes

N (a) ≤ (2k+1+p+d · d3.5 ·m)d
√

|∆K |

= md · d3.5d · 2d
2

· 2d(p+k+1)
√
|∆K |

≤ 2O(d log(m)+d2+dk+dp)
√

|∆K |.

Now we have, by Lemma D.2:

δideal(I
2k/N (I2

k

)1/d, a/N (a)1/d) ≤ 2k+1 ·
√
d ·
(
2k+1+p ·

√
d ·m

)−1

= 2−p/m,

which allows to conclude the proof. ⊓⊔

E Error analysis of Section 5

E.1 Error analysis of Step 6 of Algorithm 4.1

We use the notations defined in Section 4. We define Rb = QR(Bb). Our goal
here is to bound the relative difference between Rb and R′

b. By [CSV12, The-
orem 6.4], there exists a matrix B′′

b within distance poly(d) · 2−p · ∥B′
b∥ ≤

2O(d) · 2−p · |∆K |1/(2d) of B′
b such that R′

b = QR(B′′
b), combining with Eq. (3)

we have that
∥B′′

b −Bb∥ ≤ 2O(d) · 2−p · |∆K |1/(2d).

Now, by [CSV12, Theorem 2.3] we have that as long as p is big enough (p = Ω(d)
is enough),

∥R′
b −Rb∥ ≤ poly(d) · ∥Bb∥ · cond(Bb) · ∥B′′

b −Bb∥

The fact that BOK
is LLL-reduced and Mb too, this implies by [CSV12,

Lemma 5.5] that cond(Bb) ≤ 2O(d), which finally gives∥∥R′
b ·R−1

b − I
∥∥ ≤ poly(d) · 2−p · cond(Bb)

2 · ∥Bb∥

≤ 2O(d) · 2−p · |∆K |1/(2d).

E.2 Error analysis of Step 9 of Algorithm 4.1

We use the notations defined in Section 4. In this section we are bounding the
distance in trace norm between the state output by Step 9 of Algorithm 4.1 (that
we denote |ψ′⟩) and the state FR,σ(b

′). We denote by Bb′ = diag(θ, s′) · Bb

a basis of b′.By the previous computations and the fact that a multiplication
by ExpEx(θ, s) preserves the norm, the state |ϕ′⟩ is an ε/2-approximation of

|ϕb′⟩ = C ′′−1
∑

x∈Zd\{0}
∥Bb′x∥≤R

ρσ(Bb′x)|Bb′ · x⟩.

43

Now, since the Enc is computed with precision 2−p (we denote the approximated
version Enc′) we have that∥∥Enc′|ϕ′⟩ − FR,σ(b

′)
∥∥ ≤

∥∥Enc′ −Enc
∥∥+ ∥|ϕ′⟩ − |ϕb′⟩∥ ≤ 2−p + ε/2.

F Complexity of Algorithm 4.1 step by step

Recall that we take our error parameter to be ε = 2−Θ(d) · |∆K |Θ(1)
. This im-

plies that we take σ = (2d · |∆K |1/d)O(1), R = (2d · |∆K |1/d)O(1), t = (2−d ·
|∆K |−1/d

)Ω(1), p = O (d+ log(|∆K |)), q = O
(
d+ log

(
|∆K |1/d

))
. Now, we

fix τ = 2−Θ(d) · |∆K |Θ(1)
to be the error parameter of Theorem 2.2, this give

that

Q =O
(
(d+ s)1+o(1) (log(|∆K |) + log log(NS) + (d+ s) log(Lip(GR,σ))) + log(τ)

)
=O

(
(d+ s)2+o(1)

(
log
(
|∆K |1/d

)
+ d
))

We now bound the complexity of each steps of Algorithm 4.1 for the parameter
values we computed. For readability we will omit the O notation. We have that

m = Q · (dR + dC + s) = (d+ s)3+o(1)
(
log
(
|∆K |1/d

)
+ d
)
,

and

log(BK,p,m,Q) =d (log(m) + d+Q+ p) + log(|∆K |)

=d(d+ s)2+o(1)
(
log
(
|∆K |1/d

)
+ d
)
.

Step 3. Memory:(
dω+1 ·m · log(BK,p,m,Q)

)1+o(1)

=dω+2+o(1) · (d+ s)5+o(1) ·
(
log
(
|∆K |1/d

)
+ d
)2+o(1)

.

Gate count: (
dω+1 ·m2 · log(BK,p,m,Q)

)1+o(1)

=dω+2+o(1) · (d+ s)8+o(1) ·
(
log
(
|∆K |1/d

)
+ d
)3+o(1)

.

Step 4. Memory

LLLMem

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
.

Gate count

LLLGates

(
d, (d+ s)5+o(1) ·

(
log
(
|∆K |1/d

)
+ d
)2+o(1)

)
.

44

Step 5. Memory and gate count:

d2 · (d+ s)5+o(1) · (log
(
|∆K |1/d

)
+ d)2+o(1)

Step 6 Memory and gate count:

d3 · (d+ log(|∆K |)))1+o(1)

Step 7. Memory:

Õ
(
d2(d+ log(|∆K |))5/2

)
Gate Count:

d(d+ log(|∆K |))

G Postprocessing: from an approximate basis of the
log-S-units to the compact representation of S-units

The aim of this section is to quickly explain how to efficiently compute (a com-
pact representation of) the S-unit α from an approximation of (LogEx(α), (vp(α))p∈S).
In other words, because, generally, α ∈ K is too large to be represented by its
coefficients (its ordinary representation), it is rather written symbolically as
(γ1, . . . , γk), with which is meant that

α =

k∏
i=1

γ2
i

i ,

and where each of the γi are reasonably small. Such a representation is called
the ‘compact representation’.

Another aim of this section is to estimate how precise this approximation
of (LogEx(α), (vp(α))p∈S) (which is in this paper quantified by the error pa-
rameter τ) is required to be in order to make this computation of a compact
representation of α possible.

This section uses similar techniques as in [BS25, Section 8.1], where the
computation of compact representation of S-units is discussed. Our approach
seems to differ in the fact that we keep track of the error required, and that we
use the Buchmann-Pohst-Kessler algorithm in a way that keeps the normalized
logarithmic embedding small, which is essential for our approach to be efficient.

Throughout this section, we assume that S is a finite set of prime ideals
generating ClK and write s = |S|. First, we state a simplified version of a result
from Buchmann and Kessler [BK96], about the stability of the LLL algorithm.

Lemma G.1. Consequence of [BK96, Th. 4.1, Cor. 4.2] Let n ≥ 1, and A ∈
R(n+1)×n generating a rank n lattice L(A) in Rn+1. Let q ∈ Z>0 satisfy

2q >
(n+ 3) · 2(n−3)/2 · (n3/2(n+ 1)1/2/2 + n)n∥A∥n

det(L(A)) · λ1(L(A))
=

eO(n logn)∥A∥n

det(L(A)) · λ1(L(A))
.

45

Let Â = ⌊2qA⌉ ∈ Z(n+1)×n. Let B̂ = Â · U be the output of the Buchmann-

Pohst-Kessler algorithm [BK96, §4] on Â, where U = [u1, . . . ,un] ∈ GLn(Z).
Let B = [b1, . . . , bn] = A ·U with bi ∈ Rn+1.

Then, for all j ∈ {1, . . . , n}, it holds that

∥uj∥ ≤2(n−1)/2+q+1 · λj(L(A)),

∥bj∥ ≤(n+ 2) · 2(n−1)/2 · λj(L(A)).

Proof. This is [BK96, Theorem 4.1], with instantiations n2 = n+1 and k = r =
n, µ = λ1(L(A)), α =

√
n∥A∥ ≥ maxi ∥Ai∥, λ as in [BK96, Proposition 3.2]

and using
√
n(n+ 1) ≤ n+ 1.

Lemma G.2. Let B̃ be an approximation of a basis B of the log-S-unit lattice
ΛS, with error τ < ((d + s)O(d+s) · |∆K |)−(d+s) (with s = |S|); which satisfies
∥B̃∥ ≤ |∆K | · (d+ s)O(d+s).

Then there exists an efficient algorithm that computes an
(
(d+ s)d+s · |∆K |

)−Ω(d+s)
-

close approximation Õ of a basis O of the log-S-unit lattice for which each row
o in O satisfies

o = [Log(γ), (vp(γ))p∈S]

for some γ ∈ K with ∥Log(γ/N(γ)1/d)∥ = O(1) and ∥(vp(γ))p∈S∥ ≤ 2(d+s) log(d+s)·
|∆K |

Proof. Let f1 : RdR+dC → RdR+dC+1 be the transformation

(xσi
)1≤i≤dC+dR 7→ [(xσi

− x̄)1≤i≤dC+dR , x̄],

where x̄ = 1
d

∑
i nσi

xσi
with nσi

= 1 if σi is real and 2 otherwise. Let C (resp

C̃) be the matrix obtained by applying f1 to the dR + dC first coordinates of B
(resp B̃). It can be shown2 that applying f1 changes the volume of a lattice by

a factor 1 + 1
2dC+dR

. It holds that
∥∥∥C − C̃

∥∥∥ ≤ 2τ .

Let C > 1 be a constant to be fixed later, and f2 : RdR+dC+1 → RdR+dC+1 be
the transformation scaling the first dR + dC coordinates by C and the last one
by C−(dR+dC). Note that det(f2) = 1. Let D (resp D̃) be the matrix obtained
by applying f2 to the dR + dC + 1 first coordinates of C (resp D̃). It holds that∥∥∥D − D̃

∥∥∥ ≤ 2 · τ · C.

2 Write n = dR+dC. By the fact that elementary transformations (subtracting from one
coordinate the value of the other) does not change the determinant, we can see that
one could instead study the transformation (xσi)1≤i≤dC+dR 7→ [(xσi)1≤i≤dC+dR , x̄],
which can be described by a (n+ 1)× n matrix T that consists of an n× n identity
matrix on the top and a bottom row consisting of all 1/d or 2/d depending on
whether 1 ≤ i ≤ dR or dR + 1 ≤ i ≤ dR + dC (where d = 2dC + dR). We write this
bottom row by the vector v. We have T⊤T = In + vv⊤ where vv⊤ is the ‘outer
product’ yielding an n× n matrix. By the Weinstein-Aronszajn identity, we obtain
det

(
T⊤T

)
= det

(
In + vv⊤) = 1 + v⊤v = 1 + 1

d
.

46

We now apply Lemma G.1 on the approximated matrix D̃. We have n =
2dR + dC + s, and that D generates the lattice Λ′

S = f2(f1(ΛS)) ⊂ Rm+1. We
take the minimal q ∈ Z>0 that satisfies the requirements of Lemma G.1.

We show at the end of this proof that the precision τ = ((d + s)O(d+s) ·
|∆K |)−(d+s) is sufficiently small in order to be able to compute D̂ (as in Lemma G.1).
Then the Buchmann-Kessler-Pohst algorithm from Lemma G.1 yields a U such
that the vectors of E = [e1, . . . , en] = DU satisfy, for i ∈ {1, . . . , n},

∥ej∥ ≤ (n+ 2) · 2(n−1)/2λj(L(D)).

and
∥uj∥ ≤ 2(n−1)/2+q+1 · λj(L(D)).

With any vector ej of E is associated an S-unit γj ∈ K, and it is clear that
the first dR + dC coefficients of ej are equal to C · Log(γj/N(γj)

1/d). By taking

C ≥ 1000
√
d log(d)

3
, we can, by a very similar reasoning as in Lemma J.3, it

holds that ∥ej∥ ≥ λ1(L(D)) ≥ C ·λ1(ΛS) ≥ 1, and hence, by Minkowski’s second
theorem, writing n = d+ s (with s = |S|),

C · ∥Log(γj/N(γj)
1/d)∥ ≤ ∥ej∥ ≤ (n+ 2) · 2(n−1)/2λj(L(D))

≤ (n+ 2) · 2(n−1)/2 · nn/2 · det(L(D))

≤ 2(n+ 2) · 2(n−1)/2 · nn/2 · det(ΛS)

≤ 2(n+ 2) · 2(n−1)/2 · nn/2 · |∆K | (13)

≤ 2O(n logn) · |∆K |. (14)

where the last inequality follows from Lemma J.2. Hence, by choosing C =
2(n+ 2) · 2(n−1)/2 · nn/2 · |∆K | = exp(O(n log n)) · |∆K | this yields the claim of
the O(1) upper bound on ∥Log(γ/N(γ)1/d)∥ in the statement of this lemma.

For the bound on ∥vp(γ))p∈S∥, a similar argument holds: ∥vp(γj))p∈S∥ ≤
∥ej∥, and hence the bound immediately follows from Equation (14).

The end output of the algorithm is Õ := B̃ · U (with exact analogue O :=
B · U). Hence, ∥Õ − O∥ ≤ ∥U∥ · ∥B̃ − B∥. We have, using that λj(L(D)) ≤
nn det(L(D)), and using Lemma G.1,

∥U∥ ≤ nmax
j

∥uj∥ ≤ n · 2(n−1)/2+q+1 · nn det(L(D)) ≤ 2O(n logn)∥D∥n · det(L(D))

det(L(D)) · λ1(L(D))

≤ 2O(n logn)∥D∥n ≤ 2O(n logn) · Cn · ∥B∥n ≤ 2O(n2 logn) · |∆K |n. (15)

Hence, (writing n = d+ s) in order to have a (nn · |∆K |)−Ω(n)
-close approx-

imation of O, we must require τ < (nO(n) · |∆K |)−n. Note that this τ is also

sufficiently small in order to compute D̂. This finishes the proof.

Lemma G.3. Let ṽ = ((xσ)σ, (np)p) be an approximation of the vector v =
(LogEx(α), (vp(α))p∈S) with ∥Log(α/ log

(
N(α)1/d

)
)∥ ≤ C = O(1), and ∥v∥ ≤

2(d+s) log(d+s) · |∆K |, such that ∥ṽ−v∥∞ ≤ ε/2 with ε < 2−d ·((d+s) log(d+ s)+

47

log(∆K))−Ω(s) < 1. Then there exists an algorithm running in time poly(C, log |∆K |, d, s)
that computes on input ṽ = ((xσ)σ, (np)p), elements β1, . . . , βk ∈ K such that

α =

k∏
i=1

β2i

i .

Proof. Since the error ∥ṽ − v∥∞ is bounded above by a half, we know exactly
the values of vp(α), since they are integer. Hence we deduce

(α) =
∏
p∈S

pvp(α) =: a.

This ideal is enormous and cannot be computed directly. Instead we use Algo-
rithm D.1, and the results Lemmas D.1 and D.2 to compute, for any p ∈ S,
polynomially-sized elements γ1,p, . . . γk,p ∈ K with k = O((d + s) log(d+ s) +
log(|∆K |) and an integral ideal bp for which logN(bp) is polynomial in log |∆K |,
such that

pvp(α) =

k∏
i=1

(γi,p)
2i
bp

for which

δideal

(
bp

N(bp)1/d,

pvp(α)

N(pvp(α))1/d

)
< ε/(2 · s).

This takes time poly(C, logC ′, log |∆K |, log s). We compute a compact represen-
tation (γ1, . . . , γk, b) (with b integral) of a by multiplying component-wise the
compact representations of the pvp(α), still in polynomial time, with

δideal(b/N(b)1/d, a/N(a)1/d) < ε/2

By Lemma 4.3, it holds that N (b) = ((d + s) log(d+ s) + log(C ′) + log(1/ε) +
log(∆K))O(d·s).

Since a = (α) is principal, b is, too. We have that there exists a u with
∥Log(u)∥ < ε/2 such that

u · (α)/N(α)1/d = b/N(b)1/d,

and hence there must be an element β = u · N(b)1/d/N(a)1/d · α such that
(β) = b. In other words,

∥αN(b)1/d/N(a)1/d − β∥ = ∥u− 1∥∥αN(b)1/d/N(a)1/d∥
≤ ε · ((d+ s) log(d+ s) + log(1/ε) + log(∆K))O(s)

≤ ε · log(1/ε)O(s) · ((d+ s) log(d+ s) + log(∆K))O(s)

≤
√
ε · sO(s) · ((d+ s) log(d+ s) + log(∆K))O(s)

≤
√
ε · ((d+ s) log(d+ s) + log(∆K))O(s),

48

where we used that ∥LogEx(α/N(α)1/d)∥ ≤ C = O(1) and that for all x ≥ 1,
log(x)

s
/
√
x ≤ sO(s), which holds by classical real analysis.

So, t = αN(b)1/d/N(a)1/d is a BDD-instance for β ∈ b with error
√
ε · ((d+

s) log(d+ s) + log(∆K))O(s), and the size of t is poly(C, log |∆K |, s).
By LLL-reducing the integral b, we obtain Gram-Schmidt vectors of a basis

of b that are in norm lower bounded by 2−d (since such Gram-Schmidt vectors
satisfy ∥b∗i+1∥ ≥ 3/4·∥b∗i ∥ for all i [NV09, Chapter 2], and ∥b∗1∥ = ∥b1∥ ≥ 1 by in-
tegrality of b). Using the Babai round-off algorithm [Bab85] for solving this BDD
instance, we can retrieve β, whenever

√
ε·((d+s) log(d+ s)+log(∆K))O(s) < 2−d

(which is true by assumption). This yields the result.

Proposition G.1. For the algorithm of [BDF19] described in Section 2.7, it is

sufficient to take τ = |∆K |−(d+s)(d+ s)O(−(d+s)2) with s := |S| in order for the
output approximated basis allowing for computing a compact representation of
all S-units.

Proof. By Lemmas G.2 and G.3 (and the fact that
(
(d+ s)d+s · |∆K |

)−Ω(d+s)
<

2−d · ((d + s) log(d+ s) + log(∆K))−Ω(s)) it is sufficient to show that ∥B̃∥ ≤
|∆K | · (d+ s)O(d+s). But this follows readily from [BDF19, Corollary 6] (which
effectively says ∥B̃∥ ≤ 23m/λ1(Λ

∗
S), where m is the rank of B) and the bound

for λ1(Λ
∗
S) in Appendix J.1.

H A result on almost-Lipschitz periodic functions

In this section, we prove the following result.

Theorem H.1. Let m be an integer, α ∈ (0, 1/4), ε ∈ (0, 1), A, ν > 0, Λ ⊂ Rm

a full rank lattice and H a Hilbert space. Let f : Rm → H that is (A,α)-almost
Lipschitz and (ν, ε)-separative. Then there exists a function g : Rm → H that
is O(m ·A) Lipschitz, (ν, ε+ 8α)-separative such that

max
x∈Rm

∥g(x)− f(x)∥ ≤ 4 · α

Proof. The majority of the proof is done in Lemma H.2. We only need to prove
the separativity. Let x,y ∈ Rm such that ∥x− y∥ ≥ ν, then we have

|⟨g(x)|g(y)⟩| ≤ |⟨f(x)|g(y)⟩|+ 4α ≤ |⟨f(x)|f(y)⟩|+ 8α ≤ ε+ 4α.

⊓⊔

The method to prove the result is to define a mollified version of the almost-
Lipschitz function, to show that this mollified version is close to the original
function and still have the relevant properties.

Definition H.1. For x ∈ R, we define

δ(x) =

η
−2 · (x+ η) if x ∈ [−η, 0],
η−2 · (η − x) if x ∈ [0, η],

0 otherwise

49

This function has the shape of a isosceles triangle starting from −η and end-
ing at η, having height 1/η (at zero). It is symmetric around zero, positive, is
supported on [−η, η], integrates to 1 and has maximum absolute slope η−2.

For x = (x1, . . . , xm) ∈ Rm, we set δ(x) =
∏m

i=1 δ(xi).

Lemma H.1. The function δ : Rn → R is symmetric around zero, positive, is
supported on [−η, η]m, integrates to 1 and has maximum absolute slope nη−(m+1)

and satisfies ∫
a∈Rm

|δ(x− a)− δ(y − a)|da ≤ 2
√
m · η−1 · ∥x− y∥2 (16)

for any x,y ∈ Rm.

Proof. The fact that δ is symmetric around zero (i.e., δ(−x) = δ(x)), positive,
and is supported on [−η, η]n follows from the definition of δ on R in Defini-
tion H.1. The function δ integrates to 1 since it can be integrated component-
wise. The statement about the maximum absolute slope follows from an appli-
cation of the product rule | ∂

∂xi
δ(x)| ≤ η−2

∏
j ̸=i δ(xj). Hence

∥∇δ∥ ≤ ∥∇δ∥1 ≤ η−2 ·
m∑
i=1

∏
j ̸=i

δ(xj) ≤ m · η−(m+1).

We finish with the proof of the statement in Equation (16), where we assume y =
0 without loss of generality and use the fact that δ is symmetric. Note that from
the trick rs − r′σ′ = (r − r′)σ − r′(σ′ − σ) with r = δ(a1 − x1) and r′ = δ(a1)
follows that∣∣∣ m∏

i=1

δ(ai − xi)−
m∏
i=1

δ(ai)
∣∣∣ ≤ |δ(a1 − x1)− δ(a1)|

m∏
i=2

δ(ai − xi)

+ δ(a1)
∣∣∣ m∏
i=2

δ(ai − xi)−
m∏
i=2

δ(ai)
∣∣∣

Therefore, since
∫
a2,...,am

∏m
i=2 δ(ai − xi)da2 . . . dam = 1 and

∫
a1
δ(a1)da1 = 1,

we obtain∫
a∈Rm

|δ(a− x)− δ(a)|da =

∫
a1

. . .

∫
am

∣∣∣ m∏
i=1

δ(ai − xi)−
m∏
i=1

δ(ai)
∣∣∣da1 . . . dam

≤
∫
a1

|δ(a1 − x1)− δ(a1)|da1 +
∫
a2

. . .

∫
am

∣∣∣ m∏
i=2

δ(ai − xi)−
m∏
i=2

δ(ai)
∣∣∣da2 . . . dam

≤
m∑
i=1

∫
ai

|δ(ai − xi)− δ(ai)|dai ≤
m∑
i=1

2η−1|xi| = 2η−1∥x∥1 ≤ 2
√
m · η−1 · ∥x∥2.

The second inequality follows from induction, and the third by inspection: as-
suming without loss of generality that xi > 0, the function |δ(ai + xi) − δ(ai)|
looks like a isosceles trapezoid (with a ’puncture’ in the middle), see Figure 1.
Hence its surface area is at most 2η · η−2xi = 2η−1xi.

50

δ(a) δ(a− x)

|δ(a− x)− δ(a)|

η−1

−η η0 η + x

η−2 · x

Fig. 1. The surface of |δ(a − x) − δ(a)| can be upper bounded by the surface of the
isosceles trapezoid with base length 2η + x and top length 2η − x and height η−2 · x.
This surface equals 2η · x.

Lemma H.2. Let Λ ⊆ Rm be a lattice, let H be a Hilbert space and let S ⊆ H
be the unit vectors in that Hilbert space. Let a ∈ R>0 and α ∈ [0, 14], and let f :
Rm → S be a Λ-periodic function that satisfies ∥f(x) − f(y)∥ ≤ a∥x − y∥ + α
for all x,y ∈ Rm; that is, f is (a, α)-almost Lipschitz.

Then there exists a Λ-periodic function g : Rm → S such that,

max
x∈Rm

∥g(x)− f(x)∥ ≤ 4 · α

and

∥g(x)− g(y)∥ ≤ 24 ·m · a∥x− y∥ for all x,y ∈ Rm,

that is, g is Λ-periodic, 4α-close to f , and (24 ·m · a)-Lipschitz.

Proof. Definition of g
We first put

g0(x) := (f ⋆ δ)(x) :=

∫
a∈Rm

f(a)δ(x− a)da (17)

with δ : Rm → R as in Definition H.1, with η = α/(
√
m · a). Since H is a

complete space, and g0(x) =
∫
a∈Rm f(a)δ(x− a)da can be seen as a limit (for a

fixed x ∈ Rm), we have that g0(x) is a well-defined value in H for every x. In
order to have g(x) ∈ S (i.e., the elements in H with norm 1), we put

g(x) =
g0(x)

∥g0(x)∥
(18)

g is Λ-periodic.

51

As g(·) = g0(·)
∥g0(·)∥ , it is sufficient to show that g0 as in Equation (17) is Λ-

periodic. For all x ∈ Rm and ℓ ∈ Λ, we have g0(x + ℓ) = (f ⋆ δ)(x + ℓ) =∫
a
f(x+ ℓ− a)δ(a)da =

∫
a
f(x− a)δ(a)da = (f ⋆ δ)(x) = g0(x).

g is close to f .
Write f(x) =

∫
a∈Rm f(x)δ(a)da (use that δ integrates to 1). Then, using the

definition of g0 (Equation (17)), we obtain

∥f(x)− g0(x)∥ =

∫
a∈Rm

∥f(x)− f(x− a)∥ · δ(a)da ≤
∫
a∈Rm

(a∥a∥+ α)δ(a)da

= α+ a

∫
a∈Rm

∥a∥δ(a)da

≤ α+ a max
a∈[−η,η]m

∥a∥ ·
∫
a∈Rm

δ(a)da ≤ α+ a
√
m · η ≤ 2α.

(19)

where we use that δ(a) only has support on [−η, η]m, and where we use the
instantiation η = α/(

√
ma). Since this inequality holds for all x ∈ Rm, we

obtain maxx∈Rm ∥f(x)− g0(x)∥ ≤ 2α.

By the ‘reverse triangle inequality’, we have |∥g0(x)∥− 1| ≤ 2α for every x ∈
Rm. Writing a = g0(x) and b = g(x) = a/∥a∥, we have |∥a∥−1| ≤ 2α and ∥b∥ =
1. We can therefore deduce

∥g0(x)−g(x)∥ = ∥a−b∥ =
1

∥a∥

∥∥∥∥a∥·a−a∥∥∥ =
1

∥a∥

∥∥∥(∥a∥−1)·a
∥∥∥ = |∥a∥−1| ≤ 2α

(20)
Combining Equation (19) and Equation (20) we thus obtain

max
x∈Rm

∥g(x)− f(x)∥ ≤ 4 · α.

g is Lipschitz.
We first focus on the Lipschitz constant of the function g0(·). At the end of this

proof we will show that the Lipschitz constant of g(·) = g0(·)
∥g0(·)∥ is then obtained

by multiplying the Lipschitz constant of g by 2
1−2α ≤ 4 (by the assumption α ∈

[0, 14]).

We distinguish two cases, namely ∥x−y∥ ≥ α/a and ∥x−y∥ < α/a. For ∥x−
y∥ ≥ α/a, we have ∥f(x)− f(y)∥ ≤ a∥x− y∥+ α ≤ 2a∥x− y∥. So

g0(x)− g0(y) = (f ⋆ δ)(x)− (f ⋆ δ)(y) =

∫
t∈Rn

(f(x− t)− f(y − t))δ(t)dt.

(21)

Therefore, by the triangle inequality, the positivity of δ, the fact that the distance
between x− t and y − t is the same as the distance between x and y, and the

52

fact that δ integrates to 1,

∥g0(x)− g0(y)∥ ≤
∫
t∈Rm

∥f(x− t)− f(y − t)∥δ(t)dt

≤ 2a

∫
t∈Rm

∥x− y∥δ(t)dt ≤ 2 · a∥x− y∥.

So it remains to show Lipschitzianity for x,y ∈ Rm that are closer to each other
than α/a. For this, we assume ∥x−y∥ ≤ α/a, which implies ∥f(x)−f(y)∥ ≤ 2α.
Put a = (x + y)/2 for the average of these points. Write f0(·) = f(·) − f(a).
Then

∥f0(t)∥ = ∥f(t)− f(a)∥ ≤ a∥t− a∥+ α ≤ 3α

for all t ∈ Rm satisfying ∥t−a∥ ≤ 2α/a. Notice that points t satisfying ∥t−x∥ ≤
α/a or ∥t− y∥ ≤ α/a satisfy ∥t− a∥ ≤ 2α/a. We have

g0(x)− g0(y) = (f ⋆ δ)(x)− (f ⋆ δ)(y) = (f0 ⋆ δ)(x)− (f0 ⋆ δ)(y)

=

∫
t∈Rm

f0(t)[δ(x− t)− δ(y − t)]dt. (22)

Now choose η = α√
ma

, such that δ(·) is supported on the α/a-ball around 0.

Hence, the integrand of Equation (22) is nonzero only if ∥t− a∥ ≤ 2α/a, hence
only if ∥f0(t)∥ ≤ 3α. Therefore, Equation (22) is bounded by

3α ·
∫
t∈[−η,η]m

|δ(x− t)− δ(y − t)|dt ≤ 3α · 2
√
m · η−1 · ∥x− y∥

= 6 ·m · a · ∥x− y∥,

where we use the property in Equation (16) of Lemma H.1.

Note that, by definition, g(x) = g0(x)
∥g0(x)∥ . Hence, writing a = g(x), a′ =

g(y), b = g0(x), b
′ = g0(y), we have a = b/∥b∥, a′ = b′/∥b′∥ and ∥b′∥, ∥b∥ ∈

(1− 2α, 1 + 2α) (by the fact that g0 is 2α-close to f). Hence, we obtain

∥g(x)− g(y)∥ = ∥a− a′∥ = ∥b∥−1
∥∥∥ ∥b∥∥b′∥

b′ − b
∥∥∥.

= ∥b∥−1

(
∥b′ − b∥+

∣∣∣ ∥b∥∥b′∥
− 1
∣∣∣∥b′∥) ≤ 2

1− 2α
·∥b′−b∥ =

2

1− 2α
·∥g0(x)−g0(y)∥.

Hence, the Lipschitz constant of g is bounded by 12·m·a
1−2α ≤ 24 ·m · a (by the

assumption that α ∈ [0, 14].

I Arithmetic over algebraic objects

In this section we show how we represent algebraic elements and how we perform
classical number theoretic algorithms. In the quantum setting, we do not have
specific quantum versions of these algorithm, but rather simulate the classical
algorithms by means of Theorem 2.1.

53

Arithmetic Real numbers are represented in fixed point precision 2−p, for a
value of p determined in Section 4. We have that

– The sum of two integers x, y ≤ B can be computed with O(log(B)) quantum
gates and memory.

– The multiplication of two integers x, y can be computed withO(log(B)
1+o(1)

)
quantum gates and memory using FFT.

– The inversion of an integer x ≤ B can be computed with O((log(B) +
p)1+o(1)) quantum gates and memory.

– Operations over real numbers are done by multiplying the real numbers
by 2p (yielding an integer by fixed precision 2−p) and performing operations
on the resulting integers. So, for real numbers the complexities for addition,
multiplication and inversion is the same as above, with log(B) being replaced
by log(B) + p.

I.1 Representation of algebraic objects

Representation of the field We assume that the field K is given by a defin-
ing polynomial PK of degree d such that K = Q[X]/PK with3 size(PK) =

Õ(log2(|∆K |)). We assume that a Z-basis of elements (ω1, . . . , ωd) for the ring of
integersOK is given, with the additional property thatBOK

= [Φ(ω1), . . . , Φ(ωd)]
which is LLL-reduced. Here, every ωi is given as a rational polynomial Pωi

of degree ≤ d − 1 (seen as element in K = Q[X]/PK). We define |∆K | =
maxi ∥Φ(ωi)∥∞ and sK = max size(Pωi

) where size(P) is the bit-size of the ra-
tional polynomial P . Since BOK

is LLL-reduced, we have log(|∆K |) = O(d +

log
(
|∆K |1/d

)
). Let POK

∈ Qd×d the column matrix of the Pωi
over the ba-

sis 1, X, . . . ,Xd−1, we assume that the matrix P−1
OK

∈ Qd×d is pre-computed

and given. This POK
and P−1

OK
then allows to go back and forth efficiently be-

tween the polynomial representation of an element α ∈ K and its representation
with respect to the basis (ω1, . . . , ωd).

Representation of elements of K Every x ∈ OK is represented as a tu-
ple ((xi)i=1,...,d, Px) ∈ Zd × Q[X], with x =

∑
i xiωi and Px is the represen-

tation of x as an element of Q[X]/PK . By LLL-reduction of BOK
we have

that maxi |xi| ≤ 2d∥Φ(x)∥. We have that Px =
∑

i xiPωi , the bit-size of Px is
then bounded by d · (log(max(xi)) + sK). Finally, the bit-size of x ∈ OK is
bounded by

size(x) ≤ d ·max
i

size(xi) + size(Px) = O (d · (d+ sK + log(∥x∥)))

For any x ∈ K, there exists N ∈ Z>0 such that N ·x ∈ OK . Such an element
is then represented by the triple (N, ((yi)i=1,...,d, Py)) with y = N ·x ∈ OK . Such
a representation of of x ∈ K then satisfies

size(x) = size(y/N) ≤ log(N) + size(y)
3 Such a polynomial always exists and can be found efficiently, given a good basis of
the ring of integers, see [BPW25, §A.4]

54

Representation of ideals of K There are two ways to represent integral
ideals. The first one is a Z-basis in Hermite normal form (HNF) over BOK

.
When an ideal a is represented by a matrix Ha, we have that N (a) = det(Ha),
and the size of every element in Ha is bounded by N (a), we then have

size(Ha) ≤ d2 · log(N (a))

The other way to represent the ideal a is to write it in two-element representation:
a = (xa) + (ya). In this case, the size of the two-element representation is just
the sum of the sizes of xa and ya.
Every fractional ideal can be written I = a/N , with N ∈ Z>0 and a an integral
ideal. We represent the ideal I by the tuple (N, a) for which then holds

size(I) = size(a/N) = log(N) + size(a)

I.2 Algorithms on K

We will now provide the time and memory complexity of the operations on
the algebraic objects discussed. We write ω ∈ (2, 3] for the polynomial expo-
nent of the complexity of matrix multiplication over Z. Addition of two integers
of size B can be performed in time O(B), multiplication can be performed in
time O(B1+o(1)) using the Schönhage-Strassen algorithm.
The addition of two elements x, y ∈ OK is done coordinate-wise within time Õ(d·
size(x, y)). Multiplication of two elements is done by subsequently applying fast-
Fourier multiplication on the respective polynomial parts of their representation,
yielding a polynomial representation of the product, and apply P−1

OK
to obtain the

OK-basis representation as well. This can be done within Õ(d2 · size(x, y)1+o(1))
operations.

Let a = (xa) + (ya) be an ideal given in two element representation and b
given by its HNF [b1, . . . , bd]. The HNF of a ·b is computed by computing B′ =
[xa ·b1, . . . , xa ·bd, ya ·b1, . . . , ya ·bd], computing the HNF [H ∈ Zd×d,0d×d] of B′

and then computing the polynomial representation of the elements represented
by the columns of H by applying P−1

OK
. The first computation can be done

within time Õ(d3 ·size(b, xa, ya)] operations; the HNF is computed in time [SL96]
O((dω+1 log(max(∥xa∥, ∥ya∥) · N (b)))1+o(1)), and the final matrix multiplication
is done in time O(dω · log(N (a · b))). So, the cost of computing the HNF of the
ideal a ·b given the two-element representation of a and the HNF of b is bounded
by

O
(
(dω+1 (size(xa) + size(ya) + log(N (ab))))1+o(1)

)
J Computations for ΛS

In this section, we compute bounds on the lattices invariants of ΛS . Recall that

ΛS =

{
(x,a) ∈ (ArgK ⊕ LogK0

R)× Zs, ExpEx(x) ·
s∏

i=1

(pi/N (pi)
1/d)ai = OK

}
⊂ R2(dR+dC)+s.

55

We prove here the following proposition, some of those follows from compu-
tations in [BPW25, (eprint)]:

Lemma J.1. It holds that

– Vol(ΛS) ≤ |∆K |,
– λ1(ΛS) ≥ (poly(d))−1,

– λ1(Λ
⋆
S) ≥ (2d+ s)−(2d+s)/2+1 · |∆K |−1

.

Lemma J.2. If S is a set of prime ideals generating the class group, then it
holds that 4 Vol(ΛS) = hK ·Vol(Log(OK

×)) = hK ·RK ·
√
dR + dC, where hK is

the class number of K, RK is the regulator, dR is the number of real embedding
and dC is the number of complex pairs of embeddings. In particular, Vol(ΛS)
does not depend on the choice of S (as long as it generates the class group).
Moreover, we have

log(Vol(ΛS)) ≤ log |∆K |.

Proof. The lemma follows from the fact that the volume of the group Pic0K
in [BDPMW20] is equal to the volume of spanR(ΛS)/ΛS , whenever S generates
the class group. Hence, using a bound by Louboutin [Lou00] on the residue ρK of
the Dedekind zeta function at s = 1, applying the class number formula [NS13,
VII.§5, Cor 5.11], we obtain

Vol(Pic0K) ≤ hK ·RK ·
√
dR + dC =

ρK ·
√

|∆K | · |µK | ·
√
dR + dC

2dR · (2π)dC

≤
√

|∆K | · ρK ≤
√

|∆K | ·
(
e log |∆K |
2(d− 1)

)d−1

≤ |∆K |.

The first inequality follows from |µK |
√
dR+dC

2dR (2π)dC
≤ d3/2

2d
≤ 1. The last inequality

follows from the fact that
e log |x|

|x|
≤ 1 for all x ∈ R. This inequality instantiated

with x = |∆K |
1

2(d−1) then yields
(

e log |∆K |
2(d−1)

)d−1

≤
√
|∆K |.

The first minimum of the log-S-unit lattice ΛS can be lower bounded by applying
Kessler’s lower bound on the first minimum of the (ordinary) log-unit lattice
([Kes91]).

Lemma J.3. For any set of prime ideals S, it holds that λ1(ΛS) ≥ 1
1000

√
d log(d)3

.

Proof. Let α ∈ O×
K,S be such that LogS(α) reaches the first minimum of ΛS . If

α /∈ O×
K (and hence has a prime ideal divisor, say p), ∥LogS(α)∥ ≥ |vp(α)| ≥

1 ≥ 1
1000

√
d log(d)3

.

For α ∈ O×
K we apply the lower bound of Kessler [Kes91] to obtain ∥LogS(α)∥ =

∥Log(α)∥ ≥ 1
1000

√
d log(d)3

.

4 We understand Vol(ΛS) as the Volume of the disconnected quotient group.

56

J.1 Bound on the first minimum of Λ∗
S

Let m = dR + dC − 1 be the rank of the unit group of OK . The upper bound
on λ1(Λ

⋆
S) is computed using transference lemmas and Minkowski’s second the-

orem. By Minkowski’s second theorem we have that,

λ1(ΛS) · . . . · λ2m+s+1(ΛS) ≤ (2m+ s+ 1)(2m+s+1)/2 ·Vol(ΛS),

the lower bound on λ1(ΛS) and the upper bound on Vol(ΛS) give that (note
that 2m+ s+ 1 ≤ 2d+ s):

λ2m+s+1(ΛS) ≤ (2d+ s)(2d+s)/2 · |∆K |,

and finally, the transference theorem [Ban93] gives us that there exists a con-
stant c2 > 0 such that

λ1(Λ
⋆
S) ≥ (2d+ s)−(2d+s)/2+1 · |∆K |−1

.

K The CHSP theorem for S-units

Theorem K.1 (From [Boe22, Theorem 3.3]). Let δ, a, λ, λ⋆, D > 0, m,n ≥
1. Let H a quantum Hilbert space of dimension 2n. There exists

Q = O
(
mk + log

(a

λ⋆ · τ

))
, V = O

(
m
√
n

λ⋆ · τ

)
and a quantum procedure which, given oracle access to a function f : Rm → S ⊆
H satisfying

– Λ-periodic for a full rank lattice Λ ⊂ Rm satisfying
• det(Λ) ≤ D,
• λ1(Λ) ≥ λ.
• λ1(Λ

⋆) ≥ λ⋆

– f is a-Lipschitz over V D,
– f is (ν, ε)-separative for ν < λ/6 and ε ≤ 1/4,

outputs with constant success probability an approximate basis B̃ = B +∆B of

the lattice Λ satisfying ∥∆B∥ ≤ τ and
∥∥∥B̃∥∥∥ ≤ (d+ s)O(d+s) ·∆K .

This procedure makes k = O(m log
(√
m · a ·D1/m

)
) oracle calls to f , and usesmQ+

q qubits, O
(
kmQ · (log(kmQ))

2
)
quantum gates and poly(m, log(a/λ)) classical

bit operations. All calls to f are made on the set V D where

V D =
V

2Q
· J−2Q, 2QKm

This last theorem is a modified version of [Boe22, Theorem 3.3], we emphasize
the following facts:

57

– The query set over which f is called is V D, it is finite.
– We give bounds for the invariants of the lattice instead of putting these

invariants directly inside the algorithm parameter.

Note that the previously introduced quantum procedure solves the CHSP
assuming that the function takes input in Rm for m ∈ Z>0, the function pre-
sented takes values in Rd × Zs, we therefore need to modify it. The way to
do this is presented in [EHKS14b, Section 6.1]. The hypothesis in [EHKS14b,
Appendix F]does not match the hypothesis of [EHKS14b, Theorem 6.1], so we
re-state this result here. The result can be summarized by the following lemma.

Lemma K.1. Let d, s ∈ Z>0, let λ ≥ 1 and H a qubit space with n qubits.
Let Λ ⊂ Rd ⊕ Zs a lattice of Rd+s and f : Rd ⊕ Zs → H a function satisfying

– f is a-Lipschitz over X ⊕ Zs for some X ⊆ Rd,
– f is (ν, ε)-separative,
– f is Λ-periodic for a full rank lattice Λ ⊂ Rd ⊕ Zs ⊂ Rd+s.
– f is efficiently computable as a quantum algorithm.

Assume that λ1(Λ) ≥ λ. There exists an efficiently computable function f ′ :
Rd+s → H′ which satisfies

– a′-Lipschitz on X ⊕ Rs for a′ = a+O(
√
l/ν).

– (ν, ε′)-separative for ε′ = ε+O(
√
l · λ).

– Λ-periodic.
– H′ is a qubit space with n+O(s · log(1/ν)) qubits.
– A call to f ′ at the point (x1, . . . , xd, r1, . . . , rs) makes exactly one call in su-

perposition at f at the points {(x1, . . . , xd, ⌊r1⌋+ z1, . . . , ⌊rs⌋+ zs), (z1, . . . , zs) ∈ {0, 1}s}.

Proof. This is [Boe22, Theorem 3.3], where the bound on ∥B∥ follows from
[BDF19, Corollary 6] (which says ∥B̃∥ ≤ 23m/λ1(Λ

∗
S), where m is the rank of

B) and the bound for λ1(Λ
∗
S) in Appendix J.1.

Theorem 2.2. Let H be a qubit space of dimension 2n, α ∈ (0, 1/32) and τ ∈
(0, 1) be error parameters, A ≥ 1 and ν ≤ poly(d)−1 two real numbers, then
there exists Q, k ∈ Z>0, V ∈ R>0 such that for any f : R2(dR+dC)−1+s → H
which is (A,α)-almost-Lipschitz, (ν, 1/4− 8α)-separative and ΛS-periodic, there
exists a quantum procedure

– making k oracle calls to f over the set V D2(dR+dC)−1+s
Q ,

– using O((d+ s)Q+ n) qubits,

– using O
(
kQ(d+ s) · (log(kQ(d+ s)))

2
)
quantum gates,

– poly(s, log(a)) classical bit operations,

which outputs with probability ≥ 1/2 − 4kα a matrix B̃ for which holds that∥∥∥B − B̃
∥∥∥ ≤ τ , where B is a basis of ΛS satisfying ∥B∥ ≤ (d+ s)O(d+s) · |∆K |.

Furthermore, Q, k and V satisfy

58

– Q = O
(
(d+ s)2+o(1) · log(A) + log(τ)

)
,

– V ≥ 1 with log(V) = O
(
(d+ s)1+o(1) + log(n) + log(|∆K |)

)
,

– k = O
(
(d+ s)1+o(1) log(A)

)
,

Proof. This theorem follows from combining Theorem K.1 and Lemma K.1,
instantiating the relevant parameters from Appendix J, with the exception of
the almost Lipschitz-continuity. We mitigate this discrepancy by utilizing Theo-
rem H.1, which states that a (A,α)-almost Lipschitz, separative and ΛS-periodic
function is 4α-close in the maximum norm to a (fully) Lipschitz, separative (with
slightly worse parameters) and ΛS-periodic function.

The loss in probability comes from the fact that this latter, fully Lipschitz
function is approximated within error 4α, and that the oracle is queried k times.

L Quantum computing the discrete Gaussian state

L.1 A quantum version of the algorithm of Gentry, Peikert and
Vaikuntanathan

Recall the definition of the Gaussian function from Section 2.4. For c,x ∈ Rm,
we denote ρσ,c(x) = e−π∥x−c∥2/σ2

. The dimension m of the Gaussian is often
left implicit.

Definition L.1 (Periodized Discrete Gaussian). Let B ∈ Rm×n be a (column-
oriented) basis , and let c ∈ Rm be a center, let σ > 0 be the Gaussian width
and let q ∈ Z>0 be the periodization parameter. Then we define the periodized
Gaussian ξσ,q(B, z) for z ∈ (Z/2QZ)n by the following rule.

ξσ,c,q(B, z) =

 ∑
x∈qZn

ρσ,c(B(z + x))2

1/2

(23)

Lemma L.1. Let B = (b1, . . . , bn) ∈ Rm×n be a (column-oriented) basis and
let B∗ = (b∗1, . . . , b

∗
n) its (non-normalized) Gram-Schmidt orthogonalization,

let σ > 0, let c ∈ Rm and q ∈ Z>0.

Put σ′ = σ/∥b∗n∥ and c′ =
⟨c,b∗

n⟩
⟨b∗

n,b
∗
n⟩
. Then, for any z ∈ Z/qZ and z◦ ∈

(Z/qZ)n−1, we have

ξσ,c,q(B, z) = ξσ′,c′,q(1, z) · ξσ,cz,q(B◦, z◦), (24)

where cz = πn−1(c − zbn) ∈ span(b1, . . . , bn−1), and πn−1 is the orthogonal
projection to the first n− 1 basis vectors of B∗, and B◦ = (b1, . . . , bn−1).

59

Proof. We prove the identity Equation (24) by squaring both sides (which is
possible by positivity). This yields

ξσ′,c′,q(1, z) · ξσ,cz,q(B◦, z◦) =
∑
x∈qZ

∑
x◦∈qZn−1

ρσ′,c′(z + x)2ρσ,cz (B◦(z◦ + x◦))
2

(25)

=
∑

x∈qZn

ρσ,c(B(z + x))2 = ξσ,c,q(B, z)
2, (26)

where z = (z◦, z) ∈ Zn and x = (x◦, x) ∈ Zn. The second equality is not
trivial and needs its own computation. Writing t = (t1, . . . , tn) and t = tn, and
recalling that σ′ = σ/∥b∗n∥, we have

ρσ′,c′(t)ρσ,ct(B◦t◦) = exp

(
−π∥b∗n∥2(t− c′)2/σ2 − π∥

n−1∑
i=1

tibi − ct∥2/σ2

)
(27)

Using the Pythagorean theorem in the shape ∥v∥2 = ∥πn−1(v)∥2 + ⟨v,b∗
n⟩

2

⟨b∗
n,b

∗
n⟩
, and

using that πn−1(bj) = bj and ⟨b∗n, bj⟩ = 0 for j < n, we deduce

∥
n∑

i=1

tibi − c∥2 = ∥
n∑

i=1

πn−1(tibi − c)∥2 + 1

⟨b∗n, b∗n⟩
⟨

n∑
i=1

tibi − c, b∗n⟩2

= ∥
n−1∑
i=1

tibi + πn−1(tnbn − c)∥2 + (tn⟨bn, b∗n⟩ − ⟨c, b∗n⟩)2

⟨b∗n, b∗n⟩

= ∥
n−1∑
i=1

tibi − ct∥2 + ∥b∗n∥2(t− c′)

Hence, substituting this into Equation (27), we obtain, with t = (t◦, t),

ρσ′,c′(t)ρσ,ct
(B◦t◦) = ρσ,c(Bt).

Substituting t = z + x then yields the second inequality in Equation (26).

Corollary L.1. Let R = [r1, . . . , rn] ∈ Zn×n be a upper triangular invertible
matrix with positive diagonal, a center c ∈ Zn, let σ ∈ Q>0 and q ∈ Z>0.

Put σ′ = σ/rn,n and c′ = cn/rn,n. Then, for any z ∈ Z/qZ and z◦ ∈
(Z/qZ)n−1, we have

ξσ,c,q(R, z) = ξσ′,c′,q(1, z) · ξσ,cz,q(R◦, z◦), (28)

where cz = πn−1(c − zbn) with πn−1 projection to the first n − 1 coordinates,
and R◦ = (r1, . . . , rn−1).

Proof. This is Lemma L.1 restated for upper-triangular matrices. This uses the
fact that for upper-triangular matrices we have that b∗i /∥b∗i ∥ is the ith canonical
vector. ⊓⊔

60

Lemma L.2 ([Boe22, Lemma A.26 and Proposition A.28]). There exists

a quantum QGauss
(q,ε)
Z algorithm taking as input |c′, (σ′)2⟩ with σ, c ∈ Q and an

empty register of size log(q) outputting a state which is within ε trace-distance
from the state

|c′, (σ′)2⟩ · C−1
0

∑
z∈Z/qZ

ξσ′,c′,q(1, z)|z⟩

where C0 is the normalization factor. This quantum algorithm can be imple-
mented using O(log2(q) + log(1/ε)) qubits and Õ

(
log2(q) · (log(1/ε))3/2

)
quan-

tum gates.

Lemma L.3. For any ε ∈ (0, 1/2), ηε(Z) ≤
√
ln(1/ε).

Proof. This is a direct application of [MR07, Lemma 3.3]. ⊓⊔

Lemma L.4. Let R = [r1, . . . , rn] ∈ Zn×n be a upper triangular invertible
matrix with positive diagonal, a center c ∈ Zn, let σ ∈ Q>0 and q ∈ Z>0.

Assume that σ ≥
√
2 ·
√
ln
(
4n3

ε2

)
·maxj rj,j. Then, Algorithm 6.1, after ter-

minating, computes a state that is ε-close in the trace distance to

C−1
∑

z∈(Z/qZ)n
ξσ,c,q(R, z)|z⟩, (29)

where C ∈ R>0 satisfies C2 =
∑

z∈Zn ρσ,c(Rz)2.

Proof. In line 3 of Algorithm 6.1, an approximation (signified by the tilde on ξ̃)
of the periodized discrete Gaussian state over Z is computed, within trace dis-
tance ε/(2n). Since the rest of the algorithm is a (trace preserving) quantum op-
eration, we can deduce that at the expense of a final trace distance error ε/(2n),
we may assume that this particular state is exact, i.e., that line 3 computes (note
the ξ without tilde)

|R⟩|c⟩|σ⟩

|c′, σ′⟩ · C−1
0

∑
z∈Z/qZ

ξσ′,c′,q(1, z)|z⟩

 |0⟩.

Then, in line 6, another approximation of the periodized discrete Gaussian (but
this time overR◦Zn−1) is recursively computed, within trace distance (n−1)ε/n.
Abstractly, this state is of the shape |ϕ⟩ =

∑
z∈Z/qZ az|z⟩|ψ̃z⟩ as an approxima-

tion of |ϕ̃⟩ =
∑

z∈Z/qZ az|z⟩|ψz⟩, where T (|ψ̃z⟩, |ψz⟩) ≤ (n − 1)ε/n for all z ∈
Z/qZ, per assumption. Using the identity T (|ϕ⟩, |ϕ′⟩)2 = 1 − |⟨ϕ|ϕ′⟩|2 [Wil17,
Eq. (9.172),Eq. (9.85)] one then deduces that

1− T (|ϕ⟩, |ϕ̃⟩)2 =
∑

z∈Z/qZ

|az|2|⟨ψz|ψ̃z⟩|2 =
∑

z∈Z/qZ

|az|2(1− T (|ψz⟩, |ψ̃z⟩)2)

=1−
∑

z∈Z/qZ

|az|2T (|ψz⟩, |ψ̃z⟩)2

61

Hence, using
∑

z∈Z/qZ |az|2 = 1, we obtain that T (|ϕ⟩, |ϕ̃⟩) ≤ (n−1)ε
n .

Therefore, up to a trace-distance error (n−1)ε
n + ε

2n = (2n−1)ε
2n , we may assume

that the final state of Algorithm 6.1 equals (note the lack of a tilde)

|R⟩|0⟩|c⟩|σ⟩|0⟩C−1
0

∑
z∈Z/qZ

ξσ′,c′,q(1, z)|z⟩C−1
z

∑
z◦∈(Z/qZ)n−1

ξσ,cz,q(R◦, z◦)|z◦⟩

= |R⟩|0⟩|c⟩|σ⟩|0⟩C−1
0

∑
z∈(Z/qZ)n

C−1
zn

· ξσ,c,q(R, z)|z⟩

where the identity comes from Corollary L.1. To show that this is close to the
desired state in Equation (29), we compute the trace distance. Writing

|ϕ̃⟩ = C−1
0

∑
z∈(Z/qZ)n

C−1
zn

· ξσ,c,q(R, z)|z⟩ and |ϕ⟩ = C−1
∑

z∈(Z/qZ)n
ξσ,c,q(R, z)|z⟩,

we have, using C2 =
∑

z∈(Z/qZ)n ξσ,c,q(R, z)
2 and the identity T (|ϕ⟩, |ϕ′⟩)2 =

1− |⟨ϕ|ϕ′⟩|2,√
1− T (|ϕ⟩, |ϕ̃⟩)2 =

∑
z∈(Z/qZ)n

(C · C0 · Czn
)−1 · ξσ,c,q(R, z)2 (30)

= 1−
∑

z∈(Z/qZ)n
(C−2 − (C · C0 · Czn

)−1) · ξσ,c,q(R, z)2 (31)

≥ 1− max
z∈Z/qZ

(
1− C

C0 · Cz

)
(32)

where the inequality is Hölder’s inequality. So it remains to estimate the frac-

tion C
C0·Cz

. By induction, one obtains that, for each z ∈ Z/qZ, there exists c(z)j ∈
R for j ∈ {1, . . . , n} such that

C2
0 · C2

z =

n∏
j=1

(∑
t∈Z

ρ σ
rj,j

,c
(z)
j

(t)2

)

Likewise, there exists c′j ∈ R for j ∈ {1, . . . , n} such that

C2 =

n∏
j=1

(∑
t∈Z

ρ σ
rj,j

,c′j
(t)2

)
.

By the assumption that σ >
√
2ηε′(Z) · maxj rj,j with ε′ = ε2/(4n3), we can

use smoothing arguments [MR07] similar as in the work of Gentry, Peikert and
Vaikuntanathan [GPV08] to obtain∑

t∈Z
ρ σ

rj,j
,c′j

(t)2 =
∑
t∈Z

ρ σ√
2rj,j

,c′j
(t) ∈ [1− ε′, 1 + ε′]

∑
t∈Z

ρ σ√
2rj,j

,c
(z)
j

(t)

∈ [1− ε′, 1 + ε′]
∑
t∈Z

ρ σ
rj,j

,c
(z)
j

(t)2

62

Therefore, for all z ∈ Z/qZ, we have C2 ∈ [(1− ε′)n, (1 + ε′)n]C2
0C

2
z leading to

max
z∈Z/qZ

(
1− C

C0 · Cz

)
≤ 1− (1− ε′)n/2.

Plugging into Equation (32), we obtain

T (|ϕ⟩, |ϕ̃⟩)2 ≤ 1− (1− ε′)n ≤ nε′,

where we use that ε′ < 1/n. Hence T (|ϕ⟩, |ϕ̃⟩) ≤
√
nε′ ≤ ε/(2n), by definition

of ε′.
Therefore, the trace distance between the computed state in line 8 of Algo-

rithm 6.1 and the desired state as in Equation (29) is at most ε
2n+

(n−1)ε
n + ε

2n = ε.
⊓⊔

Lemma L.5. Let R = (r1, . . . , rn) ∈ Zn×n be an upper triangular invertible
matrix, let σ ∈ Q>0, let c ∈ Zm and q ∈ Z>0 a periodization parameter which is
a power of 2. Let ε ∈ (0, 2−n) > 0, Then on input |R, σ, c⟩, Algorithm 6.1 uses

Õ
(
n2 · β1+o(1) + n · log2(q) · (log(1/ε))3/2

)
quantum gates and

O
(
n · β1+o(1) + log(1/ε)

)
ancillary qubits, where

β = log(n · q · ∥R∥) + max
i

(size(ci)) + size(σ).

Proof. The algorithm only works on rationals, whose denominator is at most
the denominator of σ times ∥R∥. The size of c′ is then bounded by log(∥R∥) +
maxi size(ci) (we consider the recursive calls). By the same argument, the size
of (σ′)2 is bounded by size(σ)+log(∥R∥). This implies that the size of the (c′, σ′2)
register is bounded by β1 = O(log(∥R∥) + maxi(size(ci)) + size(σ)).

Over the course of the recursive calls, the quantum register associated to c
is going to contain vectors of the form c + R · z, with z ∈ Zn and ∥z∥∞ ≤ q.
Let β2 = ⌈log(n · q · ∥R∥)⌉, the norm of the vector contained in the register is
then bounded by 2β2 , the size of the quantum register associated to c is taken
to be n · β2.

In line 2, the size of the elements implies that the computation can be used

using using O(β
1+o(1)
1) qubits and quantum gates.

In line 3, QGauss
(q,ε/(2n))
Z is used, which cost O(log2(q)+ log(1/ε)) quantum

memory and Õ
(
log2(q) · (log(1/ε))3/2

)
quantum gates (note that we removed

the dependence in O(log(n)) since ε is assumed to be < 2−n).
In line 4 an uncomputation of line 2 is done, hence takes the same number

of qubits and quantum gates.

63

In line 5, a shift of the center c is computed. This operation is performed
with n multiplications and n additions of number of size β2, resulting in O(n ·
β
1+o(1)
2) quantum gates and memory.
In line 6, the algorithm is called recursively, with lower dimension and a

slightly lower error parameter.
In line 7 an uncomputation of line 5 is done. This takes the same number of

qubits and quantum gates.
Let G(n, ε) (respM(n, ε)) be the number of quantum gates (resp the number

of ancillary qubits) needed to perform Algorithm 6.1 in dimension n with error ε,
we proved that

G(n, ε) = 2nβ
1+o(1)
2 + 2β

1+o(1)
1 + Õ

(
log2(q) · (log(1/ε))3/2

)
+G(n, (n− 1)ε/n)

and that the number of ancillary qubits is

M(n, ε) = max
(
O(β

1+o(1)
1), O(n · β1+o(1)

2), O(log2(q) + log(1/ε)),M(n− 1, (n− 1) · ε/n)
)

By induction we have that

G(n, ε) = Õ
(
n2 · β1+o(1) + n · log2(q) · (log(1/ε))3/2

)
and

M(n, ε) = O
(
n · β1+o(1) + log(1/ε)

)
which concludes the proof. ⊓⊔

Lemma L.6. Let x ≥
√
d/(2π), and assume that q ≥

∥∥B−1
∥∥ · σ · x/

√
2, then

the following two states

C−1
∑

z∈(Z/qZ)n
ξσ,q(B, z)|z⟩,

and

D−1
∑

z∈[q]n

ρσ(Bz)|z⟩

are βn(x)-close in trace distance. Here C,D ∈ R>0 satisfy C2 =
∑

z∈Zn ρσ(Bz)2

and D2 =
∑

z∈[q]nc
ρσ(Bz)2.

Proof. By inequalities regarding the trace distance and a simple calculation5, we
have that the trace distance satisfies D(|ϕ⟩, |ψ⟩) ≤ ∥|ϕ⟩ − |ψ⟩∥. Hence, we will

5 For pure states, we have D(|ψ⟩, |ϕ⟩) =
√

1− |⟨ψ|ϕ⟩|2 ≤ ∥|ψ⟩ − |ϕ⟩∥ [Wil17,
Eq. (9.172),Eq. (9.85)]. Writing ⟨ψ|ϕ⟩ = a + bi with a2 + b2 = |a + bi|2 ≤ 1 (due
to Hölders inequality), the last inequality follows from 1− |⟨ψ|ϕ⟩|2 ≤ 1− a2 − b2 ≤
1− a2 ≤ 2− 2a = ⟨ψ|ψ⟩+ ⟨ϕ|ϕ⟩ − ⟨ψ|ϕ⟩ − ⟨ϕ|ψ⟩ = ∥|ψ⟩ − |ϕ⟩∥2.

64

bound the square of the 2-norm of the difference of the two states of this lemma.∥∥∥∥∥∥C−1
∑

z∈[q]nc

ξσ,q(B, z)|z⟩ −D−1
∑

z∈[q]nc

ρσ(Bz)|z⟩

∥∥∥∥∥∥
2

(33)

=
∑

z∈[q]nc

|C−1ξσ,q(B, z)−D−1ρσ(Bz)|2 (34)

≤
∑

z∈[q]nc

C−2
∑

x∈qZn\{0}

ρσ(B(z + x))2 + |(C−1 −D−1)ρσ(Bz)|2
 . (35)

where the last inequality is due to the reverse triangle inequality (for 2-norms),
by seeing the function x 7→ ρσ(B(z + x)) as a vector in RqZn

, as well as x 7→
1x=0 · ρσ(Bz).

Equation (35) can be further simplified

C−2
∑

z∈Zn\[q]nc

ρσ(Bz)2 + |C−1 −D−1|2
∑

z∈[q]nc

ρσ(Bz)2

=C−2(C2 −D2) + |D/C − 1|2 = |1− (D/C)2|+ |1− (D/C)|2

Writing D2/C2 = 1 − η/2 for some η ∈ [0, 1], we obtain that above is bounded
by η + |1−

√
1− η|2 ≤ η. Hence we will estimate such an η.

We have, by Banaszczyk’s bound (see Lemma A.2),

D2/C2 − 1 =
D2 − C2

C2
= C−2

∑
z∈Zn\[q]nc

ρ σ√
2
(Bz) ≤ βn(R

√
2/σ),

where R = min{∥Bz∥ | z ∈ Zn\[q]n}. We have that R ≥ q/
∥∥B−1

∥∥, so by

hypothesis of q, R
√
2/σ ≥ x and then βn(R

√
2/σ) ≤ βn(x). ⊓⊔

Lemma L.7. Let ε ∈ (0, 2−n). Assume that q,R satisfies that q > R ·
∥∥B−1

∥∥,
∥B∥ · q ≥ σ ·

√
ln(2/ε) and R ≥ σ ·

√
ln(2/ε) then the following two states

A−1
∑

x∈[q]n

ρσ(Bx)|z⟩

and
B−1

∑
x∈Zn

∥Bx∥≤R

ρσ(Bx)|x⟩ (36)

are ε-close in trace distance. Here A,B ∈ R>0 are chosen such that the two
above state have norm 1.

Proof. Let x =
√
2 ln(2/ε) ≥

√
n. Note that we have A =

√
ρσ/

√
2(B · [q]n)

and B =
√
ρσ/

√
2(L(B) ∩B(0, R)). By assumption on q, we have that for

65

any x ∈ Zn\[q]n, ∥B · x∥ ≥ q/
∥∥B−1

∥∥ > R . In particular, {x ∈ Zn, ∥Bx∥ ≤ R} ⊆
[q]n and A ≥ B. Let us bound the norm of the Gaussian superposition over
all x ∈ [q]n satisfying that ∥Bx∥ > R. We have that

∥∥∥∥∥∥∥∥A
−1

∑
x∈[q]n

∥Bx∥>R

ρσ(Bx)|x⟩

∥∥∥∥∥∥∥∥
2

=
ρσ/

√
2(L(B) \B(0, R))

ρσ/
√
2(B · [q]n)

≤
ρσ/

√
2(L(B) \B(0, R))

ρσ/
√
2(L(B) ∩B(0, R))

≤ βn(x)

1− βn(x)
By Lemma A.2

Now, we bound the norm of the remaining difference.

∥∥∥∥∥∥∥∥
∑

x∈[q]n

∥Bx∥≤R

ρσ(Bx)(A−1 −B−1)|x⟩

∥∥∥∥∥∥∥∥
2

=(B−1 −A−1)2 · ρσ/√2 (B · [q]n ∩B(0, R))

≤(B−1 −A−1)2 ·A2 = (
A

B
− 1)2.

We have that

A

B
=

√
ρσ/

√
2(B · [q]n)

ρσ/
√
2(L(B) ∩B(0, R))

≤

√
ρσ/

√
2(∥B∥ · q)

ρσ/
√
2(L(B) ∩B(0, R))

≤

√
1 + βd(x)

1− βd(x)
,

and finally the claimed bound follows from the fact that
√
(1 + z)/(1− z)−1 ≤

2z if z ≤ 1. ⊓⊔

Lemma L.8. Let ε0 > 0 and B, B̃ ∈ Rn×n non-singular satisfying ∥BB̃−1 −
I∥ < ε0 and η1/2(L(B)), η1/2(L(B̃)) < σ/2. Then

C−1
∑

z∈(Z/qZ)n
ξσ,c,q(B, z)|z⟩ and C̃−1

∑
z∈(Z/qZ)n

ξσ,c,q(B̃, z)|z⟩

are 4 ·
√
n · √ε0-close in trace distance.

Proof. We use a result of Pellet–Mary and Stehlé [PMS21, Lemma 2.3], and the
following computation. Writing BB̃−1 = I + E with ∥E∥ ≤ ε0, we have that

66

the square of the two-norm distance between the states equals∑
z∈(Z/qZ)n

|ξσ,c,q(B, z)− ξσ,c,q(B̃, z)|2

≤
∑
z∈Zn

|ρσ,c(Bz)− ρσ,c(B̃z)|2

≤

(∑
z∈Zn

|ρσ,c(Bz)− ρσ,c(B̃z)|

)2

≤ 16n∥BB̃−1 − I∥ ≤ 16nε0.

here we use [PMS21, Lemma 2.3] with S−1
2 = σ−1B and S−1

1 = σ−1B̃. The as-
sumption used by Pellet–Mary and Stehlé, that η1/2(S

−1
1 Zn) < 1/2 and η1/2(S

−1
2 Zn) <

1/2 is equivalent to the similar assumptions here (just a scaling by σ).
As earlier in this section, the trace distance of two states can be upper

bounded by the 2-norm distance between these two states, which proves the
claim. ⊓⊔
Lemma L.9. Let R be a full rank matrix of dimension n and ε > 0, there

exists an absolute polynomial P such that if σ ≥ P (n) · ε2/n ·
√

ln(ε) · det(R)
1/n

and R ≥ σ ·
√
d, then the two states

C−1
∑

z∈Zn\{0},
∥Rz∥≤R

ρσ(R · z)|z⟩ and C ′−1
∑
z∈Zn,

∥Rz∥≤R

ρσ(R · z)|z⟩

(where C,C ′ are normalization factors) are within distance ε.

Theorem 6.1. For any ε ∈ (0, 2−n), and any non-singular upper triangular ma-
trix R,R′ ∈ Zn×n with positive diagonal satisfying

∥∥R′R−1 − I
∥∥ ≤ ε2/(16n) ≤

1, and σ ≥
√
2 · ln(64n3/ε2) · ∥R∥, then the output of Algorithm 6.1 on input

(R′, σ, R, q, c = 0) is ε-close to the state

C ′−1
∑
z∈Zn,

∥Rz∥≤R

ρσ(R · z)|z⟩, (7)

where R =
√
ln(1/ε) · n · σ and q is the smallest power of two such that

q ≥
√
2n · ln(1/ε) · ln(64n3/ε2) · ∥R∥ · cond(R).

Moreover, Algorithm 6.1 uses

Õ
(
n2 · β1+o(1) + n · log2(q) · (log(1/ε))3/2

)
quantum gates and

O
(
n · β1+o(1) + log(1/ε)

)
ancillary qubits, where

β = log(n · q · ∥R∥) + max
i

(size(ci)) + size(σ).

67

Proof. Let |ϕ0⟩ be the output state of Algorithm 6.1 on input (R′, σ, R, q,0),
let |ϕ1⟩ be the state described in Eq. (29) with matrix R′, let |ϕ2⟩ be the same
state but with matrix R, let |ϕ3⟩ be the state described in Eq. (36) and fi-
nally |ϕ4⟩ the state of Eq. (37). Now note that our choices of σ, q and R satisfy:

– Lemma L.4 implies that ∥|ϕ0⟩ − |ϕ1⟩∥ ≤ ε/4;
– ∥|ϕ1⟩ − |ϕ2⟩∥ ≤ ε/4, by Lemma L.8. We use here the fact that η1/2(L(R)) ≤

∥R∥ and that ∥R′∥ ≤ 2∥R∥;
– Lemma L.7 with error term is ≤ ε/4, implies that ∥|ϕ2⟩ − |ϕ3⟩∥ ≤ ε/4,

which, in combination with the complexity statements of Lemma L.5, concludes
the proof. ⊓⊔

Corollary L.2. Let ε, σ, q, R,R,R′ satisfying the hypotheses of Theorem 6.1.

Furthermore, assume that σ ≥ 4 · ε−1/n · det(R)
1/n

. Then the output of Algo-
rithm 6.1 on input (R′, σ, R, q, c = 0) is 2ε-close to the state

C−1
∑

z∈Zn\{0},
∥Rz∥≤R

ρσ(R · z)|z⟩. (37)

Proof. The squared trace distance between Eq. (37) and Eq. (7) (recall that
C ′2 = ρσ/

√
2(L(R)|R) and C2 = C ′2 − 1) is equal to

∑
z∈Zn\{0},
∥Rz∥≤R

ρσ/
√
2(R · z) ·

(
1

C2
− 1

C ′2

)
+

1

C ′2

=1− C2

C ′2 +
1

C ′2 = 1− C ′2 − 1

C ′2 +
1

C ′2 =
2

C ′2 .

Now, by the condition onR, it holds that ρσ/
√
2(L(R)|R) ≥ (1−ε)·(σ/

√
2)n/ det(R).

The condition on σ gives that this is ≥ 1/(2ε), which ends the proof. ⊓⊔

M About the straddle encoding

Definition M.1. The straddle encoding of parameter t is defined as:

Strt : R −→ S(CZ)

x 7−→ cos
(π
2
{x/t}

)
|⌊x/t⌋⟩+ sin

(π
2
{x/t}

)
|⌊x/t⌋+ 1⟩

Where {x} = x− ⌊x⌋. Note that if we restrict Strt to [a, b] for a, b ∈ R, then its
codomain becomes CJ⌊a/t⌋,⌈b/t⌉K

In order to encode complex arguments in R/Z, we use a modified version of
the straddle encoding.

68

Definition M.2. Let t ∈ (0, 1) be the inverse of an integer. The torus-straddle
encoding of parameter t is defined as

Str′t : R/Z −→ S(CJ0,1/t−1K)

x 7−→ cos
(π
2
{x/t}

)
|⌊x/t⌋⟩+ sin

(π
2
{x/t}

)
|⌊x/t⌋+ 1 mod 1/t⟩

Lemma M.1 ([EHKS14b, Example 5.3]). The functions Strt and Str′t are
π
2t -

Lipschitz, and 2t-totally separating.

Lemma M.2 ([EHKS14b, Lemma 5.2.b]). Let fi : Xi → Hi a ai-Lipschitz
function for i ∈ JmK and let f :×i

Xi →
⊗

i Hi defined by f((xi)i) = ⊗ifi(xi).

Then f is
√∑

i a
2
i -Lipschitz.

Definition M.3. Let t ∈ (0, 1) be the inverse of an integer. We define

EncArgt : ArgK −→ (C2)⊗dR ⊗ (CJ0,1/t−1K)⊗dC

(si)i∈JdRK × (θi)i∈JdCK 7−→ ⊗i∈JdRK(|si⟩)⊗⊗i∈JdCK(Str
′
t(θi))

where we set |±1⟩ as a basis for C2. Let XR =
{
x ∈ K×

R |R, |N (x)| ≥ 1
}
), we

define

EncLogR,t : Log(XR) −→ (CJ⌊−(d−1) ln(R)/t⌋,⌈ln(R)/t⌉K)⊗dR+dC

(xi)i∈JdR+dCK 7−→ ⊗i∈JdR+dCK Strt(xi)

Finally, we define

EncR,t : XR −→ HR,t

x 7−→ EncArg(arg(x))⊗ EncLog(Log(x))
,

where

HR,t = (C2)⊗dR ⊗ (CJ0,1/t−1K)⊗dC ⊗ (CJ⌊−(d−1) ln(R)/t⌋,⌈ln(R)/t⌉K)⊗dR+dC

We have that

log(dim(HR,t)) =2dR + dC · log(1/t) + (dR + dC)ln(d ln(R)/t)

=O(d · (log(d log(R)) + log(1/t))). (38)

Lemma M.3. Let t ∈ (0, 1) be the inverse of an integer. The function EncR,t

is
√
d · π

2t -Lipschitz and 2
√
d · t-totally separating.

Proof. This is a direct application of the definition of the distance function
over K×

R and the separativity and Lipschitzianity of Str. ⊓⊔

M.1 Properties of the straddle encoding

In this section we give properties of the straddle encoding. We use the modified
version given in the previous subsection.

69

Lemma M.4. Let x, y ∈ R, then

⟨Strt(x)|Strt(y)⟩ ≤ max(0, 1− π2

12 · t2
|x− y|2).

Proof. We prove the result for t = 1, the general case follows. Note that for
any |x| ≤ π/2, it holds that cos(x) ≤ 1 − x2/3. If |x− y| ≥ 2, this is trivially
true. Without loss of generality, we assume that x ∈ [0, 1] and y ∈ [x, 2]. We
distinguish between y ≤ 1 and y > 1. If y ≤ 1, it holds that

⟨Str1(x)|Str1(y)⟩ =cos
(π
2
x
)
cos
(π
2
y
)
− sin

(π
2
x
)
sin
(π
2
y
)

=cos
(π
2
(x− y)

)
≤ 1− π2

12
|x− y|2

Now, assume that 0 ≤ x ≤ 1 ≤ y ≤ 2, and write x = 1− a, y = 1+ b. Note that
y − x = a+ b. It holds that

⟨Str1(x)|Str1(y)⟩ =sin
(π
2
(1− a)

)
cos
(π
2
b
)
= cos

(π
2
a
)
cos
(π
2
b
)

=
1

2

(
cos
(π
2
(a− b)

)
+ cos

(π
2
(a+ b)

))
≤1− π2

12
· ((a+ b)2 + (a− b)2) = 1− π2

6
(a2 + b2)

≤1− π2

12
(a+ b)2.

⊓⊔

Corollary M.1. Let t ∈ (0, 1), then Strt is (2
√
d · t/(

√
10 ·π), 29/30) separative

over Rd.

Proof. Let ν′ = 2
√
d · t/(

√
10 ·π). Let x,y such that ∥x− y∥ ≥ ν′, in particular,

there exists a component which is greater than ν′/
√
d, without loss of generality,

assume that it is the first. Then it holds that〈
Str

(d)
t (x)

∣∣∣Str(d)t (y)
〉
≤ ⟨Strt(x1)|Strt(y1)⟩ ≤ 1− π2

12 · t2
· ν

′

d
,

Hence the result. ⊓⊔

70

	Quantumly Computing S-unit Groups in Quantified Polynomial Time and Space
	Introduction
	Preliminaries
	Notations
	Quantum algorithms, complexity and analysis
	Lipschitz continuity and separativity
	Lattices
	Number theory
	Ideals
	Computation of the S-Units and CHSP Oracle

	A quantum encoding of ideal lattices
	Introduction
	Well-definedness of FR,σ
	Almost Lipschitz continuity
	Separativity

	Implementation of the Quantum algorithm
	Introduction
	From ideal lattice encoding to CHSP Oracle
	From continuous to polynomial-size input space
	Interlude: small approximations of ideals
	Classical precomputations
	Determination of the set of ideals A in Line 2
	Computation of the product of ideals in Line 3
	Matrix reduction of Step 4
	From the exact representation to canonical embedding in Step 5
	QR factorization of Step 6
	Computing the Gaussian superposition of Step 7
	Update of the coordinates in Step 8
	Final distance to GRsigma

	Parameters and final complexity
	Choosing sigma, R and p
	Final complexity of the quantum oracle

	An efficient quantum circuit for the GPV algorithm, computing a Gaussian lattice superposition
	Extended preliminaries
	Technical proofs
	Lipschitz bound on difference of Gaussian sums
	Compact representation of high powers of an ideal
	Error analysis of Section 5
	Error analysis of Step 6 of Algorithm 4.1
	Error analysis of Step 9 of Algorithm 4.1

	Complexity of Algorithm 4.1 step by step
	Postprocessing: from an approximate basis of the log-S-units to the compact representation of S-units
	A result on almost-Lipschitz periodic functions
	Arithmetic over algebraic objects
	Representation of algebraic objects
	Algorithms on K

	Computations for LambdaS
	Bound on the first minimum of LambdaSstar

	The CHSP theorem for S-units
	Quantum computing the discrete Gaussian state
	A quantum version of the algorithm of Gentry, Peikert and Vaikuntanathan

	About the straddle encoding
	Properties of the straddle encoding

